Do the following problems from Humphreys, Chapter III:

Section 9, p. 46: #3, 4, 5, 6. Section 10, p. 54: #9. Section 11, p. 63: #3.

Also the following problems discuss semi-direct product constructions and a proof that there are an infinite number of isomorphism classes of Lie algebras of dimension 3.

1. Let V be a vector space over a field \mathbb{F} , and let $\varphi : V \longrightarrow V$ be a linear transformation. Let L be a 1-dimensional extension of V, denoted $L = V \oplus \mathbb{F}x$. Define an \mathbb{F} -algebra structure on L via

$$[y, z] = 0$$
 and $[x, y] = \varphi(y)$,

for all $y, z \in V$, extended linearly, and assuming $[\cdot, \cdot]$ is skew-symmetric. We call this \mathbb{F} -algebra L_{φ} .

(a) Show L_{φ} is a Lie algebra.

(b) Show dim L^1_{φ} = rank φ , where $L^1_{\varphi} = [L_{\varphi}, L_{\varphi}]$.

2. In the setting of Exercise 1, let V be 2-dimensional with $V = \operatorname{span}_{\mathbb{F}}\{y, z\}$, so that $L_{\varphi} = \operatorname{span}_{\mathbb{F}}\{x, y, z\}$ is 3-dimensional with bracket given as in Exercise 1, where $\varphi(y) = y$ and $\varphi(z) = \mu z$ for some $\mu \in \mathbb{F} \setminus \{0\}$, and denote this L_{φ} by L_{μ} .

(a) Prove that $L_{\mu} \cong L_{\nu}$ if and only if either $\mu = \nu$ or $\mu = \nu^{-1}$.

(b) What can you conclude about the number of isomorphism classes of Lie algebras of dimension 3?

3. The constructions in Exercise 1 and 2 are examples of **semi-direct products**. We now give the general construction.

Suppose that I is an ideal of a Lie algebra L and there is a subalgebra S of L that is a direct sum complement to I as a vector space.

(a) Show that the map

$$\begin{array}{rccc} \theta:S & \longrightarrow & \mathfrak{gl}(I) \\ s & \mapsto & \theta(s): x \mapsto [s,x] & \quad \text{for } x \in I \end{array}$$

is a Lie algebra homomorphism from S into Der I.

We call this construction the **semi-direct product of** I by S which is denoted

$$L = S \ltimes_{\theta} I.$$

(b) Conversely, show that given Lie algebras S and I and a Lie algebra homomorphism $\theta: S \longrightarrow \text{Der } I$, then the vector space $S \oplus I$ may be made into a Lie algebra by defining

$$[(s, x), (r, y)] = ([s, r], [x, y] + \theta(s)x - \theta(r)y)$$

for $s, r \in S$ and $x, y \in I$, and that this resulting Lie algebra is a semi-direct product of I by S as given in part (a).

(c) Show that the Lie algebras in Exercise 1 may be constructed as semi-direct products.