Comodule Algebras over H₈

Jacob Van Grinsven

University of Iowa

QuaSy-Con II May 24, 2024

1/20

Outline

Module Categories

2 H₈-Comodule Algebras

Remarks

Module Categories

Let k be an algebraically closed field and H a finite dimensional Hopf algebra.

Module Categories

A left module category $\mathcal M$ over $\operatorname{Rep}(H)$ is an abelian category with an exact bifunctor $\overline{\otimes}:\operatorname{Rep}(H)\times\mathcal M\to\mathcal M$ with natural associativity and unit isomorphisms:

$$m_{X,Y,M}: (X \otimes_{\Bbbk} Y) \overline{\otimes} M \to X \overline{\otimes} (Y \overline{\otimes} M), \quad \ell_M: \mathbb{1} \overline{\otimes} M \to M$$

 $X, Y \in \text{Rep}(H)$, $M \in \mathcal{M}$ satisfying some compatibility conditions.

Module Categories

Module Functors

A Rep(H)-module functor $F: \mathcal{M} \to \mathcal{N}$ is a functor with natural isomorphism:

$$s_{X,M}: F(X \overline{\otimes} M) \to X \overline{\otimes} F(M), \quad X \in \text{Rep}(H), M \in \mathcal{M}.$$

Two Rep(H)-module categories are equivalent if there exists a Rep(H)-module functor realizing the equivalence.

Module Categories

Module Functors

A Rep(H)-module functor $F: \mathcal{M} \to \mathcal{N}$ is a functor with natural isomorphism:

$$s_{X,M}: F(X \overline{\otimes} M) \to X \overline{\otimes} F(M), \quad X \in \text{Rep}(H), M \in \mathcal{M}.$$

Two Rep(H)-module categories are equivalent if there exists a Rep(H)-module functor realizing the equivalence.

Goal

Given a finite dimensional Hopf algebra, find all exact indecomposable Rep(H)-module categories (up to equivalence).

Comodule Algebras

Let H be a Hopf algebra and $\otimes = \otimes_{\Bbbk}$,

H-Comodule Algebra

A k-vector space A is an H-comodule algebra if:

- \bullet A is a k-algebra,
- **2** A is an H-comodule via $\lambda: A \to H \otimes A$,
- **3** λ is a morphism of \mathbb{k} -algebras.

Comodule Algebras

Let H be a Hopf algebra and $\otimes = \otimes_{\Bbbk}$,

H-Comodule Algebra

A k-vector space A is an H-comodule algebra if:

- $\mathbf{0}$ A is a \mathbb{k} -algebra,
- **2** A is an H-comodule via $\lambda: A \to H \otimes A$,
- **3** λ is a morphism of \Bbbk -algebras.

We say A is right H-simple if there are no nontrivial right ideals $J \subseteq A$ such that $\lambda(J) \subseteq H \otimes J$.

The space of coinvariants is $A^{coH} = \{a \in A : \lambda(a) = 1 \otimes a\}.$

Comodule Algebras

Let H be a Hopf algebra and $\otimes = \otimes_{\Bbbk}$,

H-Comodule Algebra

A k-vector space A is an H-comodule algebra if:

- \bullet A is a k-algebra,
- **2** A is an H-comodule via $\lambda: A \to H \otimes A$,
- **3** λ is a morphism of \Bbbk -algebras.

We say A is right H-simple if there are no nontrivial right ideals $J \subseteq A$ such that $\lambda(J) \subseteq H \otimes J$.

The space of coinvariants is $A^{coH} = \{a \in A : \lambda(a) = 1 \otimes a\}.$

Notice $1_A \in A^{coH}$.

We say A has trivial coinvariants if $dim(A^{coH}) = 1$.

Left A-modules

Let \Bbbk be an algebraically closed field of characteristic zero and H a finite dimensional Hopf algebra.

Andruskiewitsch and Mombelli (2007)

If \mathcal{M} is an exact indecomposable module category over $\operatorname{Rep}(H)$ then $\mathcal{M} \simeq {}_A \mathcal{M}$ for some right H-simple left comodule algebra A with trivial coinvariants.

Left A-modules

Let \Bbbk be an algebraically closed field of characteristic zero and H a finite dimensional Hopf algebra.

Andruskiewitsch and Mombelli (2007)

If \mathcal{M} is an exact indecomposable module category over Rep(H) then $\mathcal{M} \simeq {}_A \mathcal{M}$ for some right H-simple left comodule algebra A with trivial coinvariants.

Rep(H)-module structure on $_A\mathcal{M}$

Note that $X \otimes M$ is a left $H \otimes A$ module for $X \in \text{Rep}(H)$ and $M \in {}_{A}\mathcal{M}$.

Thus λ makes $X \otimes M$ a left A-module.

Explicitly:

$$a \cdot (x \otimes m) = \sum (a_{(-1)} \cdot x) \otimes (a_{(0)} \cdot m)$$

where $\lambda(a) = \sum a_{(-1)} \otimes a_{(0)}$.

Morita Equivalence

Morita Equivariant Equivalence

We say A, B are Morita equivariant equivalent if ${}_A\mathcal{M} \simeq {}_B\mathcal{M}$ as Rep(H) module categories.

Morita Equivalence

Morita Equivariant Equivalence

We say A, B are Morita equivariant equivalent if ${}_A\mathcal{M} \simeq {}_B\mathcal{M}$ as Rep(H) module categories.

If A, B are Morita equivariant equivalent, then A, B are Morita equivalent as k-algebras.

Morita Equivalence

Morita Equivariant Equivalence

We say A, B are Morita equivariant equivalent if ${}_A\mathcal{M} \simeq {}_B\mathcal{M}$ as Rep(H) module categories.

If A, B are Morita equivariant equivalent, then A, B are Morita equivalent as k-algebras.

Goal

Given a finite dimensional Hopf algebra, determine all right *H*-simple left comodule algebras with trivial coinvariants up to Morita equivariant equivalence.

Mombelli was able to classify exact indecomposable module categories for pointed Hopf algebras in the following cases:

- **1** $G(H) \cong \mathbb{Z}_n$ (2009),
 - 1 Taft algebras,
 - **2** Small quantum group $u_q(\mathfrak{sl}_2)$,

Mombelli was able to classify exact indecomposable module categories for pointed Hopf algebras in the following cases:

- **1** $G(H) \cong \mathbb{Z}_n$ (2009),
 - 1 Taft algebras,
 - **2** Small quantum group $u_q(\mathfrak{sl}_2)$,
- \mathbf{Q} H is a lifting of a quantum linear space (2010),

Mombelli was able to classify exact indecomposable module categories for pointed Hopf algebras in the following cases:

- **1** $G(H) \cong \mathbb{Z}_n$ (2009),
 - 1 Taft algebras,
 - **2** Small quantum group $u_q(\mathfrak{sl}_2)$,
- # is a lifting of a quantum linear space (2010),
- **3** G(H) isomorphic to S_3 or S_4 (with Agustin Garcia Iglesias, 2011).

Mombelli was able to classify exact indecomposable module categories for pointed Hopf algebras in the following cases:

- **1** $G(H) \cong \mathbb{Z}_n$ (2009),
 - 1 Taft algebras,
 - **2** Small quantum group $u_q(\mathfrak{sl}_2)$,
- \mathbf{Q} H is a lifting of a quantum linear space (2010),
- **3** G(H) isomorphic to S_3 or S_4 (with Agustin Garcia Iglesias, 2011).

Goal

Extend this work to the non-pointed case

Mombelli was able to classify exact indecomposable module categories for pointed Hopf algebras in the following cases:

- **1** $G(H) \cong \mathbb{Z}_n$ (2009),
 - 1 Taft algebras,
 - **2** Small quantum group $u_q(\mathfrak{sl}_2)$,
- \mathbf{Q} H is a lifting of a quantum linear space (2010),
- **3** G(H) isomorphic to S_3 or S_4 (with Agustin Garcia Iglesias, 2011).

Goal

Extend this work to the non-pointed case

Note

This process depends greatly on the structure of H (or more specifically, the structure of the associated coradically graded Hopf algebra).

Outline

Module Categories

② *H*₈-Comodule Algebras

Remarks

The Kac-Paljutkin Hopf Algebra

Let k be algebraically closed and characteristic zero.

 H_8

The Kac-Paljutkin Hopf algebra H_8 is generated by x, y, z with x, ygrouplike, generating a Hopf subalgebra isomorphic to k[K] and z satsifying:

$$z^{2} = \frac{1}{2}(1 + x + y - xy)$$
 $xz = zy$ $yz = zx$

and

$$\Delta(z) = \frac{1}{2}(1 \otimes 1 + 1 \otimes x + y \otimes 1 - y \otimes x)(z \otimes z).$$

The Kac-Paljutkin Hopf Algebra

Let k be algebraically closed and characteristic zero.

 H_8

The Kac-Paljutkin Hopf algebra H_8 is generated by x, y, z with x, y grouplike, generating a Hopf subalgebra isomorphic to $\mathbb{k}[K]$ and z satsifying:

$$z^{2} = \frac{1}{2}(1 + x + y - xy)$$
 $xz = zy$ $yz = zx$

and

$$\Delta(z) = \frac{1}{2}(1 \otimes 1 + 1 \otimes x + y \otimes 1 - y \otimes x)(z \otimes z).$$

- H₈ is the unique 8 dimensional semisimple non-commutative, non-cocommutative Hopf algebra.
- \mathbf{Q} H_8 is self dual, cosemisimple, and not pointed

H₈-Comodules

Cosemisimplicity

The following is a list of all simple H_8 -comodules:

- **1** The one dimensional comodules V_g where $\lambda(V_g) = g \otimes V_g$ for $g \in G(H) = \{1, x, y, xy\}$.
- **2** The two dimensional comodule V_2 generated by v, w with

$$\lambda(v) = \frac{1}{2} \Big[yz \otimes (v+w) + z \otimes (v-w) \Big]$$

$$\lambda(w) = \frac{1}{2} \Big[xyz \otimes (v+w) - xz \otimes (v-w) \Big]$$

Every comodule algebra A is a direct sum of copies of these comodules.

Group Comodule Algebras

Let A be a right H_8 -simple H_8 -comodule algebra with trivial coinvariants.

In a similar way that $\mathbb{k}[K] \subseteq H_8$, there exists a subcomodule subalgebra $A_K \subseteq A$ such that A_K is a right simple $\mathbb{k}[K]$ -comodule algebra with trivial coinvariants.

Group Comodule Algebras

Let A be a right H_8 -simple H_8 -comodule algebra with trivial coinvariants.

In a similar way that $\mathbb{k}[K] \subseteq H_8$, there exists a subcomodule subalgebra $A_K \subseteq A$ such that A_K is a right simple $\mathbb{k}[K]$ -comodule algebra with trivial coinvariants.

A_K

If (A, λ) is a right H_8 -simple comodule algebra with trivial coinvariants then A_K is isomorphic to $\mathbb{k}^{\psi}[F]$ for some subgroup $F \subseteq K$ and 2-cocycle $\psi \in Z^2(F, \mathbb{k}^{\times})$.

In particular, A_K is isomorphic to one of:

- 1 k,
- **2** $k[C_2]$,
- **③ k**[K],

Extending to H_8

Extending A_K

We now need to classify the algebras A such that $A \neq A_K$.

Extending to H_8

Extending A_K

We now need to classify the algebras A such that $A \neq A_K$.

Consider the basis $\{v_i, w_i\}_{i=1}^{n_2}$ for $V_2^{\oplus n_2}$.

$$\lambda(v_i) = \frac{1}{2} \Big[yz \otimes (v_i + w_i) + z \otimes (v_i - w_i) \Big]$$

$$\lambda(w_i) = \frac{1}{2} \Big[xyz \otimes (v_i + w_i) - xz \otimes (v_i - w_i) \Big]$$

Notice

$$\begin{aligned} 4\lambda(v_iv_j) &= 1 \otimes (v_iv_j - v_iw_j - w_iv_j - w_iw_j) \\ &+ x \otimes (v_iv_j + v_iw_j - w_iv_j + w_iw_j) \\ &+ y \otimes (v_iv_j - v_iw_j + w_iv_j + w_iw_j) \\ &+ xy \otimes (v_iv_j + v_iw_j + w_iv_j - w_iw_j). \end{aligned}$$

So $v_i v_i \in A_K$.

Extending to H_8 (cont)

Let e_g generate V_g for $g \in \{1, x, y, xy\}$, there exists scalars $\alpha_{ij}, \beta_{ij}, \gamma_{ij}, \delta_{ij}$ such that:

$$v_i v_j - v_i w_j - w_i v_j - w_i w_j = 4\alpha_{ij},$$

 $v_i v_j + v_i w_j - w_i v_j + w_i w_j = 4\beta_{ij} e_x,$
 $v_i v_j - v_i w_j + w_i v_j + w_i w_j = 4\gamma_{ij} e_y,$
 $v_i v_j + v_i w_j + w_i v_j - w_i w_j = 4\delta_{ij} e_{xy},$

Extending to H_8 (cont)

Let e_g generate V_g for $g \in \{1, x, y, xy\}$, there exists scalars $\alpha_{ij}, \beta_{ij}, \gamma_{ij}, \delta_{ij}$ such that:

$$v_i v_j - v_i w_j - w_i v_j - w_i w_j = 4\alpha_{ij},$$

 $v_i v_j + v_i w_j - w_i v_j + w_i w_j = 4\beta_{ij} e_x,$
 $v_i v_j - v_i w_j + w_i v_j + w_i w_j = 4\gamma_{ij} e_y,$
 $v_i v_j + v_i w_j + w_i v_j - w_i w_j = 4\delta_{ij} e_{xy},$

This system has a unique solution:

$$\begin{aligned} \mathbf{v}_{i}\mathbf{v}_{j} &= \alpha_{ij} + \beta_{ij}\mathbf{e}_{x} + \gamma_{ij}\mathbf{e}_{y} + \delta_{ij}\mathbf{e}_{xy}, \\ \mathbf{v}_{i}\mathbf{w}_{j} &= -\alpha_{ij} + \beta_{ij}\mathbf{e}_{x} - \gamma_{ij}\mathbf{e}_{y} + \delta_{ij}\mathbf{e}_{xy}, \\ \mathbf{w}_{i}\mathbf{v}_{j} &= -\alpha_{ij} - \beta_{ij}\mathbf{e}_{x} + \gamma_{ij}\mathbf{e}_{y} + \delta_{ij}\mathbf{e}_{xy}, \\ \mathbf{w}_{i}\mathbf{w}_{j} &= -\alpha_{ij} + \beta_{ij}\mathbf{e}_{x} + \gamma_{ij}\mathbf{e}_{y} - \delta_{ij}\mathbf{e}_{xy}. \end{aligned}$$

A list of H_8 comodule algebras with trivial coinvariants

The following is an exhaustive list of isomorphism classes of right H_8 -simple comodule algebras with trivial coinvariants:

- 1 k,
- **2** The subalgebras of H_8 isomorphic to $\mathbb{k}[C_2]$ with generator x, y or xy.
- **3** The subalgebra $\mathbb{k}[K]$,
- **4** The twisted group algebra $\mathbb{k}^{\psi}[K] \ (\cong M_2(\mathbb{k}))$,

A list of H_8 comodule algebras with trivial coinvariants

The following is an exhaustive list of isomorphism classes of right H_8 -simple comodule algebras with trivial coinvariants:

- 1 k,
- **2** The subalgebras of H_8 isomorphic to $\mathbb{k}[C_2]$ with generator x, y or xy.
- **3** The subalgebra $\mathbb{k}[K]$,
- **4** The twisted group algebra $\mathbb{k}^{\psi}[K] \ (\cong M_2(\mathbb{k}))$,
- **5** The algebra $A_{xy}^q \cong \mathbb{k}^4$, $(A_{xy}^q \cong V_1 \oplus V_{xy} \oplus V_2 \text{ as comodules})$
- **6** (H_8, Δ) .

A list of H_8 comodule algebras with trivial coinvariants

The following is an exhaustive list of isomorphism classes of right H_8 -simple comodule algebras with trivial coinvariants:

- **1** k,
- **2** The subalgebras of H_8 isomorphic to $\mathbb{k}[C_2]$ with generator x, y or xy.
- **3** The subalgebra $\mathbb{k}[K]$,
- **4** The twisted group algebra $\mathbb{k}^{\psi}[K] \ (\cong M_2(\mathbb{k}))$,
- **5** The algebra $A_{xy}^q \cong \mathbb{k}^4$, $(A_{xy}^q \cong V_1 \oplus V_{xy} \oplus V_2 \text{ as comodules})$
- **6** (H_8, Δ) .

Morita Equivalence

As k-algebras, the following are Morita equivalent:

- **1** The algebras k and $k^{\psi}[K]$,
- **2** The three algebras isomorphic to $k[C_2]$,
- **3** The algebras A_{xy}^q and $\mathbb{k}[K]$.

Morita Equivariant Equivalence

 \mathbb{k} and $M_2(\mathbb{k})$

The algebras k and $k^{\psi}[K]$ are Morita equivariant equivalent.

Morita Equivariant Equivalence

\Bbbk and $M_2(\Bbbk)$

The algebras k and $k^{\psi}[K]$ are Morita equivariant equivalent.

$\mathbb{k}[C_2]$

The algebras generated by x and y are Morita equivariant equivalent but are not Morita equivariant equivalent to the algebra generated by xy.

Morita Equivariant Equivalence

\mathbb{k} and $M_2(\mathbb{k})$

The algebras k and $k^{\psi}[K]$ are Morita equivariant equivalent.

$\mathbb{k}[C_2]$

The algebras generated by x and y are Morita equivariant equivalent but are not Morita equivariant equivalent to the algebra generated by xy.

$\mathbb{k}[K]$ and A^q_{xy}

The algebras $\mathbb{k}[K]$ and A_{xy}^q are not Morita equivariant equivalent.

Morita Equivariant Inequivalent Algebras

The following is an exhaustive list of Morita equivariant inequivalent right H_8 -simple H_8 -comodule algebras with trivial coinvariants.

- 1 k,
- **2** The subalgebra of H_8 generated by x,
- 3 The subalgebra of H_8 generated by xy,
- **4** The subalgebra $\mathbb{k}[K]$ generated by x and y,
- **5** The algebra A_{xy}^q ,
- **6** (H_8, Δ) .

Morita Equivariant Inequivalent Algebras

The following is an exhaustive list of Morita equivariant inequivalent right H_8 -simple H_8 -comodule algebras with trivial coinvariants.

- 1 k,
- **2** The subalgebra of H_8 generated by x,
- 3 The subalgebra of H_8 generated by xy,
- **4** The subalgebra $\mathbb{k}[K]$ generated by x and y,
- **5** The algebra A_{xy}^q ,
- **6** (H_8, Δ) .

$Rep(H_8)$ -module categories

If \mathcal{M} is an exact indecomposable $\operatorname{Rep}(\mathcal{H}_8)$ -module category then $\mathcal{M} \simeq {}_A \mathcal{M}$ for exactly one A in the list above.

Morita Equivariant Inequivalent Algebras

The following is an exhaustive list of Morita equivariant inequivalent right H_8 -simple H_8 -comodule algebras with trivial coinvariants.

- **1** k,
- 2 The subalgebra of H_8 generated by x,
- 3 The subalgebra of H_8 generated by xy,
- **4** The subalgebra $\mathbb{k}[K]$ generated by x and y,
- **5** The algebra A_{xy}^q ,
- **6** (H_8, Δ) .

$Rep(H_8)$ -module categories

If \mathcal{M} is an exact indecomposable $\operatorname{Rep}(H_8)$ -module category then $\mathcal{M} \simeq {}_{\mathcal{A}}\mathcal{M}$ for exactly one \mathcal{A} in the list above.

Remark

Each of the algebras in the above list is isomorphic to a coideal subalgebra of H_8 .

Outline

Module Categories

2 H₈-Comodule Algebras

Remarks

Remarks

$Rep(H_8)$ -module categories

Etingof, Kinser and Walton classified Rep (H_8) -module categories using H₈-module algebras and a categorical Morita equivalence

$$C(D_8,\omega,C_2,1)\stackrel{\otimes}{\sim} \operatorname{Rep}(H_8).$$

Remarks

$Rep(H_8)$ -module categories

Etingof, Kinser and Walton classified Rep (H_8) -module categories using H₈-module algebras and a categorical Morita equivalence

$$C(D_8,\omega,C_2,1)\stackrel{\otimes}{\sim} \operatorname{Rep}(H_8).$$

Goal

Classify exact module categories of finite dimensional Hopf algebras with coradical H₈.

Remarks

$Rep(H_8)$ -module categories

Etingof, Kinser and Walton classified Rep (H_8) -module categories using H₈-module algebras and a categorical Morita equivalence

$$C(D_8,\omega,C_2,1)\stackrel{\otimes}{\sim} \operatorname{Rep}(H_8).$$

Goal

Classify exact module categories of finite dimensional Hopf algebras with coradical H_{8} .

Classification of finite dimensional Hopf algebras with coradical H_8 was done by Yuxing Shi in 2016.

Thank You/Questions

Supported in part by the National Science Foundation under Award No. DMS-2303334 and the Erwin and Peggy Kleinfeld Graduate Fellowship Fund.