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Questions:
(1) Compare these module categories.

(2) What are the invariants of these categories?

(3) what are the relevant representation categories in
each case?



● R(V ) is a commutation and thus there is an associated
Poisson variety (scheme), which is could be very singular.
Tate provided a process to get a commutative differen-
tial graded and graded commutative algebra T (R(V )) by
attaching symmetric algebras in each degree. A special
case is the Koszul complex (which is just one step) for
smooth points. H∗(T (R(V ))) ≅ R(V ). This is exactly how
a dg-scheme is resolved by resolving dg-algebras.

● The Zhu algebra A(V ) has more structures than just an
algebra, it has all the properties of algebra of differential
operators with a filtration so that the associated graded
algebra is always a Poisson algebra, which places the role
of function algebra of the cotangent bundle.



● We also want to know what derived version of vertex
operator algebras are so that their associated R(V ) and
A(V ) should have the derived geometric interpretation.

● The Chiral de Rham complex Ωch
X over a smooth alge-

braic variety by Malikov-Schechtman-Vaintrob, which is a
complex of sheaves of D-modules with Chiral differential
dch. For each Zariski open set U , Ωch

X (U) is a (graded)
vertex (super) algebra.

●. Lie algebra (co)homology and the Chevalley-Eilenberg
complex seems to appear in our computation of the Yoneda
algebra.



1. Associative algebras attached to
a VOA
1.0 Vertex algebra
Definition 1. A vertex operator algebra (V,Y (⋅, x),1, ω):
V — vector space /C;

Y (., x) ∶ V Ð→ End(V )[[z, z−1]]
v z→ Y (v, z) = ∑

n∈Z
vnz
−n−1

1, ω ∈ V satisfying Y (u, z)v ∈ V ((z)), and
Y (1, z)v = v, limz→0Y (v, z)1 = v, + Jacobi identity.
Y (ω,z) = ∑nLnz−n−2 makes V a module of the Virasoro
Lie algebra with L0 acts semisimply of integral weights.
Infinitely many products: (u,v) ↦ un(v) for each n ∈ Z.



1.1. Zhu algebra Given a VOA (V,Y,1, ω), there is an
associated algebra A(V ) = V /(V ○ V )

a ○ b =Resz (
(1 + z)wt(a)

z2
Y (a, z)b) .

and multiplication on A(V ) is induced by

a ∗ b =Resz (
(1 + z)wt(a)

z
Y (a, z)b) .

A(V ) is a filtered associative algebra F pA(V ) = ∑n≤pVn

F pA(V ) ∗F qA(V ) ⊆ F p+qA(V ).



Facts: (1) V ↦ A(V ) is a functor

(2) A(V ) is almost commutative in the sense

[F pA(V ),F qA(V )] ⊆ F p+q−1A(V )

(3) grA(V ) = ⊕p grA(V )p = ⊕pF pA(V )/F p−1A(V ) is a graded
Poisson algebra with Poisson bracket

{⋅, ⋅} ∶ grA(V )p ⊗ grA(V )q → grA(V )p+q−1
defined by the standard Lie bracket in A(V ).

If V is a finitely generated CFT type, then grA(V ) de-
fines a conical Poisson variety spec(grA(V )), which has a
singularity at the vertex {0}.



Example 1. Let V = Vk(g) be the universal affine vertex
operator algebra of level k for a finite dimensioal simple
Lie algebra g.

A(V ) = U(g) is the universal enveloping algebra.

F pA(V ) = ∑i≤p gi ⊆ U(g).

grA(V ) = Sym●(g) = C[g∗]—the coordinate algebra of g∗.

The Poisson variety is the affine variety g∗.



Theorem 1. If f ∶ V →W is a surjective vertex operator
algebra homomorphism, then the induced maps A(V ) →
A(W ) and grA(V ) → grA(W ) are surjective as well. Thus
the associated Poisson variety for W is a closed conical
Poisson subvariety of that for V .

In particular, for affine VOA as a quotient of Vg(k,0),
the associated Posson variety is a closed conical Poisson
subvariety of g∗.

Problem: Describe the singularity of Spec(grA(V )) at {0}
in terms of representations of V .



1.2. C2-algebra R(V )

C2(V ) = ∑a∈V a−2(V )
R(V ) = V /C2(V ) is a commutative associative algebra with
a Poisson structure

a ⋅ b = a−1b and {a, b} = a0b for a, b ∈ V.

Proposition 1. (Arakawa-Lam-Yamada) There is natu-
ral surjective Poisson algebra homomorphism:

ηV ∶ R(V ) Ð→ grA(V )

Thus inducing spec(grA(V )) ⊆ spec(R(V ))

Conjecture: spec(grA(V ))red = spec(R(V ))red



2. dg vertex algebras
Let Ch be the category of differential (cochain) complexes
of C-vector spaces.

● Obj: (V [∗], d[∗]), Morphisms: chain maps.

● Tensor product: (V [∗] ⊗U [∗])[n] = ⊕i+j=nV [i] ⊗U [j]

● Differential d[∗]V ⊗U(v ⊗ u) = d[∗]V (v) ⊗ u + (−1)∣v∣v ⊗ d
[∗]
U (u)

● Braiding: T
V [∗],U [∗](v ⊗ u) = (−1)∣v∣∣u∣u⊗ v.

● Internal hom: Hom[p](V [∗],U [∗]) = ⊕nHomC(V [n],U [n+p])
● Differential : d[∗](f)(v) = d[∗]U (f(v)) − (−1)∣f ∣f(d

[∗]
V (v))



Loop complexes and interpretation in Ch
● C[t, t−1] is graded vector space with ∣t∣ = 2N , thus a
differential complex (concentrated in even degrees)
● V [∗] ⊗C[t, t−1] is a complex. Thus

V [∗] ⊗ tn = V [∗][−2nN], V [∗] ⊗C[t, t−1] = ⊕
n∈Z

V [∗][−2nN].

● For any complex (W [∗], d[∗]W ), we get a complex

Hom[∗](V [∗] ⊗C[t, t−1],W [∗]) = ∏
n∈Z
Hom[∗](V [∗][−2nN],W [∗])

= ∏
n∈Z
Hom[∗](V [∗],W [∗][2nN])

= Hom[∗](V [∗],W [∗])[[x,x−1]].

In particular, if W [∗] = V [∗], using the tensor-Hom duality,



we get

Hom[∗](C[t, t−1],End[∗](V [∗])) = End[∗](V [∗])[[x,x−1]]. (1)

Here x is regarded as to have degree −2N and V [∗] ⊗ xn =
V [∗][2nN].

Hom[∗](V [∗] ⊗C[t, t−1],W [∗])
= Hom[∗](C[t, t−1],Hom[∗](V [∗],W [∗]))
= ∏
n∈Z
Hom[∗](C[−2nN],Hom[∗](V [∗],W [∗]))

= ∏
n∈Z
Hom[∗](V [∗],W [∗]))[2nN]



Definition 2. A vertex dg-algebra in Ch is a cochain
complex (V [∗], d[∗]V ) over C equipped with a chain map
(vertex operator map) in Ch

Y (., x) ∶ V [∗] Ð→Hom[∗](C[t, t−1],End[∗](V [∗]))
= End[∗](V [∗])[[x,x−1]]

v z→Y (v,x) = ∑
n∈Z

vnx
−n−1

with x of degree −2N , and a particular vector 1 ∈ V [0] with
d[0](1) = 0, the vacuum vector, satisfying the following
conditions:

● For any u,v ∈ V [∗], unv = 0 for n sufficiently large, i.e.
Y (u,x)v ∈ V [∗]((x)) (Truncation property),



● Y (1, x) = 1 (1 is the identity operator on V ) (Vacuum
property),

● Y (v,x)1 ∈ V [[x]] and lim
x→0

Y (v,x)1 = v (Creation prop-

erty),

● The Jacobi identity

x−12 δ(x1 − x0
x2

)Y (Y (u,x0)v,x2)

=x−10 δ(x1 − x2
x0

)Y (u,x1)Y (v,x2)

− (−1)∣u∣∣v∣x−10 δ(x2 − x1−x0
)Y (v,x2)Y (u,x1),



Remarks
● For each n ∈ Z, the multiplication V [∗]⊗V [∗] → V [∗][−2N(n+
1)] defined by v ⊗ u ↦ vn(u) makes V [∗] into a (homologi-
cally) graded algebra with a product of degree −2N(n+1)
and dV is a derivation of this algebra.

● For any homogenous u ∈ V [∗] with dV (u) = 0, the linear
map Dun ∶ V [∗] → V [∗][∣u∣−2N(n+1)] defined by Dun(v) = vn(u)
is chain map.

● The map u↦ Dun defines a chain map

V [∗] → End[∗](V [∗])[−2N(n + 1)].



● Y (d[p]V (v), x)u = d
[p+m]
V Y (v,x)u − (−1)pY (v,x)d[m]V (u).

● weak associativity:

(x0+x2)kY (Y (u,x0)v,x2)w = (x0+x2)kY (u,x0+x2)Y (v,x2)w.

● Weak commutativity:

(x1 − x2)k (Y (u,x1)Y (v,x2) − (−1)∣u∣∣v∣Y (v,x2)Y (u,x1)) = 0.

●

∑
i≥0
(−1)i(l

i
)(um+l−ivn+i − (−1)∣v∣∣u∣+lvn+l−ium+i)

= ∑
i≥0
(m
i
)(ul+iv)m+n−i



●

x−12 δ(x1 − x0
x2

)Y (Y (u,x0)v,x2)

= (−1)∣u∣∣v∣x−11 δ(x2 + x0
x1

)Y (Y (u,−x0)v,x1).

Lemma 1. The vertex dg-algebra is equipped with a co-
cycle D ∈ Z[2N]End[∗](V [∗]) defined by D(v) = v−21 satisfying
dV ○ D = D ○ dV .

[D, Y (v,x)]s = Y (D(v), x) = d

dx
Y (v,x).

A vertex dg-algebra homomorphism f ∶ (V [∗], dV , Y,1) →
(V ′[∗], dV ′, Y ′,1′) is a chain map f ∈ Ch((V [∗], dV ), (V ′[∗], dV ′))



such that

f(Y (v,x)u) = Y ′(f(v), x)(f(u)) and f(1) = 1′.

● Given any complex (V [∗], d[∗]V ), let H[∗](V [∗]) be the co-
homology, which can be regarded as a complex with zero
differential.
Theorem 2. If (V [∗], d[∗]V , Y,1) is a vertex dg-algebra ,
then there is an induced map H(Y )(⋅, x) ∶ H[∗](V [∗]) →
End[∗](H[∗](V [∗]))[[x,x−1]] defining a vertex dg-algebra struc-
ture on H[∗](V [∗]), with 1 being the image of 1 in H[0](V [∗])
since dV 1 = 0.

conformal structure: A vertex operator dg-algebra is a
vertex algebra (V,Y,1) together with an element ω ∈ V [4N]



with d
[4N]
V (ω) = 0, called conformal vector (or Virasoro

element) such that Y (ω,x) = ∑n∈ZL(n)x−n−2 (thus ∣L(n)∣ =
−2nN)
● [L(m),L(n)] = (m − n)L(m + n) + 1

12(m3 −m)δm+n,0cV for
m,n ∈ Z (the Virasoro relations) where cV ∈ C is the central
charge of V . Thus Vir is a graded Lie algebra.
● The linear operator L(0) ∈ End[0]C (V [∗]) is semisimple and

V [∗] = ⊕n∈ZV
[∗]
n with L(0)v = nv =wt(v)v for n ∈ Z, v ∈ V [∗]n .

● Furthermore ω ∈ V
[∗]
2 , dimV

[∗]
n < ∞, and V

[∗]
n = 0 for

n << 0.
● L(−1) = D.

● A vertex operator dg-algebra V [∗] = ⊕n∈ZV
[∗]
n is auto-



matically a Z-graded vector space by conformal weights.
● We call wt(v) the conformal weight and ∣v∣ the cohomo-
logical degree.

3. Vertex dg-modules
Definition 3. Let (V [∗], dV , Y,1) be a vertex algebra in
Ch. A dg-module over a vertex dg-algebra is an object
(M [∗], d[∗]M ) in Ch equipped with a chain map

YM(⋅, x) ∶ V [∗] Ð→ End[∗](M [∗])[[x,x−1]]
v z→ YM(v,x) = ∑

n∈Z
vnx

−n−1

such that for any u,v ∈ V , the following properties are
verified :



● For any u ∈ V [∗], w ∈ M [∗] , unw = 0 for n sufficiently
large, i.e. YM(u,x)w ∈M [∗]((x)). (Truncation property)
● YM(1, x) = Id∣M . (Vacuum property)
● The Jacobi identity

x−12 δ(x1 − x0
x2

)YM(Y (u,x0)v,x2) =

x−10 δ(x1 − x2
x0

)YM(u,x1)YM(v,x2)−

(−1)∣v∣∣u∣x−10 δ(x2 − x1−x0
)YM(v,x2)YM(u,x1).

● Morphisms are chain maps.

● Remark: a vertex dg-module is automatically the graded



module for the graded (super) vertex algebra (V [∗], Y,1)
together with a differential of degree 1 and square zero.

● Modules for a vertex operator dg-algebra also has a
compatible graded Virasoro Lie algebra module

● Here there is no requirement of whether L0 is diagonaliz-
able or even locally finite. However, the differential grad-
ing defines a graded module structure and thus also a fil-
tered module structure, in addition to the graded/filtered
modules structures on weak modules.

● All interesting module categories are abelian and finite
(or directed limit).



4. C2-algebras
Set C

[∗]
2 (V [∗]) = Span{u−2v ∣ u,v ∈ V [∗]}, the C2-dg-algebra

is the quotient R[∗](V [∗]) = V [∗]/C[∗]2 (V [∗]). As above, we
will write u for the class of u ∈ V [∗] in R[∗](V [∗]).
Theorem 3.The space R[∗](V [∗]) is a dg-Poisson algebra
with a graded commutative product u⋅v = u−1v and a Pois-
son bracket {u,v}R(V ) = u0v. If V [∗] is a vertex operator

dg-algebra, then R[∗](V [∗]) is a weight-graded dg-algebra

R[∗](V [∗]) = ⊕
(p,n)∈Z2

R[p](V [∗])n.

with R[p](V [∗])n the image of V
[p]
n in R[∗](V [∗]).



Let M [∗] be a dg-module for a vertex dg-algebra V [∗].
Define C

[∗]
2 (M [∗]) = Span{v−2m ∣ v ∈ V [∗],m ∈M [∗]} and set

R
[∗]
V (M [∗]) =M [∗]/C

[∗]
2 (M [∗]).

Theorem 4. If M [∗] is dg-module for a vertex dg-algebra,
then R[∗](M [∗]) is a dg-Poisson module for R[∗](V [∗]). If
M [∗] ∈ V -Modgr for a vertex operator dg-algebra V [∗], then
R[∗](M [∗]) is also a Z2-graded module for R[∗](V [∗]).

6. Zhu algebras
Let V [∗] be a vertex operator dg-algebra. There are two
filtered structures on V [∗].

(V [∗],F ●, d) = (⋯ ⊆ F pV [∗] ⊆ F p+1V [∗] ⊆ ⋯ ⊆ V [∗])



with F pV [∗] = ⊕i≤pV [i] and The other is a weight filtration

(V [∗],W●, d) = (⋯ ⊆WnV
[∗] ⊆Wn+1V [∗] ⊆ ⋯ ⊆ V [∗])

with WnV [∗] = ⊕m≤nV [∗]m .

The Zhu algebra is A(V [∗]) = V [∗]/O(V [∗]), is the same Zhu
algebra of the vertex operator algebra forgetting the dif-
ferential, and cohomological grading. Now the differential
gradation and weight gradations are no longer graded.

● A(V [∗]) is a differential filtered algebra with the ascend-
ing filtration (F pA(V [∗]))p∈Z where F pA(V [∗]) is the image

of ⊕q≤pV
[q]
∗ in A(V [∗]).



● The image of the conformal vector ω is in the center
of A(V [∗]) for the super commutative bracket [⋅, ⋅]s, i.e.,
[ω] ∗ [v] = [v] ∗ [ω] for all [v] ∈ A(V [∗]).
● A(V [∗]) has a weight filtration (WnA(V [∗]))n∈Z where
WnA(V [∗]) is the image of ⊕i≤nV

[∗]
i in the A(V [∗]).

We define

{x̃, ỹ}F ●V = [u] ∗ [v] − (−1)∣u∣∣v∣[v] ∗ [u] mod F ∣x∣+∣y∣−3A(V [∗]).

The map

{⋅, ⋅}F ●V ∶ gr[p]A(V [∗]) ⊗ gr[q]A(V [∗]) Ð→ gr[p+q−2]A(V [∗])

is well-defined.



Corollary 1. gr[∗]A(V [∗]) is a graded commutative dg-
Poisson algebra in the category grVec. The product is
induced by ∗, the Poisson bracket is {., .}F ●V and of de-
gree −2, and the differential is induced by d

[∗]
V . In particu-

lar, for x̃, ỹ ∈ gr[∗]A(V [∗]) dg-homogeneous with respective
preimages u ∈ V [∣x̃∣], v ∈ V [∣ỹ∣], we have

x̃ ∗ ỹ = [̃u−1v] and {x̃, ỹ}F ●V = [̃u0v].

However, the weight filtration does now get a dg algebras
structure on the associated graded algebra gr∗A(V [∗]) =
⊕n∈ZWnA(V [∗])/Wn−1A(V [∗]).



Proposition 2.The algebra gr∗A(V [∗]) is a weight-graded,
differential filtered algebra. Furthermore, the product is
differential filtered commutative.
Proposition 3.The algebra gr∗ gr[∗]A(V [∗]) ≅ gr[∗] gr∗A(V [∗])
is a weight graded dg-Poisson algebra. The Poisson bracket
is of degree −2 for the cohomological degree, and of
degree −1 for the weight. Furthermore, the dg-grading
makes it a graded commutative algebra.

7. Maps from C2-algebras to associ-
ated graded Zhu algebras



We define the following map:

ηF ●V ∶ R[∗](V [∗]) Ð→ gr[∗]A(V [∗])
u +C[∣u∣]2 (V [∗]) z→ u +O(V [∗]) + ⊕

p<∣u∣
V [p].

Proposition 4. The map ηF ●V is a surjective morphism
of dg-Poisson algebras.

ηW●V ∶ R[∗](V [∗]) Ð→ gr∗A(V [∗])
u +C[∗]2 (V [∗])wt(u) z→ u +O(V [∗]) + ⊕

n<wt(u)
V
[∗]
n .

The map ηW●V is well-defined.



Proposition 5. The map ηW●V is a surjective morphism
of weight-graded, differential filtered, differential filtered
commutative algebras.

ηF ●W●V ∶ R[∗](V [∗]) Ð→ gr∗ gr[∗]A(V [∗])
u +C[p]2 (V [∗])n z→ u +O(V [∗]) + ⊕

q≤p
m<n

V
[q]
m + ⊕

q<p
m≤n

V
[q]
m

Proposition 6.The map ηF ●W●V is a surjective morphism
of weight-graded dg-Poisson algebras.



●More on comparing the module categories of these unex-
pected objects: gr∗(V [∗]), gr[∗]A(V [∗]), and gr∗ gr[∗]A(V [∗]).
These are done and the diagram is complicated to draw
here.

● They are commutative in a certain sense with additional
structures. We don’t have a good geometric interpreta-
tion yet.

● The cohomological properties have not yet been ex-
plored. For example, the cocycles are also vertex subal-
gebras, and how one defines the homotopy vertex algebra,
or derived vertex algebras where the Jacobi identity holds
only up to a homotopy equivalence.



8. Examples of dg vertex algebras

● Given a dg LA g with a supersymmetric bilinear form
⟨−,−⟩ (which is a cocycle). Then one can define affine dg
vertex algebras. Vg(ℓ,0)

● dg vertex Lie algebra (also the dg conformal algebra
defines a universal vertex algebras,

● Joyce constructed vertex algebra structure on the co-
homology groups of a class of quotient stacks including
quiver representation stacks. We want to lift this vertex
algebra structure on the standard resolution complexes so



that the cohomology vertex algebra would be the Joyce
vertex algebra. The special case is when the quiver is a
point, then Kontsevivh-Soibelman COHA should have a
dg vertex algebra with dg lift.

● W-algebra BRST construction automatically gives dg-
vertex algebra structure (N = 0).

● Resolving vertex algebra in terms of smooth vertex al-
gebras.



THANK YOU!


