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@ Module Categories
® Hg-Comodule Algebras

© Remarks



Module Categories

Let k be an algebraically closed field and H a finite dimensional Hopf
algebra.

Module Categories |

A left module category M over Rep(H) is an abelian category with an
exact bifunctor ® : Rep(H) x M — M with natural associativity and unit
isomorphisms:

mx ym: (X @k Y)OM = XR(YRM), Lly: 1M — M

X,Y € Rep(H), M € M satisfying some compatibility conditions.

Jacob Van Grinsven (University of lowa) Comodule Algebras over Hg May 24, 2024 3/20



A Rep(H)-module functor F : M — N is a functor with natural
isomorphism:

sx,m : F(X&M) - X®F(M), X € Rep(H), M € M.

Two Rep(H)-module categories are equivalent if there exists a
Rep(H)-module functor realizing the equivalence.



Module Categories

Module Functors

A Rep(H)-module functor F : M — N is a functor with natural
isomorphism:

sk @ F(X8M) — X@F(M), X € Rep(H),M € M.

Two Rep(H)-module categories are equivalent if there exists a
Rep(H)-module functor realizing the equivalence.

Goal

Given a finite dimensional Hopf algebra, find all exact indecomposable
Rep(H)-module categories (up to equivalence).

Jacob Van Grinsven (University of lowa) Comodule Algebras over Hg May 24, 2024 4/20



Let H be a Hopf algebra and ® =

A k-vector space A is an H-comodule algebra if:
@ A is a k-algebra,
® Ais an H-comodule via A\ : A — H® A,

© ) is a morphism of k-algebras.




Comodule Algebras

Let H be a Hopf algebra and ® = ®y,
H-Comodule Algebra

A k-vector space A is an H-comodule algebra if:
® Ais a k-algebra,
® Ais an H-comodule via A : A — H® A,
© ) is a morphism of k-algebras.

We say A is right H-simple if there are no nontrivial right ideals J C A
such that \(J) C H® J.

The space of coinvariants is A = {a ¢ A: \(a) = 1 ® a}.
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Comodule Algebras

Let H be a Hopf algebra and ® = ®y,
H-Comodule Algebra

A k-vector space A is an H-comodule algebra if:
® Ais a k-algebra,
® Ais an H-comodule via A : A — H® A,
© ) is a morphism of k-algebras.

We say A is right H-simple if there are no nontrivial right ideals J C A
such that \(J) C H® J.

The space of coinvariants is A = {a ¢ A: \(a) = 1 ® a}.
Notice 14 € A°H.

We say A has trivial coinvariants if dim(A%H) = 1.
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Let k be an algebraically closed field of characteristic zero and H a finite
dimensional Hopf algebra.

If M is an exact indecomposable module category over Rep(H) then
M =~ A M for some right H-simple left comodule algebra A with trivial
coinvariants.




Left A-modules

Let k be an algebraically closed field of characteristic zero and H a finite
dimensional Hopf algebra.

Andruskiewitsch and Mombelli (2007) |

If M is an exact indecomposable module category over Rep(H) then
M =~ A M for some right H-simple left comodule algebra A with trivial
coinvariants.

Rep(H)-module structure on 4 M |
Note that X ® M is a left H ® A module for X € Rep(H) and M € s M.
Thus A\ makes X ® M a left A-module.
Explicitly:

a-(x@m)=> (a_1) x)® (a) - m)
where A\(a) = >~ a_1) ® a(g).
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We say A, B are Morita equivariant equivalent if A4M ~ g M as Rep(H)
module categories.




We say A, B are Morita equivariant equivalent if A4M ~ g M as Rep(H)
module categories.

If A, B are Morita equivariant equivalent, then A, B are Morita equivalent
as k-algebras.



Morita Equivalence

Morita Equivariant Equivalence |

We say A, B are Morita equivariant equivalent if oM ~ g M as Rep(H)
module categories.

If A, B are Morita equivariant equivalent, then A, B are Morita equivalent
as k-algebras.
Goal |

Given a finite dimensional Hopf algebra, determine all right H-simple left
comodule algebras with trivial coinvariants up to Morita equivariant
equivalence.

Jacob Van Grinsven (University of lowa) Comodule Algebras over Hg May 24, 2024 7 /20



Mombelli was able to classify exact indecomposable module categories for
pointed Hopf algebras in the following cases:
® G(H)=2Z, (2009),
@ Taft algebras,
@ Small quantum group ug(slz),



Past Results

Mombelli was able to classify exact indecomposable module categories for
pointed Hopf algebras in the following cases:
® G(H) = Z, (2009),
@ Taft algebras,
@ Small quantum group ug(slz),

@® H is a lifting of a quantum linear space (2010),
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Past Results

Mombelli was able to classify exact indecomposable module categories for
pointed Hopf algebras in the following cases:

® G(H)=2Z, (2009),
@ Taft algebras,
@ Small quantum group ug(slz),

@® H is a lifting of a quantum linear space (2010),
© G(H) isomorphic to S3 or S4 (with Agustin Garcia Iglesias, 2011).

Goal

Extend this work to the non-pointed case
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Past Results

Mombelli was able to classify exact indecomposable module categories for
pointed Hopf algebras in the following cases:

® G(H)=2Z, (2009),
@ Taft algebras,
@ Small quantum group ug(slz),

@® H is a lifting of a quantum linear space (2010),
© G(H) isomorphic to S3 or S4 (with Agustin Garcia Iglesias, 2011).

Goal

Extend this work to the non-pointed case

This process depends greatly on the structure of H (or more specifically,
the structure of the associated coradically graded Hopf algebra).
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@ Module Categories
® Hg-Comodule Algebras
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The Kac-Paljutkin Hopf Algebra

Let k be algebraically closed and characteristic zero.

H
The Kac-Paljutkin Hopf algebra Hg is generated by x, y, z with x, y
grouplike, generating a Hopf subalgebra isomorphic to k[K] and z

satsifying:

1
zzzi(l—i-x—i-y—xy) Xz =zy yz = zx

and
1
A7) =510l+lextyel-yax)(ze2).
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The Kac-Paljutkin Hopf Algebra

Let k be algebraically closed and characteristic zero.

H
The Kac-Paljutkin Hopf algebra Hg is generated by x, y, z with x, y
grouplike, generating a Hopf subalgebra isomorphic to k[K] and z

satsifying:
1
zzzi(l—i-x—i-y—xy) Xz =zy yz = zx

and
1
A7) =510l+lextyel-yax)(ze2).

@ Hs is the unique 8 dimensional semisimple non-commutative,
non-cocommutative Hopf algebra.

@® Hjs is self dual, cosemisimple, and not pointed
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Hs-Comodules

Cosemisimplicity
The following is a list of all simple Hg-comodules:

@ The one dimensional comodules Vg where A\(V;) = g ® V; for
g€ G(H)={1,xy,x}.
® The two dimensional comodule V, generated by v, w with

M) =2 [z (vt w)+ze (v —w)]

/\(W):%[xyz@(v—i—w)—xz@(v—w)}

Every comodule algebra A is a direct sum of copies of these comodules.
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Group Comodule Algebras

Let A be a right Hg-simple Hg-comodule algebra with trivial coinvariants.

In a similar way that k[K] C Hs, there exists a subcomodule subalgebra
Ak C A such that Ak is a right simple k[K]-comodule algebra with trivial
coinvariants.
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Group Comodule Algebras

Let A be a right Hg-simple Hg-comodule algebra with trivial coinvariants.

In a similar way that k[K] C Hs, there exists a subcomodule subalgebra

Ak C A such that Ak is a right simple k[K]-comodule algebra with trivial
coinvariants.

Ak |
If (A, \) is a right Hg-simple comodule algebra with trivial coinvariants

then Ak is isomorphic to k¥[F] for some subgroup F C K and 2-cocycle
Y € Z2(F,kX).
In particular, Ak is isomorphic to one of:

o k,

0 k[,

© kK],

@ KV[K] (2 My(K)).
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We now need to classify the algebras A such that A # Ak. |




We now need to classify the algebras A such that A # Ak. I

Consider the basis {v;, w;}72, for V5o

Avi) == [yz®(v,+W,)+Z®( —Wi)}

ANw;) = [xyz @ (vi+w)—xz® (v — W,')]

Notice
AA(vivj) = 1@ (viv; — viwj — wjvj — w;w)
+x @ (vivj + viwj — w;vj + w;wj)
+y @ (viv; — viwj + wjv; + wiw;)
+xy ® (vivj + viwj + wvj — wiw;).
So Vivj € Ak.



Let e, generate V, for g € {1, x,y,xy}, there exists scalars o, 5jj, vij, djj
such that:

Vivi — Viw; — w;vj — wiw; = dag;,
vivj + viwj — wiv; + wiw; = 455 ey,
vivi — viwj + wiv; + wiw; = dyjey,

Vivj + viwj + wiv; — wiw; = 4djeyy,



Extending to Hg (cont)

Let e, generate V; for g € {1,x,y,xy}, there exists scalars «jj, Bij, vij, 0jj
such that:

Vivi — Viw; — w;vj — wiw; = dag;,

Vivj + viwj — w;vj + wiwj = 40j5ey,
Vivi — Viw; + w;vj + wiw; = 4yjey,
vivi + viw; + wv; — wiwj = 4dj5e,,

This system has a unique solution:

vivj = ajj + Bijex +vijey + dijexy,

viwj = —aji + ,BUeX — Yijey + 5,-jexy,
WiV = —aij — /BUeX + vijey + 5,-jexy,
wiw; = —ajj + /B,jex + vijey — 5,-J-exy.
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A list of Hg comodule algebras with trivial coinvariants

The following is an exhaustive list of isomorphism classes of right
Hg-simple comodule algebras with trivial coinvariants:

o k,

@® The subalgebras of Hg isomorphic to k[C,] with generator x,y or xy.
© The subalgebra k[K],

O The twisted group algebra k¥[K] (=2 My(k)),
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A list of Hg comodule algebras with trivial coinvariants

The following is an exhaustive list of isomorphism classes of right
Hg-simple comodule algebras with trivial coinvariants:

o k,

@® The subalgebras of Hg isomorphic to k[C,] with generator x,y or xy.
© The subalgebra k[K],

O The twisted group algebra k¥[K] (=2 My(k)),

@ The algebra A}, = k*, (A}, = Vi @ Vi, & V> as comodules)

O (Hs, D).
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A list of Hg comodule algebras with trivial coinvariants

The following is an exhaustive list of isomorphism classes of right
Hg-simple comodule algebras with trivial coinvariants:

o k,

@® The subalgebras of Hg isomorphic to k[C,] with generator x,y or xy.
© The subalgebra k[K],

O The twisted group algebra k¥[K] (=2 My(k)),

@ The algebra A}, = k*, (A}, = Vi @ Vi, & V> as comodules)

O (Hs, D).

Morita Equivalence

As k-algebras, the following are Morita equivalent:
@ The algebras k and k¥[K],
@® The three algebras isomorphic to k[ (],
© The algebras A7, and k[K].
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The algebras k and k¥[K] are Morita equivariant equivalent. |




The algebras k and k¥[K] are Morita equivariant equivalent.

The algebras generated by x and y are Morita equivariant equivalent but
are not Morita equivariant equivalent to the algebra generated by xy.




The algebras k and k¥[K] are Morita equivariant equivalent.

The algebras generated by x and y are Morita equivariant equivalent but
are not Morita equivariant equivalent to the algebra generated by xy.

The algebras k[K] and AY, are not Morita equivariant equivalent.




Morita Equivariant Inequivalent Algebras

The following is an exhaustive list of Morita equivariant inequivalent right
Hg-simple Hg-comodule algebras with trivial coinvariants.

ok

® The subalgebra of Hg generated by x,

© The subalgebra of Hg generated by xy,

@ The subalgebra k[K] generated by x and y,

@ The algebra A7,

0 (Hs,A).
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Morita Equivariant Inequivalent Algebras

The following is an exhaustive list of Morita equivariant inequivalent right
Hg-simple Hg-comodule algebras with trivial coinvariants.

ok

® The subalgebra of Hg generated by x,

© The subalgebra of Hg generated by xy,

@ The subalgebra k[K] generated by x and y,

@ The algebra A7,

0 (Hs,A).

Rep(Hg)-module categories

If M is an exact indecomposable Rep(Hsg)-module category then
M ~ A M for exactly one A in the list above.
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Morita Equivariant Inequivalent Algebras

The following is an exhaustive list of Morita equivariant inequivalent right
Hg-simple Hg-comodule algebras with trivial coinvariants.

ok

® The subalgebra of Hg generated by x,

© The subalgebra of Hg generated by xy,

@ The subalgebra k[K] generated by x and y,

@ The algebra A7,

0 (Hs,A).

Rep(Hg)-module categories

If M is an exact indecomposable Rep(Hsg)-module category then
M ~ A M for exactly one A in the list above.

Remark |

Each of the algebras in the above list is isomorphic to a coideal subalgebra
of Hg.
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Etingof, Kinser and Walton classified Rep(Hs)-module categories using
Hg-module algebras and a categorical Morita equivalence

C(D8awa C27 1) ,@, Rep(HS)




Etingof, Kinser and Walton classified Rep(Hs)-module categories using
Hg-module algebras and a categorical Morita equivalence

C(DSawa C27 1) '@' Rep(H8)

Classify exact module categories of finite dimensional Hopf algebras with
coradical Hg.




Remarks

Rep(Hsg)-module categories |

Etingof, Kinser and Walton classified Rep(Hg)-module categories using
Hg-module algebras and a categorical Morita equivalence

C(D87w7 C27 1) % Rep(H8)

Goal |

Classify exact module categories of finite dimensional Hopf algebras with
coradical Hs.

Classification of finite dimensional Hopf algebras with coradical Hg was
done by Yuxing Shi in 2016.
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