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The next four problems refer to the two matrices
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where B is the reduced row echelon form of A.

1.(6pts) Which set of vectors below is a basis for the column space of A?
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2.(6pts) Which set of vectors below is a basis for the row space of A?
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For your convenience, here are the two matrices from the previous page:

1 13 2 -2 4 3 1 13 0 =4 0 0
-1 =13 5 9 10 -2 0 01 1 20
A=19 963 11 6 -5 @™ B=1y g0 001
7 91 2 —-26 4 11 0O 00 O0O0O
where B is the reduced row echelon form of A.
3.(6pts) Which set of vectors below is a basis for the null space of A?
([13] [4] [o] ([—13] [ 4] [ o
1 0 0 1 0 0
0 1 2 0 -3 -2
@ ol 1] 1o (b) ol"| 1]7] o
0 0 1 0 1 1
L 0] 0] [O] L 0] [ 0] [ O]
([—13] [ 4] [ o]) ([—13] [ 4] [-9])
1 0 0 1 0 1
0 —1 —2 0 -1 —1
(c) ol"| 1]7] o (d) ol"| 1]7] o
0 0 1 0 0 0
(L O] [ 0] [ O} L[ O] [ 0] [ Of)

(e) The null space has dimension 0.

4.(6pts) Which set of vectors below is a basis for (row A)*, the orthogonal complement to the
row space of the matrix A above?

¢ . .7 7] .7 ) (

13] [4] o [—13] 4 0
1l lo| |o 1 0 0
ol 1| |2 o] [=3] [-2
(a) ol 11]" [o (b) ol 1]7] o
ol ol |1 0 1 1
L[ 0] [0o] |o]) Ll o] [ of [ o]
([—13] [ 4] [ o]) ([—13] [ 4] [-9])
1 0 0 1 0 1
ol |=1| [=2 ol |=1| [=1
(C) O ) 1 b 0 (d) 0 b 1 ) O >
0 0 1 0 0 0
Ll o] | o] | o]} Ll o] [ o] | o]}

(e) The space (row A)* has dimension 0.
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1 2 3
5.(6pts) Which number below is the determinant of (3 2 1|7
1 -1 1
(a) 5 (b) 16 (c) =5 (d) —16
bii bz bis 1 23
6.(6pts) If [ba1 baa bog| is the inverse to 5 6 4| find b3;.

(a) b31 =—-0.6 (b) b31 =0.6 (C) b31 =1 (d) b31 =—-0.2

(e) 0

(e) b31 =1
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7.(6pts) Suppose a, b, x and y are n-vectors and suppose the various dot products are as
follows: a.a=—1,a-b=1,a.x=3,a.y=-3,beb=7b.ex=4b.y=—-4 x.x=17,
x.y =2 and y+y = —2. The number (2a + x).(—y + b) is which answer below?

(a) =5

(b) 10 (c) 3 (d) 0

(e) Can not be computed from the given data.

8.(6pts) Let W = Span

into W?

11

(@) |5 (b)

14

1 2 21
2 2 . ) . -3
3l |21 (- Which vector below is the projection of 9
-1 3 -3

—_
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~—r
S 0o 0o Ot
—
o
~—
DN DN A~ W
—
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~—
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1 8
9.(6pts) If W = Span g , 18 , which set of vectors below is an orthogonal basis
1 2
for W?
(1] [ 1]) ([1 5 1 5
2 1 2 2 2 1
ORI ORAHEE CRANEE
1 0 1 0 1 -7
\ L J L d \ 7
(1] [ 1]) 1 1)
2 3 2 2
@3] @312 ]2
1 -7 1 —2
\ L ] L . \ J

2 =1 0 -2
. . : 0 20 3
10.(6pts) Find the least squares solution to the equation 5 1 olX= sl
0 01 10
-1 1 1 -1 1
(a) | 3 (b) | 2 (c) |2 (d) | 1 (e) |0
4 -1 1 10 1
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11.(6pts) Let U be any n x n matrix with orthonormal columns. Which of the following are
sometimes false?

(1) The rows of U are orthonormal.

(2) UTU is the identity.

(3) For any n-vectors x and y, Ux.y = xX.y
(4) The determinant of U is £1.
()

UUT has a non-trivial kernel.

and (4) (b) (1) and (5) (c) (2) and (3)

)
) and (5) (e) All five statements are always true.

12.(6pts) Let y be the solution to (4zy + 1)dz + (22 + cosy)dy = 0 which goes through the
point (0,7/2). Which implicit equation below is satisfied by this solution?

(a) 22y + o +siny = 1 (b) 22%y +x —siny = 0 (c) 22%y +y +siny = /2 + 1

(d) 22%y +x —siny = —1 (e) 22%y +y —siny = 7/2 — 1
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13.(6pts) Let Py be the vector space of polynomials of degree 2 or less. Let L: Py — Py be
the linear transformation defined by L[y] = t*y” + ty/ +y. Determine the matrix of L with
respect to the basis {1,¢,t*} for P,.

00 1 1 2 5 1 00
(a) [0 2 0 b) |2 3 -1 ) [0 2 0
500 5 —1 0 005
[1 0 1] 1 31
d |0 2 5 ) [3 2 5

000 1 50

14.(6pts) Suppose Y is the solution to the equation

y' + tan(t)y = and y(m) =3

t2+1
Which interval below is the largest interval over which Y is guaranteed to exist?
(a) 0<t<m (b)y /2 <t<3m/2 (c)0<t<2rm (d) —m/2 <t <m/2

(e) =3m/2 <t < 3m/2
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15.(6pts) If y is the solution to
y' —2y —8y=09¢" and y(0) =9 (0)=0

which number below is y(1)?

e 2 — 2 + ¢t ed—6e 1 +3 et +6e+5
e h) — — ' % - == re
e +6e 1 +3 eS +6e+5

dJ ——— = - == re

16.(6pts) If y is the solution to
Yy +4ry =x with y(1)=2

find y(0).
1 7e? 1 4e? 1 7
W17 3= ©itT
1 4e? 7er 1
W= © T
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17.(6pts) Consider the equation
v = —4y)(9 -y
with initial value y(—1) = 1. Assuming tlim y(t) exists, find it without solving the equation.
—00

(a) =2 (b) 3 (c) 0 (d) =3 (e) 2

18.(6pts) An object of mass m is released from rest from a boat into the water and allowed
to sink. Gravity is pulling the object down and distance is to be measured upwards. By
Archimedes’s Principle, there is a buoyant force pushing up equal to bmg where b is a
constant. Resistance imparts a force on the object proportional to its velocity but in the
opposite direction with proportionality constant & > 0. Determine a differential equation
for the velocity v of the object.

(a) v’+£v:bg (b) v’—l—%’U:(b—l)g (c) v'—%v:(b—l)g

(d) v’—%v:bg (e) v —kv=(b—1)g
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19.(6pts) Which function below is the Wronskian of the two functions y; = ¢* and yp = ¢t~ '?

! 2

(@ .

20.(6pts) Given that y = t is one solution to the homogeneous equation

v (12 (L 2Y, o
y A G N

use reduction of order to find a second independent solution. Which function below is such
a function?

(a) ¢ (b) e (c) te! (d) £ — 3t (e) t2e72
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21.(6pts) Find the form of a particular solution to
y' + 49y = t*sin(7t)
using the method of Undetermined Coefficients.

(a) y = (Aot + Ayt? + Agt?) sin(7t) + (Bot + Bit? + Bot?) cos(Tt)
(b) y = (Aot + Art? + Axt®)sin(7t) + (Aot + Ayt? + Agt?) cos(Tt)
(c) y = (Ao + Ayt + Axt?)sin(7t) + (By + Byt + Bat?) cos(7t)

(d) y = (Aot + Art? + Ast?) sin(7t) + (Agt + Ayt? + Agt?®) cos(Tt)
(e) y = (Aot* + Ayt® + Aogt*) sin(Tt) 4 (Bot? + Byt + Byt*) cos(Tt)

22.(6pts) Which of these equations is 2nd order and non-linear?

(1) o/ + (sina)y/ + (1an a)y = ¢* (5) 4" + ¥ =0
(2) y + (sinz)y’ + tan(a;y) =e" (6) y'” + e y=20
(3) y + tan(zy) = €” (7) y" + €'y = sin(t)
(4) v + (tanz)y = €” (8) y"+e¥=0

(a) (2), (6) and (8) (b) (1), (3) and (4) (¢) (2) and (7)
(d) (5) and (8) (e) (2) and (8)
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23.(6pts) Suppose ¢ and sint are two solutions to the homogeneous system
y' +pt)y +aq(t)y =0
Use Variation of Parameters to find a solution to the equation
Y +p(t)y + q(t)y = tcos(t) — sin(t)
Which function below is a solution?

t3sint + 3t cost t?sint + 2t cost 2tsint + % cost
(a) (b) (c)
3 2 2
2tsint — 3t% cost t2sint + 3t cost
(d) (e)
2 3
7 1 2 5 7 10
1 0 -1 3 4 12
24.(6pts) The vector [1] is an eigenvector for the matrix |0 0 2 8 8|. What is the
0 0 00 —2 8
0 0 00 0 6

corresponding eigenvalue?

(a) 0 (b) =3 (c) 3 (d) -2 (e) 2
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Solutions

"A basis for the column space consists of the columns of A in the pivot positions which can
be easily seen from B: columns 1, 3 and 6.

"The row space of A equals the row space of B and the non-zero rows of B are a basis.

"There is an algorithm for finding a basis for the null space of A using B.

"The orthogonal complement to the row space is the null space so the answer is the same as
that for the previous problem.

Row reduce:

1 2 3 1 2 3 1 2 3
3 21 0 —4 -8 0 —4 -8
1 -1 1 0 -3 -2 0O 0 4
so the determinant is 1 - (—4) - 4 = —16.
6.
1 23100 1 2 3 100 1 2 3 100
5 6 4010 0 -4 —-11 -5 1 0 0 1 4 1 01
-1 -1 1 0 0 1 0 1 4 1 01 0 -4 -11 -5 1 0
123 100 1 2 3 1 0 O
014 101 01 4 1 0 1
005 —-11 4 001 -02 02 08

From here you can read off b3; and bss since further row operations to get to reduced row
echelon form will not change the last row. But if you do continue

1 2 3 1 0 O 1 2 3 1 0 0 -2 1 2

1 00
01 4 1 0 1 010 18 —-08 —22 010 18 —-08 —22
0 01 -02 02 08 0 01 -02 02 08 001 -02 02 08

7.
(2a+x)+(—-y+b)=—-2a.y —x.y+2a.-b+x-b=-2(-3)—(2) +2(1) + 4 = 10.




18

Initials:

15
18

15

I
—
— N —
(A
— AN =N en
- T,
- T,
° L]
— [P —
- T,
.
_ —
o O~
—
0 G e N - O
[
o AN O
%)
.-
— N — O
Q _
- | I |
S
> 1
< W
g ———
S oo o —
)
n — AN —H O
QL _
=
T AN O AN O
[l
. ——
— O © O O
—
S _ oo —
S
> Il o= o
L& 1 O AN O
ﬁr AN <t © AN
o = -
N - O
.m | _
I
e —
[79) o0 O O AN —
< — o
[T
— Q
— N D Il TAA
(A
—
Q — N Il
= - %
™ =
> &~
& _ <
= —— L
o0 O O AN
) S o)
[
= A

10.



16 Initials:

11'(1) is true
(2) is true
(3) is not always true since the correct equation is Ux Uy = x.y
(4) is true
(5) is false since U = U ! so UU” is also the identity matrix and hence has trivial kernel.

12.
(4ay + 1)dw + (22° + cosy)dy = 0 is exact. ¢, = 4oy + 1 s0 ¢ = 22%y + x + g(y) so
¢y = 22" + ¢ = 22" + cosy and ¢'(y) = cosy so g(y) =siny + C. ¢(v,y) = 22°y +x +siny
and ¢(0,7/2) = —1 so the implicit solution is 22%y + z + siny = 1.

13.
1
L(1) =1 so the first column is |0|.
0
0
L(t) =t +t so the second column is |2].
0
0
L(t*) = 2t* + 2t* + t* so the third column is [0].
5

"The right hand side is continuous everywhere so the only constraint is on the tan. The
tangent is continuous except at w/2 + k7 for any integer k. At these points the tangent is
undefined. Hence (7/2,37/2) is the largest interval containing 7 over which the tangent is
continuous.

15.
The characteristic equation is 7> — 2r —8 = (r —4)(r 4+ 2). A particular solution is y, = —e

so the general solution is Y = —e' + ae + be . Then V' = —e' + 4ae — 2be % so
Y0)=-14a+b=0=Y'(0)=-1+4a—2bora+b=1and 4a — 20 = 1.

1 1)1 Jtor ] 1] [t1 1] [ro ] 05
4 -2 1] o =6 | =3 o 1] 05 fo1] 05
so Y(t) = —e' + 0.5e* 4 0.5¢~*

-9 4 -2
Hence Y (1) = 6+; re :

t
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16.
1
Integrating factor: u = e 5o need / ze® dr = 162302 + C and general solution is y =
1 1 7e? 1 7e? 1 7e?
Z+Ce*2ff2. Then y(1) = Z—N—C’e’2 =2s0C = % and y = 1—1—1—46%. Then y(0) = Z_l+%'
17

"The constant solutions are y = 0, y = +2, y = +3. Since y(—1) = 1 the solution lies between
the lines y = 0 and y = 2. Here f(y) = (v*—4y)(9—?) is negative since f(1) = —3-8 = —24.
Hence y is decreasing so the limit is 0.

18.
F = ma = muv'. In this case there is a force downward of —mg, a force upward due to

buoyancy of bmng and a further force of resistance of —kv. Hence mv' = —mg + bmg — kv or

k
v+ —v=(b—1)g.
m

19.
2

op 2| T 172=3

det

20. V" Y ‘ ‘ ) i 1 2
?4— 25 + p ) = 0. Since y = t is one solution the equation is ?—l— 2; + | —-1— n =
,U//
0, or — =1 and hence v = e'. Hence a second solution is z = te’.
v

21.
The characteristic equation is 72449 which has roots £7i. There are no repeated roots so the

formula has the form t(generic quadratic polynomial) cos(7t)+t(generic quadratic polynomial) sin(7t)

2 L
is linear

2.
(1)
(2) is 2nd order, non-linear
(3) is 1st order, non-linear
(4) is 1st order, linear
(5) is 3rd order, non-linear
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(6) is 3rd order, linear
(7) is 2nd order, linear
(8) is 2nd order, non-linear

23.
The Wronskian is W = det ‘f sg;; = tcost — sint. Solution is
g(t)t g(t)sint
V — det /—W dt W dt
t sint

t2
where g(t) = tcost —sint so the integrals are /tdt =3 and /sin tdt = —cost so

v — det ; —cost| _ t?sint + 2t cost
t  sint 2
24.
1 2 5 7 10| |7 14
0 -1 3 4 12| (1 2
0 0 2 8 8| |[1]| =] 2| sothe eigenvalue is 2.
0O 00 -2 8|10 0
0O 00 0 6|10 0




