Math 20580	Name:	
Final Exam	Instructor:	
December 10, 2021	Section:	
Calculators are NOT allowed.	You will be allowed 120 minutes to do the test.	

There are 20 multiple choice questions worth 7 points each. You will receive 10 points for following the instructions. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

- 1. Consider the bases $\mathcal{B} = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$ and $\mathcal{C} = \left\{ \begin{bmatrix} 2\\0 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$ for \mathbb{R}^2 . Find the change of basis matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathcal{P}}$.
 - (a) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1/2 & 1 \\ 0 & 1 \end{bmatrix}$ (e) none of the above

$$\begin{bmatrix} 2 & -1 & \vdots & 1 \\ 0 & 1 & \vdots & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \to R_1 + R_2} \begin{bmatrix} 2 & 0 & \vdots & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
$$\begin{array}{c} R_1 \to \frac{1}{2}R_1 \\ 0 & 1 & \vdots & 0 & 1 \end{bmatrix}$$
$$\begin{array}{c} R_1 \to \frac{1}{2}R_1 \\ 0 & 1 & \vdots & 0 & 1 \end{bmatrix}$$
$$\begin{array}{c} R_1 \to \frac{1}{2}R_1 \\ 0 & 1 & \vdots & 0 & 1 \end{bmatrix}$$

2. Let M be the following matrix

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{bmatrix}$$

Which of the following are eigenvalues of M? I. 0 II. 1 IV. 2 IV. 3 (a) (a) I, II, and IV only (b) I, II, and III only (c) II, III, and IV only (d) all of them (e) none of them

$$\begin{aligned} 1-\lambda & 2 & 3 \\ 0 & 1-\lambda & 1 \\ 0 & 2 & 2-\lambda \end{aligned} = (1-\lambda) \begin{pmatrix} 1-\lambda & 1 \\ 2 & 2-\lambda \end{bmatrix} \\ &= (1-\lambda) \begin{pmatrix} (1-\lambda)(2-\lambda)-2 \end{pmatrix} \\ &= (1-\lambda) (3\lambda-\lambda^2) \\ &= (1-\lambda) (3-\lambda) \cdot \lambda \end{aligned} = \lambda = 0,1,3 \text{ or }$$
 eigenvalues

3. Let L be a line through the origin in \mathbb{R}^{2021} . What is the dimension of L^{\perp} ?

(a)
$$2021$$
 (b) 2020 (c) 1997 (d) 1 (e) none of these
 $d_{im}(1-) = 2021 - d_{im}L$
 $= 2021 - 1$
 $= 2020$

4. Consider the exact first-order equation

$$\left(\frac{y}{x} + 6x\right) + (\ln(x) - 2)y' = 0.$$

Which of the following is the general implicit solution to this equation?

(a)
$$y \ln(x) + 3x^2 = C$$

(b) $\frac{y^2}{2x} + 6xy = C$
(c) $(\ln(x) - 1)x - 2x = C$
(d) $y \ln(x) - 2y = C$
(e) $y \ln(x) + 3x^2 - 2y = C$

$$\int M = \frac{y}{x} + 6x = \frac{\partial f}{\partial x} = 2 \int (x_1 y) = \int M dx = y \ln x + 3x^2 + g(y)$$

$$N = -\ln x - 2 = \frac{\partial f}{\partial y}$$

$$\frac{\partial f}{\partial y} = \ln x + g'(y) = \ln x - 2$$

$$= 2 \int (y) = -2y = 2 \int (\ln y) = 2 \ln x + 3x^2 - 2y$$

$$Impolicit + y \ln x + 3x^2 - 2y = C$$

- 5. Let A be a 2×2 matrix with det(A) = 7. Which of the following is true?
 - (a) A is NOT invertible (b) A is invertible and $det(A^{-1}) = 7$ (c) $det(A^T) = 1/7$ (d) $A^T A$ is NOT invertible (e) A is invertible and $det(A^{-1}) = 1/7$

6. Let \mathbb{P}_2 be the vector space of polynomials of degree at most 2, and consider its basis $\mathcal{B} = \{t^2 + 2t - 1, 2t + 1, 1\}$. With respect to \mathcal{B} , the coordinates of $t^2 + 6t + 4$ are:

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}}
\end{array} & \left[\begin{array}{c}
\end{array} & \left[
\end{array} &$$

7. Consider the initial-value problem

 $\sin(t)y'' + 3y = \tan(t), \quad y(1) = 1.$

Which of the following is the largest interval on which a solution is guaranteed to exist?

8. Let S be a subspace of \mathbb{R}^3 of dimension 2. Which of the following sets of vectors could be a basis for S?

Need 2 linearly independent vectors!

9. What is the dimension of the row space of $A = \begin{bmatrix} 1 & 2 & 0 & 5 \\ -3 & -5 & -1 & -12 \\ 2 & 3 & 1 & 8 \\ 0 & 0 & 0 & 1 \end{bmatrix}$?

(a) 0 (b) 1 (c) 2 (d)
$$B$$
 (e) 4
 $A \sim \begin{bmatrix} 1 & 2 & 0 & 5 \\ 0 & 1 & -1 & 3 \\ 0 & -1 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 5 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 2 & 0 & 5 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

10. If
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & 0 & -2 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$ then b_{32} is:
(a) -2 (b) -1 (c) 0 (d) 1 (e) 2

$$b_{32} = \frac{C_{23}}{d_{1}tA} = \frac{1}{1} = 16$$

$$C_{2,3} = (-1)^{2+3} \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = (-1)(-1) = 1$$

$$d_{1}tA = \begin{vmatrix} 1 & 0 \\ 0 & -2 \end{vmatrix} = (-1) \begin{vmatrix} 1 & -1 \\ 1 & -2 \end{vmatrix} = (-1)(-2+1) = 1$$

11. Find the solution of the initial value problem

$$\begin{cases} y'' + y' - 2y = 0, \quad \implies m^{2} + m - 2 = 0 \quad (m + 2) \quad (m - 1) = 0 \\ y(0) = 3, \quad y'(0) = -6. \qquad \qquad m_{1} = -2, \quad m_{2} = 1 \end{cases}$$
(a) $2e^{-3t}$ (b) $e^{t} + 2e^{-2t}$ (c) $3e^{-2t}$ (d) $-6e^{t} + 3e^{-2t}$ (e) $2e^{t} + e^{-2t}$
General solution $y = C_{1} \quad e^{-2t} + C_{2} \quad e^{t} = 3 \quad 2 \quad C_{1} = 3 \quad C_{1} = 3 \quad C_{2} = 0 \quad U \quad U \quad U = 3 \quad C_{2} = 0 \quad U \quad U = 3 \quad U = 3 \quad C_{2} = 0 \quad U \quad U = 3 \quad C_{2} = 0 \quad U \quad U = 3 \quad C_{2} = 0 \quad U = 3$

12. Consider the equation

$$y'' - 2y' + 2y = 0.$$

Let y_1 be the solution satisfying $y_1(0) = 1$, $y'_1(0) = 2$, and let y_2 be the solution satisfying $y_2(0) = 3$, $y'_2(0) = 4$. Using Abel's formula, find the Wronskian $W(y_1, y_2)$.

Hint: you can find the constant in Abel's formula by computing $W(y_1, y_2)$ at t = 0 using the initial conditions on y_1, y_2 .

(a) 0 (b)
$$-2e^{2t}$$
 (c) $-2e^{-2t}$ (d) $4e^{2t}$ (e) $-2e^{-t^{3}/3}$
 $W(y_{i}, y_{2})(t) = C \cdot e^{-t^{2}/3} = C \cdot e^{2t}$
 $a^{t} t = 0$
 $C = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} = 4 - 6 = -2$
 $So W(y_{i}, y_{2})(t) = -2e^{2t}$

13. Consider the differential equation $y'' - 2y' + y = 2xe^x$. By the method of undetermined coefficients, a particular solution will have the form

(a)
$$(Ax^{3} + Bx^{2})e^{x}$$
 (b) $(Ax + B)e^{x}$ (c) Axe^{x}
(d) Axe^{-x} (e) $A\sin(x) + B\cos(x)$
 $Y = \chi^{5} \cdot (A \times + B) e^{x}$ for $S \in \{0, 1, 2\}$
So No terms one
So No terms one
Solutions of homogeneous $q_{1}!$
 $g_{1} - 2g_{1}' + g = 0$
has $FSS = \frac{1}{2}e^{x}, xe^{x}$?
 $Y = \chi^{2}(A \times + B) e^{x} (A \times^{3} + B \times^{3})e^{x}$

14. Find the solution of the initial value problem

$$\begin{cases} y + 3xy' = 0, \quad x > 0 \\ y(1) = 1 \end{cases}$$
(a) $3x - 2$ (b) $x^{-1/3}$ (c) x^2 (d) $x^{-2/3}$ (e) there is no solution
$$3 \times \frac{dy}{dx} = -y \qquad \text{Superable}$$

$$\int \frac{dy}{y} = \int -\frac{dx}{3x}$$

$$\ln |y| = -\frac{1}{3} \ln x + C$$

=)
$$y = x^{-1/3} \cdot K_{1-1} \quad k=1$$
, so $y(x) = x^{-1/3}$

15. Which of the following can *not* be the rank of a 7×5 matrix?

16. Let $A = \begin{bmatrix} 1 & 2 \\ -1 & -2 \\ 0 & 7 \end{bmatrix}$. Find the matrix Q in the QR decomposition of A. (a) $\begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 7 \end{bmatrix}$ (b) $\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{2}{\sqrt{57}} \\ -\frac{1}{\sqrt{2}} & \frac{-2}{\sqrt{57}} \\ 0 & \frac{7}{\sqrt{57}} \end{bmatrix}$ (c) $\begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} \sqrt{2} & 2\sqrt{2} \\ 0 & 7 \end{bmatrix}$ (e) does not exist Gram-Schmidt : $\overrightarrow{V_1} = \overrightarrow{W_1} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$, $|(\overrightarrow{V_1})| = (2 - \frac{1}{\sqrt{2}})| = (2 -$

$$= \begin{bmatrix} 2\\ -2\\ -2\\ 7 \end{bmatrix} - \frac{4}{2} \begin{bmatrix} -1\\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ 7\\ 7 \end{bmatrix}, \quad \text{InFall} = 7$$

Orithonormal basis $\left\{ \frac{1}{4\sqrt{2}}, \frac{\sqrt{2}}{\sqrt{2}}, \frac{1}{4\sqrt{2}}, \frac{\sqrt{2}}{\sqrt{2}} \right\} = \left\{ \begin{bmatrix} 4\sqrt{2}\\ -1/\sqrt{2}\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 7\\ 7 \end{bmatrix} \right\}$
So $Q = \begin{bmatrix} \sqrt{2}\\ -1/\sqrt{2}\\ 0 \end{bmatrix}$

17. Which of the following describes the least-squares solutions of the equation $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 0 \\ -1 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}.$$
(a) $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ only (b) $\begin{bmatrix} 5 \\ 4 \end{bmatrix}$ only (c) $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ only
(d) infinitely many solutions (e) no solutions

$$A^{T}A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \qquad A^{T}\vec{b} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \qquad A^{T}\vec{b} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \sim \begin{bmatrix} (2) & -2 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 & 2 \\ -2 & 2 & -2 \end{bmatrix} \sim \begin{bmatrix} (2) & -2 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

18. Which formula describes the general solution of the differential equation $P(t) = -\frac{4}{t}$ $t^2y'' - 4ty' + 6y = 0, t > 0 \qquad \text{w} \qquad y' \left(-\frac{4}{t}y' + \frac{6}{t^2}y = 0\right)$ given the fact that $y_1(t) = t^2$ is a solution of this equation?

19. Consider the differential equation $y'' + y = \cos^2(x)$. The functions

$$y_1 = \cos(x)$$
 and $y_2 = \sin(x)$

form a fundamental set of solutions for the associated homogeneous equation. Variation of parameters produces a solution to the nonhomogeneous ODE of the form

$$y(x) = u_1(x)y_1(x) + u_2(x)y_2(x).$$

Up to a constant of integration, what is u_1 ?

(a)
$$-\frac{1}{3}\sin^3(x)$$
 (b) $\cos(x)$ (c) $-\frac{1}{2} - \frac{1}{4}\sin(2x)$ (d) $\frac{1}{3}\cos^3(x)$ (e) none of the above

$$W(y_{1,y_{2}}) = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = \cos^{2}(x) + \sin^{2}(x) = 1$$

$$u_{1}' = \frac{-y_{2}f}{W} = -\sinh x \cos^{2}x = 3 \quad u_{1} = \int -\sinh x \cos^{2}x \, dx$$

$$\frac{u=\omega_{SX}}{=} \int u^{2} du = \frac{u^{3}}{3} = \frac{\omega_{S}^{3} \times \omega_{S}}{3}$$
$$\frac{du=-hhxdx}{3}$$

20. Find the general solution of the equation $y' + t^2y = t^2 \not(t)$ (a) $C + e^{-t^3/3}$ (b) $1 + Ce^{t^3/3}$ (c) $t^2 + Ce^{-t}$ (d) $1 + Ce^{-t^3/3}$ (e) cannot be found explicitly using methods we learned

Integration for
$$\mu(t) = e^{\int t^2 dt} = e^{t^3/3}$$

Solution $y(t) = \frac{\int \mu(t) f(t) dt}{\mu(t)} = \frac{\int e^{t^3/3} t^2 dt}{e^{t^3/3}}$
 $= \frac{e^{t^3/3} + C}{e^{t^3/3}} = 1 + C e^{-t^3/3}$

