Classification & Regression

Classification (Logistic Regression)
Visualize a *Linear* Regression Line

![Linear Regression Line Graph](image)
Limits of Linear Regression

Is this meaningful?

Remember linear regression MUST go through \bar{x} and \bar{y}
Changing How We Think about Outcomes

• Rather than predicting a target “value,” in the binary case, it makes more sense to consider *probability* of having the outcome occur at a specific X (or set of X’s)

\[\hat{y} = \beta_0 + \beta_1 x_1 \]

\[p(y) = \beta_0 + \beta_1 x_1 \]
Changing How We Think about Outcomes

• We know probability is bounded \([0,1]\): which makes expressions such as this difficult to solve \(p(y) = \beta_0 + \beta_1 x_1\)
 • How can we turn a proportion into a continuous outcome?
Changing How We Think about Outcomes

• We know probability is bounded $[0,1]$: which makes expressions such as this difficult to solve $p(y) = \beta_0 + \beta_1 x_1$
 • How can we turn a proportion into a continuous outcome?

• From the statistics section we remember
 – Odds of an event are defined as: $\frac{P(event)}{1-P(event)}$, which is bounded $[0, \infty]$
Changing How We Think about Outcomes

- We know probability is bounded $[0,1]$: which makes expressions such as this difficult to solve $p(y) = \beta_0 + \beta_1 x_1$
 - *How can we turn a proportion into a continuous outcome?*

- From the statistics section we remember
 - Odds of an event are defined as: $\frac{P(event)}{1-P(event)}$, which is bounded $[0, \infty]$
 - With a little math we know that:
 - Log Odds: $(\ln(\frac{P(event)}{1-P(event)})$ is bounded $[-\infty, \infty]$

 Now we're getting somewhere
Logistic Regression

Better idea: Set the log(odds) to the linear function.

$$\log(\text{odds}) = \logit(p) = \ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x$$
Logistic Regression

Better idea: Set the log(odds) to the linear function.

\[
\log(\text{odds}) = \logit(p) = \ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x
\]

We are fitting a linear model in the logit scale
Logistic Regression

\[\log(\text{odds}) = \logit(p) = \ln \left(\frac{p}{1-p} \right) = \beta_0 + \beta_1 x \]

- If we then, solve for \(p \) get **logistic (logit) function**; back in the correct range of values \([0, 1]\).
 - Because we really want the probability the event will occur given some \(X \)'s:

\[
p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}
\]
Visualizing the Logistic Curve

If we plot this function we find a sigmoid function that assumes values in range $[0,1]$

$$p(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$
Visualizing the Logistic Curve

![Logistic Curve Diagram]
What Distributions Can be Fit?
Logistic Regression Fits

Simple Pattern
- Works Perfectly

Simple Pattern with Noise
- Useful, some error

Complex Pattern
- Not useful, cannot represent larger trend
Under the Hood
Logistic Regression Optimization

• So it’s clear the form \(\ln \left(\frac{p}{1-p} \right) = \beta_0 + \beta_1 x \) is useful but...
 – How do solve for the \(\beta \) coefficients in \(p(x) = \frac{1}{1+e^{-(\beta_0 + \beta_1 x)}} \)?

• Unlike least squares methods, finding a closed form for the coefficients using is not possible
 – Rather, \(\beta \) coefficients estimated using technique called Maximum likelihood estimation (MLE)
MLE Intuition

• Although for this class (and most real world settings) you will use software to estimate these coefficient values, it is important to have an understanding of what MLE is doing.

• Think back to statistics notes on binomial distribution

Flipping a coin: \(P(Y = y) = \binom{n}{y}p^y(1 - p)^{n-y} \)

<table>
<thead>
<tr>
<th>Y</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(Y=y)</td>
<td>.008</td>
<td>.055</td>
<td>.0164</td>
<td>.273</td>
<td>.273</td>
<td>.164</td>
<td>.055</td>
<td>.008</td>
</tr>
</tbody>
</table>
MLE Intuition

Consider a clinical trial in which 35 independent patients are given a new medication for pain relief. 22 patients report “significant” relief 1-hr after medication.

\[P(Y = y) = \binom{n}{y} p^y (1 - p)^{n-y} \]
MLE Intuition

• Consider a clinical trial in which 35 independent patients are given a new medication for pain relief.
 – 22 patients report “significant” relief 1-hr after medication
 \[P(Y = y) = \binom{n}{y} p^y (1 - p)^{n-y} \]

• Break this down:
 – \(Y = \) outcome (22 patient)
 – \(N: 35 \) total patients
 – \(P\)-unknown
MLE Intuition

- Consider a clinical trial in which 35 independent patients are given a new medication for pain relief.
 - 22 patients report “significant” relief 1-hr after medication
 \[P(Y = 22) = \binom{35}{22} p^{22} (1 - p)^{35-22} \]

- Break this down:
 - Y = outcome (22 patient)
 - N: 35 total patients
 - P-unknown
MLE Intuition

• Now for each data-point, we have a vector of features, \(x_i \), and a class, \(y_i \).
• We then want to know how likely is obtaining each of the observations
 – Independent observations so we compute the product of their probabilities
 – \(\prod_{i=1}^{n} \Pr(y_i \mid \beta + \beta_1 + \beta_2 + \cdots) \)
Math Ahead
MLE

\[L = \prod_{i=1}^{n} \Pr(y_i) = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{n-y_i} = \prod_{i=1}^{n} \left(\frac{p_i}{1-p_i} \right)^{y_i} (1 - p) \]
MLE

- \(L = \prod_{i=1}^{n} \Pr(y_i) = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{n-y_i} = \prod_{i=1}^{n} \left(\frac{p_i}{1-p_i} \right)^{y_i} (1 - p) \)

- \(\ln(L) = \sum y_i \ln\left(\frac{p_i}{1-p_i} \right) + \sum \ln(1 - p) \)

 \text{Remember: } \ln\left(\frac{p}{1-p} \right) = \beta_0 + \beta_1 x

- \(\text{LL} = \sum y_i \ln(\beta x_i) + \sum \ln(1 - e^{\beta x_i}) \)

 \text{Maximize}
MLE

• No closed form solutions:
 – Use an optimization method like Newton-Raphson

• Iterative process used, beginning with tentative solution, revises it slightly to improve, and repeats revision until “converged” (no improvement)
MLE Outcomes

• MLE chooses values for parameter estimates which make the observed data “maximally likely.”
 – These are our β’s

• **Standard errors** are obtained as a by-product of the maximization process

• What are standard errors useful for?
MLE Outcomes

• MLE chooses values for parameter estimates which make the observed data “maximally likely.”
 – These are our β’s

• Standard errors are obtained as a by-product of the maximization process

• What are standard errors useful for?
 – *Inference around the coefficients!*
WORKING ASSUMPTIONS
Logistic Regression Assumptions

• Just like linear regression, logistic regression requires the data to fulfill some assumptions to provide reliable estimates:
 – \(Y_i \) are from Bernoulli or binomial \((n, \mu)\) distribution
 – There exists an (approximately) linear relation between each \(X \) and the \text{LOGIT} of \(Y \)
 – Instances are independent of each other
 – No Multicollinearity (correlation amongst independent features \(X \))
 • As with linear regression: Failure to do so, results in instability with respect to the coefficients and their confidence intervals
“Linearity”

- Remember: There exists an (approximately) linear relation between each X and the \text{LOGIT} of Y
 - This is fairly difficult to assess, with dichotomous data
“Linearity”

• Remember: There exists an (approximately) linear relation between each X and the LOGIT of Y
 – This is fairly difficult to assess, with dichotomous data

• What we can do it fit a smoothing curve (loess)
“Linearity”

- Remember: There exists an (approximately) linear relation between each X and the LOGIT of Y
 - This is fairly difficult to assess, with dichotomous data

- What we can do it fit a smoothing curve (loess)
 - We then can take the logit of these probabilities. Straight lines are preferred here 😊
Independence / Multicollinearity

• As with linear regression, we must have a general understanding of how the data was collected
 – Our residual plots here may help with this

• Multicollinearity:
 – We can again use the bi-variate correlations and VIF metrics for all features
Logistic Model Diagnostics

• As there is no “True” value, only a binary indicator, the notion of residuals remains an open topic today

• Two Primary Residuals are often used for model diagnosis
 – Deviance
 – Pearson's
Diagnostics and Plots

Although there is no clear cut guidelines as there are with linear regression, it may still be helpful

- Deviance – Good for: identifying potential outliers
 - You can plot the deviance of each point against its index value
- Index’s have no logical meaning and the plot
Understanding Logistic Regression
Coefficients (Binary/Dummy Features)

- Thinking back to linear regression....
 - Coefficients are difference between levels and reference category of a feature

\[
\beta_1 = (\beta_0 + \beta_1 - \beta_0) = \ln 1 - \ln 0 = \ln (p_0 1 - p_0 0) - \ln (p_0 1 - p_0 0)
\]
Coefficients (Binary/Dummy Features)

- Thinking back to linear regression....
 - Coefficients are difference between levels and reference category of a feature

- Let’s compare to logit function: \(\ln \left(\frac{p(x)}{1-p(x)} \right) = \beta_0 + \beta_1 x \)
 - Plug in:
 - \(x:0 = \ln(0) = \beta_0 + \beta_1(0) = \beta_0 \)
 - \(x:1 = \ln(1) = \beta_0 + \beta_1(1) = \beta_0 + \beta_1 \)
Coefficients (Binary/Dummy Features)

- Thinking back to linear regression....
 - Coefficients are difference between levels and reference category of a feature
- Let’s compare to logit function: \(\ln\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x \)
 - Plug in:
 - \(X:0 = \ln(0) = \beta_0 + \beta_1(0) = \beta_0 \)
 - \(X:1 = \ln(1) = \beta_0 + \beta_1(1) = \beta_0 + \beta_1 \)
 - Solve for \(\beta_1 = (\beta_0 + \beta_1 - \beta_0) = \ln(1) - \ln(0) \)
 - \(\beta_1 = \ln(1) - \ln(0) = \ln\left(\frac{p(1)}{1-p(1)}\right) - \ln\left(\frac{p(0)}{1-p(0)}\right) = \ln\left(\frac{\frac{p(1)}{1-p(1)}}{\frac{p(0)}{1-p(0)}}\right) \)
Coefficients (Binary/Dummy Features)

- Thinking back to linear regression....
 - Coefficients are difference between levels and reference category of a feature

- Let's compare to logit function: \(\ln \left(\frac{p(x)}{1-p(x)} \right) = \beta_0 + \beta_1 x \)
 - **Plug in:**
 - \(x:0 = \ln(0) = \beta_0 + \beta_1 (0) = \beta_0 \)
 - \(x:1 = \ln(1) = \beta_0 + \beta_1 (1) = \beta_0 + \beta_1 \)
 - Solve for \(\beta_1 = (\beta_0 + \beta_1 - \beta_0) = Ln(1) - \ln(0) \)
 - \(\beta_1 = Ln(1) - \ln(0) = \ln \left(\frac{p(1)}{1-p(1)} \right) - \ln \left(\frac{p(0)}{1-p(0)} \right) = \ln \left(\frac{\frac{p(1)}{1-p(1)}}{\frac{p(0)}{1-p(0)}} \right) \)

\(\beta_1 = \text{Odds Ratio} \)

What is this?
- The odds exposed: \(\frac{p(1)}{1-p(1)} \)
- The odds not exposed: \(\frac{p(0)}{1-p(0)} \)
Coefficients (Binary/Dummy Features)

• Thinking back to linear regression....
 – Coefficients are difference between levels and reference category of a feature

• Let’s compare to logit function: \(\ln \left(\frac{p(x)}{1-p(x)} \right) = \beta_0 + \beta_1 x \)
 – Plug in:
 • \(x:0 = \ln(0) = \beta_0 + \beta_1(0) = \beta_0 \)
 • \(x:1 = \ln(1) = \beta_0 + \beta_1(1) = \beta_0 + \beta_1 \)

 – Solve for \(\beta_1 = (\beta_0 + \beta_1 - \beta_0) = \ln(1) - \ln(0) \)
 \(\beta_1 = \ln(1) - \ln(0) = \ln \left(\frac{\frac{p(1)}{1-p(1)}}{\frac{p(0)}{1-p(0)}} \right) \)

 – Odds Ratios! \(\beta_1 = \ln(\text{Odds Ratio}) \)
Next Class – Interpretation and Inference