Comodule Algebras over H_8

Jacob Van Grinsven

University of Iowa

QuaSy-Con II May 24, 2024 **1** [Module Categories](#page-1-0)

² H₈[-Comodule Algebras](#page-18-0)

8 [Remarks](#page-37-0)

Let $\mathbb k$ be an algebraically closed field and H a finite dimensional Hopf algebra.

Module Categories

A left module category M over Rep(H) is an abelian category with an exact bifunctor $\overline{\otimes}$: Rep(H) \times M \rightarrow M with natural associativity and unit isomorphisms:

$$
m_{X,Y,M}:(X\otimes_{\Bbbk} Y)\overline{\otimes}M\to X\overline{\otimes} (Y\overline{\otimes}M), \quad \ell_M:{\Bbb1}\overline{\otimes}M\to M
$$

 $X, Y \in \text{Rep}(H)$, $M \in \mathcal{M}$ satisfying some compatibility conditions.

Module Functors

A Rep(H)-module functor $F : \mathcal{M} \to \mathcal{N}$ is a functor with natural isomorphism:

 $s_{X,M}: F(X\overline{\otimes}M) \to X\overline{\otimes}F(M), \quad X \in \text{Rep}(H), M \in \mathcal{M}.$

Two Rep (H) -module categories are equivalent if there exists a $Rep(H)$ -module functor realizing the equivalence.

Module Functors

A Rep(H)-module functor $F : \mathcal{M} \to \mathcal{N}$ is a functor with natural isomorphism:

 $s_{X,M}: F(X\overline{\otimes}M) \to X\overline{\otimes}F(M), \quad X \in \text{Rep}(H), M \in \mathcal{M}.$

Two $\text{Rep}(H)$ -module categories are equivalent if there exists a $Rep(H)$ -module functor realizing the equivalence.

Goal

Given a finite dimensional Hopf algebra, find all exact indecomposable $Rep(H)$ -module categories (up to equivalence).

Comodule Algebras

Let H be a Hopf algebra and $\otimes = \otimes_{\Bbbk}$,

H-Comodule Algebra

A k-vector space A is an H -comodule algebra if:

- \bigcirc A is a k-algebra,
- **2** A is an H-comodule via $\lambda : A \rightarrow H \otimes A$.

 \bullet λ is a morphism of k-algebras.

Comodule Algebras

Let H be a Hopf algebra and $\otimes = \otimes_{\Bbbk}$,

H-Comodule Algebra

A k-vector space A is an H -comodule algebra if:

- \bigcirc A is a k-algebra,
- **2** A is an H-comodule via $\lambda : A \rightarrow H \otimes A$.

 \bullet λ is a morphism of k-algebras.

We say A is right H-simple if there are no nontrivial right ideals $J \subseteq A$ such that $\lambda(J) \subseteq H \otimes J$.

The space of coinvariants is $A^{coH} = \{ a \in A : \lambda(a) = 1 \otimes a \}.$

Comodule Algebras

Let H be a Hopf algebra and $\otimes = \otimes_{\Bbbk}$,

H-Comodule Algebra

A k-vector space A is an H -comodule algebra if:

- \bigcirc A is a k-algebra,
- **2** A is an H-comodule via $\lambda : A \rightarrow H \otimes A$.

 \bullet λ is a morphism of k-algebras.

We say A is right H-simple if there are no nontrivial right ideals $J \subseteq A$ such that $\lambda(J) \subseteq H \otimes J$.

The space of coinvariants is $A^{coH} = \{ a \in A : \lambda(a) = 1 \otimes a \}.$

Notice $1_A \in A^{coH}$.

We say A has trivial coinvariants if $\dim(A^{coH})=1.$

Left A-modules

Let $\&$ be an algebraically closed field of characteristic zero and H a finite dimensional Hopf algebra.

Andruskiewitsch and Mombelli (2007)

If M is an exact indecomposable module category over Rep(H) then $\mathcal{M} \simeq A\mathcal{M}$ for some right H-simple left comodule algebra A with trivial coinvariants.

Left A-modules

Let \Bbbk be an algebraically closed field of characteristic zero and H a finite dimensional Hopf algebra.

Andruskiewitsch and Mombelli (2007)

If M is an exact indecomposable module category over Rep(H) then $\mathcal{M} \simeq A\mathcal{M}$ for some right H-simple left comodule algebra A with trivial coinvariants.

$\text{Rep}(H)$ -module structure on $_A\mathcal{M}$

Note that $X \otimes M$ is a left $H \otimes A$ module for $X \in \text{Rep}(H)$ and $M \in A\mathcal{M}$.

Thus λ makes $X \otimes M$ a left A-module.

Explicitly:

$$
a\cdot(x\otimes m)=\sum(a_{(-1)}\cdot x)\otimes(a_{(0)}\cdot m)
$$

where $\lambda(a)=\sum a_{(-1)}\otimes a_{(0)}.$

Morita Equivariant Equivalence

We say A, B are Morita equivariant equivalent if $_A\mathcal{M} \simeq_B \mathcal{M}$ as $Rep(H)$ module categories.

Morita Equivariant Equivalence

We say A, B are Morita equivariant equivalent if $_A\mathcal{M} \simeq_B \mathcal{M}$ as Rep(H) module categories.

If A, B are Morita equivariant equivalent, then A, B are Morita equivalent as k-algebras.

Morita Equivariant Equivalence

We say A, B are Morita equivariant equivalent if $_A\mathcal{M} \simeq_B \mathcal{M}$ as Rep(H) module categories.

If A, B are Morita equivariant equivalent, then A, B are Morita equivalent as k-algebras.

Goal

Given a finite dimensional Hopf algebra, determine all right H-simple left comodule algebras with trivial coinvariants up to Morita equivariant equivalence.

Mombelli was able to classify exact indecomposable module categories for pointed Hopf algebras in the following cases:

$$
\bullet \; G(H) \cong \mathbb{Z}_n \; (2009),
$$

1 Taft algebras,

2 Small quantum group $u_q(\mathfrak{sl}_2)$,

Mombelli was able to classify exact indecomposable module categories for pointed Hopf algebras in the following cases:

$$
\bullet \, G(H) \cong \mathbb{Z}_n \, (2009),
$$

1 Taft algebras,

2 Small quantum group $u_q(s_1)$,

 \bullet H is a lifting of a quantum linear space (2010),

Mombelli was able to classify exact indecomposable module categories for pointed Hopf algebras in the following cases:

$$
\bullet \, G(H) \cong \mathbb{Z}_n \, (2009),
$$

1 Taft algebras,

- **2** Small quantum group $u_q(s_1)$,
- \bullet H is a lifting of a quantum linear space (2010),
- **3** G(H) isomorphic to S_3 or S_4 (with Agustin Garcia Iglesias, 2011).

Mombelli was able to classify exact indecomposable module categories for pointed Hopf algebras in the following cases:

$$
\bullet \, G(H) \cong \mathbb{Z}_n \, (2009),
$$

1 Taft algebras,

- **2** Small quantum group $u_q(s_1)$,
- \bullet H is a lifting of a quantum linear space (2010),
- **3** G(H) isomorphic to S_3 or S_4 (with Agustin Garcia Iglesias, 2011).

Goal

Extend this work to the non-pointed case

Mombelli was able to classify exact indecomposable module categories for pointed Hopf algebras in the following cases:

$$
\bullet \, G(H) \cong \mathbb{Z}_n \, (2009),
$$

1 Taft algebras,

- **2** Small quantum group $u_q(s_1)$,
- \bullet H is a lifting of a quantum linear space (2010),
- **3** G(H) isomorphic to S_3 or S_4 (with Agustin Garcia Iglesias, 2011).

Goal

Extend this work to the non-pointed case

Note

This process depends greatly on the structure of H (or more specifically, the structure of the associated coradically graded Hopf algebra).

1 [Module Categories](#page-1-0)

\bigcirc H₈[-Comodule Algebras](#page-18-0)

8 [Remarks](#page-37-0)

The Kac-Paljutkin Hopf Algebra

Let $\mathbb k$ be algebraically closed and characteristic zero.

$H_{\rm 8}$

The Kac-Paljutkin Hopf algebra H_8 is generated by x, y, z with x, y grouplike, generating a Hopf subalgebra isomorphic to $\mathbb{k}[K]$ and z satsifying:

$$
z^{2} = \frac{1}{2}(1 + x + y - xy) \t xz = zy \t yz = zx
$$

and

$$
\Delta(z)=\frac{1}{2}(1\otimes 1+1\otimes x+y\otimes 1-y\otimes x)(z\otimes z).
$$

The Kac-Paljutkin Hopf Algebra

Let $\mathbb k$ be algebraically closed and characteristic zero.

$H_{\rm 8}$

The Kac-Paljutkin Hopf algebra H_8 is generated by x, y, z with x, y grouplike, generating a Hopf subalgebra isomorphic to $\mathbb{k}[K]$ and z satsifying:

$$
z^{2} = \frac{1}{2}(1 + x + y - xy) \t xz = zy \t yz = zx
$$

and

$$
\Delta(z)=\frac{1}{2}(1\otimes 1+1\otimes x+y\otimes 1-y\otimes x)(z\otimes z).
$$

- $\bigoplus H_8$ is the unique 8 dimensional semisimple non-commutative, non-cocommutative Hopf algebra.
- \bigcirc H₈ is self dual, cosemisimple, and not pointed

Cosemisimplicity

The following is a list of all simple H_8 -comodules:

- **1** The one dimensional comodules V_g where $\lambda(V_g) = g \otimes V_g$ for $g \in G(H) = \{1, x, y, xy\}.$
- **2** The two dimensional comodule V_2 generated by v, w with

$$
\lambda(v) = \frac{1}{2} \Big[yz \otimes (v + w) + z \otimes (v - w) \Big]
$$

$$
\lambda(w) = \frac{1}{2} \Big[xyz \otimes (v + w) - xz \otimes (v - w) \Big]
$$

Every comodule algebra A is a direct sum of copies of these comodules.

Group Comodule Algebras

Let A be a right H_8 -simple H_8 -comodule algebra with trivial coinvariants. In a similar way that $\mathbb{k}[K] \subseteq H_8$, there exists a subcomodule subalgebra $A_K \subseteq A$ such that A_K is a right simple $\Bbbk[K]$ -comodule algebra with trivial coinvariants.

Group Comodule Algebras

Let A be a right H_8 -simple H_8 -comodule algebra with trivial coinvariants.

In a similar way that $\mathbb{k}[K] \subseteq H_8$, there exists a subcomodule subalgebra $A_K \subseteq A$ such that A_K is a right simple $\mathbb{K}[K]$ -comodule algebra with trivial coinvariants.

A_{κ}

If (A, λ) is a right H_8 -simple comodule algebra with trivial coinvariants then A_K is isomorphic to $\Bbbk^\psi [F]$ for some subgroup $F \subseteq K$ and 2-cocycle $\psi \in Z^2(F, \mathbb{k}^\times).$

In particular, A_K is isomorphic to one of:

\n- **①** k,
$$
[C_2]
$$
, $[K_2]$, $[K_2$

Extending to H_8

Extending A_K

We now need to classify the algebras A such that $A \neq A_K$.

Extending to H_8

Extending A_K

We now need to classify the algebras A such that $A \neq A_K$.

Consider the basis $\{v_i, w_i\}_{i=1}^{n_2}$ for $V_2^{\oplus n_2}$.

$$
\lambda(v_i) = \frac{1}{2} \Big[yz \otimes (v_i + w_i) + z \otimes (v_i - w_i) \Big] \n\lambda(w_i) = \frac{1}{2} \Big[xyz \otimes (v_i + w_i) - xz \otimes (v_i - w_i) \Big]
$$

Notice

$$
4\lambda(v_iv_j) = 1 \otimes (v_iv_j - v_iw_j - w_iv_j - w_iw_j) + x \otimes (v_iv_j + v_iw_j - w_iv_j + w_iw_j) + y \otimes (v_iv_j - v_iw_j + w_iv_j + w_iw_j) + xy \otimes (v_iv_j + v_iw_j + w_iv_j - w_iw_j).
$$

So $v_i v_j \in A_K$.

Extending to H_8 (cont)

Let e_g generate V_g for $g \in \{1, x, y, xy\}$, there exists scalars $\alpha_{ij}, \beta_{ij}, \gamma_{ij}, \delta_{ij}$ such that:

$$
v_i v_j - v_i w_j - w_i v_j - w_i w_j = 4\alpha_{ij},
$$

\n
$$
v_i v_j + v_i w_j - w_i v_j + w_i w_j = 4\beta_{ij} e_x,
$$

\n
$$
v_i v_j - v_i w_j + w_i v_j + w_i w_j = 4\gamma_{ij} e_y,
$$

\n
$$
v_i v_j + v_i w_j + w_i v_j - w_i w_j = 4\delta_{ij} e_{xy},
$$

Extending to H_8 (cont)

Let e_g generate V_g for $g \in \{1, x, y, xy\}$, there exists scalars $\alpha_{ij}, \beta_{ij}, \gamma_{ij}, \delta_{ij}$ such that:

$$
v_i v_j - v_i w_j - w_i v_j - w_i w_j = 4\alpha_{ij},
$$

\n
$$
v_i v_j + v_i w_j - w_i v_j + w_i w_j = 4\beta_{ij} e_x,
$$

\n
$$
v_i v_j - v_i w_j + w_i v_j + w_i w_j = 4\gamma_{ij} e_y,
$$

\n
$$
v_i v_j + v_i w_j + w_i v_j - w_i w_j = 4\delta_{ij} e_{xy},
$$

This system has a unique solution:

$$
v_i v_j = \alpha_{ij} + \beta_{ij} e_x + \gamma_{ij} e_y + \delta_{ij} e_{xy},
$$

\n
$$
v_i w_j = -\alpha_{ij} + \beta_{ij} e_x - \gamma_{ij} e_y + \delta_{ij} e_{xy},
$$

\n
$$
w_i v_j = -\alpha_{ij} - \beta_{ij} e_x + \gamma_{ij} e_y + \delta_{ij} e_{xy},
$$

\n
$$
w_i w_j = -\alpha_{ij} + \beta_{ij} e_x + \gamma_{ij} e_y - \delta_{ij} e_{xy}.
$$

A list of H_8 comodule algebras with trivial coinvariants

The following is an exhaustive list of isomorphism classes of right H_8 -simple comodule algebras with trivial coinvariants:

 $\mathbf 0$ k.

- **2** The subalgebras of H_8 isomorphic to $\mathbb{K}[C_2]$ with generator x, y or xy.
- **3** The subalgebra $\mathbb{k}[K]$,
- **4** The twisted group algebra $\mathbb{k}^{\psi}[K]$ (≅ $M_2(\mathbb{k})$),

A list of H_8 comodule algebras with trivial coinvariants

The following is an exhaustive list of isomorphism classes of right H_8 -simple comodule algebras with trivial coinvariants:

 $\mathbf 0$ k.

- **2** The subalgebras of H_8 isomorphic to $\mathbb{K}[C_2]$ with generator x, y or xy.
- **3** The subalgebra $\mathbb{k}[K]$,
- **4** The twisted group algebra $\mathbb{k}^{\psi}[K]$ (≅ $M_2(\mathbb{k})$),
- **∂** The algebra $A_{xy}^q \cong \Bbbk^4$, $(A_{xy}^q \cong V_1 \oplus V_{xy} \oplus V_2$ as comodules) $\mathbf{\Theta}$ (H_8, Δ) .

A list of H_8 comodule algebras with trivial coinvariants

The following is an exhaustive list of isomorphism classes of right H_8 -simple comodule algebras with trivial coinvariants:

 $\mathbf{0}$ k.

- **2** The subalgebras of H_8 isomorphic to $\mathbb{k}[C_2]$ with generator x, y or xy.
- **3** The subalgebra $\mathbb{k}[K]$,
- **4** The twisted group algebra $\mathbb{k}^{\psi}[K]$ (≅ $M_2(\mathbb{k})$),
- **∂** The algebra $A_{xy}^q \cong \Bbbk^4$, $(A_{xy}^q \cong V_1 \oplus V_{xy} \oplus V_2$ as comodules) $\mathbf{\Theta}$ (H_8, Δ) .

Morita Equivalence

As k-algebras, the following are Morita equivalent:

- \textbf{D} The algebras \Bbbk and $\Bbbk^{\psi}[K]$,
- **2** The three algebras isomorphic to $\mathbb{K}[C_2]$,
- **3** The algebras A_{xy}^q and $\Bbbk[K]$.

 \Bbbk and $M_2(\Bbbk)$

The algebras \Bbbk and $\Bbbk^\psi[\bar K]$ are Morita equivariant equivalent.

\Bbbk and $M_2(\Bbbk)$

The algebras \Bbbk and $\Bbbk^\psi[\bar K]$ are Morita equivariant equivalent.

$\Bbbk[C_2]$

The algebras generated by x and y are Morita equivariant equivalent but are not Morita equivariant equivalent to the algebra generated by xy .

\Bbbk and $M_2(\Bbbk)$

The algebras \Bbbk and $\Bbbk^\psi[\bar K]$ are Morita equivariant equivalent.

$\Bbbk[C_2]$

The algebras generated by x and y are Morita equivariant equivalent but are not Morita equivariant equivalent to the algebra generated by xy .

$\Bbbk[K]$ and A^q_{xy}

The algebras $\Bbbk[K]$ and $A^q_{\mathsf{x}\mathsf{y}}$ are not Morita equivariant equivalent.

Morita Equivariant Inequivalent Algebras

The following is an exhaustive list of Morita equivariant inequivalent right H_8 -simple H_8 -comodule algebras with trivial coinvariants.

 $\mathbf 0$ k,

- **2** The subalgebra of H_8 generated by x,
- \bullet The subalgebra of H_8 generated by xy,
- \bullet The subalgebra $\mathbb{k}[K]$ generated by x and y,
- **5** The algebra A_{xy}^q ,
- $\mathbf{\Theta}$ (H_8, Δ) .

Morita Equivariant Inequivalent Algebras

The following is an exhaustive list of Morita equivariant inequivalent right H_8 -simple H_8 -comodule algebras with trivial coinvariants.

 $\mathbf 0$ k,

- **2** The subalgebra of H_8 generated by x,
- **3** The subalgebra of H_8 generated by xy .
- \bullet The subalgebra $\mathbb{k}[K]$ generated by x and y,
- **5** The algebra A_{xy}^q ,
- $\mathbf{\Theta}$ (H_8, Δ) .

$Rep(H_8)$ -module categories

If M is an exact indecomposable Rep(H_8)-module category then $\mathcal{M} \simeq A\mathcal{M}$ for exactly one A in the list above.

Morita Equivariant Inequivalent Algebras

The following is an exhaustive list of Morita equivariant inequivalent right H_8 -simple H_8 -comodule algebras with trivial coinvariants.

 $\mathbf 0$ k,

- **2** The subalgebra of H_8 generated by x,
- **3** The subalgebra of H_8 generated by xy .
- \bullet The subalgebra $\mathbb{k}[K]$ generated by x and y,
- **5** The algebra A_{xy}^q ,
- $\mathbf{\Theta}$ (H_8, Δ) .

$Rep(H_8)$ -module categories

If M is an exact indecomposable Rep(H_8)-module category then $\mathcal{M} \simeq A\mathcal{M}$ for exactly one A in the list above.

Remark

Each of the algebras in the above list is isomorphic to a coideal subalgebra of H_8 .

Jacob Van Grinsven (University of Iowa) [Comodule Algebras over](#page-0-0) H_8 May 24, 2024 17/20

1 [Module Categories](#page-1-0)

² H₈[-Comodule Algebras](#page-18-0)

8 [Remarks](#page-37-0)

$Rep(H_8)$ -module categories

Etingof, Kinser and Walton classified Rep(H_8)-module categories using H_8 -module algebras and a categorical Morita equivalence

 $C(D_8, \omega, C_2, 1) \stackrel{\otimes}{\sim} \mathsf{Rep}(H_8)$.

$Rep(H_8)$ -module categories

Etingof, Kinser and Walton classified Rep(H_8)-module categories using H_8 -module algebras and a categorical Morita equivalence

$$
C(D_8,\omega,C_2,1) \stackrel{\otimes}{\sim} \mathsf{Rep}(H_8).
$$

Goal

Classify exact module categories of finite dimensional Hopf algebras with $cardical$ H_8 .

$Rep(H_8)$ -module categories

Etingof, Kinser and Walton classified $\text{Rep}(H_8)$ -module categories using H_8 -module algebras and a categorical Morita equivalence

$$
C(D_8,\omega,C_2,1)\stackrel{\otimes}{\sim} \mathsf{Rep}(H_8).
$$

Goal

Classify exact module categories of finite dimensional Hopf algebras with $cardical$ H_8 .

Classification of finite dimensional Hopf algebras with coradical H_8 was done by Yuxing Shi in 2016.

Supported in part by the National Science Foundation under Award No. DMS-2303334 and the Erwin and Peggy Kleinfeld Graduate Fellowship Fund.