Math 20580	Name:	-
Midterm 2	Instructor:	_
March 5, 2020	Section:	_

Calculators are NOT allowed. Do not remove this answer page – you will return the whole exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

Multiple Choice.

9.			
10.			
11.			
12.			
_			

Total.

Part I: Multiple choice questions (7 points each)

- 1. Assume that A and B are two 4×4 matrices with determinants det A = 2, det B = 3. Find the determinant det $(A^T B A^{-1} B)$.
 - (a) 0 (b) 9/4 (c) 36 (d) 9 (e) cannot be determined.

2. Consider the four functions $f_1 = (\sin t)^2$, $f_2 = (\cos t)^2$, $f_3 = 1$, $f_4 = \cos 2t$. They generate a subspace $H = \text{Span}\{f_1, f_2, f_3, f_4\}$ in the vector space C[0, 1] of continuous functions on the interval [0, 1]. Which among the following sets is a basis for H?

Hint: You may use the trig identity $\cos 2t = (\cos t)^2 - (\sin t)^2 = 2(\cos t)^2 - 1 = 1 - 2(\sin t)^2.$

(a)
$$\{f_1, f_2\}$$
 (b) $\{f_1, f_2, f_3\}$ (c) $\{f_1, f_2, f_3, f_4\}$ (d) $\{f_1\}$

(e) none of the above.

3. Which among the following subsets of \mathbb{R}^3 is a subspace?

1.
$$\left\{ \begin{bmatrix} t \\ s \\ \sin t \end{bmatrix} | t, s \in \mathbb{R} \right\}$$

2. $\left\{ \begin{bmatrix} t \\ 2t \\ 1 \end{bmatrix} | t \in \mathbb{R} \right\}$
3. $\left\{ \begin{bmatrix} t \\ s \\ t+s \end{bmatrix} | t \in \mathbb{R}, s \ge 0 \right\}$
4. $\left\{ \begin{bmatrix} t \\ t+s \\ s \end{bmatrix} | t, s \in \mathbb{R} \right\}$
(a) 3 and 4 only (b) 4 only (c) 1, 3 and 4 only
(d) all of them (e) none of them.

4. Let S be the parallogram determined by the vectors $\begin{bmatrix} 1\\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2\\ 3 \end{bmatrix}$. Find the area of S. (a) 0 (b) 1 (c) -1 (d) 42 (e) none of the above.

- 5. Consider the linear transformation $T : \mathbb{P}_2 \to \mathbb{P}_2$ defined by $T : p(t) \mapsto t p'(t) p(t)$. Which of the following polynomials is in the null space (kernel) of T?
 - (I) t^2 (II) 2t (III) $1 t^2$ (IV) -t
 - (a) I and II only (b) IV only (c) III only (d) I and III only (e) II and IV only

- 6. Let *H* be the subspace of \mathbb{P}_3 consisting of all polynomials p(t) of degree at most 3 such that p(-1) = 0. Which of the following is a basis of *H*?
 - (a) $\{1, t, t^2, t^3\}$ (b) $\{t 1, t^2 + 1, t^3 1\}$ (c) $\{t + 1, t^2 1, t^3 + 1\}$
 - (d) $\{t+1, t^2-1, t^2+t^3, t^3+1\}$ (e) $\{t+1, t^3+1\}$

- 7. Let $T: \mathbb{R}^{12} \to \mathbb{R}^8$ be a linear transformation of \mathbb{R}^{12} onto \mathbb{R}^8 . What is the dimension of the null space (kernel) of T?
 - (a) 3 (b) 4 (c) 6 (d) 8 (e) 11.

- 8. The vector $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ is an eigenvector of the matrix $A = \begin{bmatrix} 4 & -2 & 3\\ 2 & 2 & 0\\ 1 & -4 & 10 \end{bmatrix}$. What is the corresponding eigenvalue?
 - (a) 2 (b) 6 (c) 4 (d) 8 (e) 3

Part II: Partial credit questions (11 points each). Show your work.

9. Consider the matrix

$$A = \begin{bmatrix} s & 0 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & s \end{bmatrix}$$

with s a parameter.

(a) Calculate the determinant of A.

(b) For which values of the parameter s is the matrix A invertible?

(c) When A is invertible, find the entry in row 1, column 3 of the inverse matrix A^{-1} (the formula will depend on the parameter s).

10. Consider the two ordered bases \mathcal{B} and \mathcal{C} of \mathbb{R}^3 given by

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}, \qquad \mathcal{C} = \left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1\\-1 \end{bmatrix} \right\}.$$

(a) Find the change of coordinate matrix $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}$ from \mathcal{C} to \mathcal{B} (recall that $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}$ is the matrix such that $[\vec{x}]_{\mathcal{B}} = \underset{\mathcal{B}\leftarrow\mathcal{C}}{P} \cdot [\vec{x}]_{\mathcal{C}}$ for all vectors \vec{x} in \mathbb{R}^3).

(b) If
$$\vec{v}$$
 is a vector in \mathbb{R}^3 with $[\vec{v}]_{\mathcal{C}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$, determine $[\vec{v}]_{\mathcal{B}}$ and \vec{v} .

11. Let A be the matrix

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

(a) Find all the eigenvalues of A.

(b) For each eigenvalue of A, determine a basis of the corresponding eigenspace.

12. Consider the vector space \mathbb{P}_2 of polynomials of degree at most 2 in the variable t. Let $\mathcal{E} = \{1, t, t^2\}$ denote the standard basis of \mathbb{P}_2 . Define the following polynomials in \mathbb{P}_2 :

$$p_0(t) = 1 + t + t^2$$
, $p_1(t) = 1 + 2t + 3t^2$, $p_2 = 1 + 4t + 9t^2$, $p_3 = 1 + 8t + 17t^2$.

(a) Write below the coordinate vector $\vec{v}_i = [p_i(t)]_{\mathcal{E}}$ in \mathbb{R}^3 for each i = 0, 1, 2, 3.

$$\vec{v}_0 = \begin{bmatrix} \\ \\ \end{bmatrix}, \quad \vec{v}_1 = \begin{bmatrix} \\ \\ \\ \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}.$$

(b) Find scalars a_0, a_1, a_2 such that $\vec{v}_3 = a_0 \vec{v}_0 + a_1 \vec{v}_1 + a_2 \vec{v}_2$.

(c) Find scalars b_0, b_1, b_2 such that $p_3 = b_0 p_0 + b_1 p_1 + b_2 p_2$. Explain your reasoning.