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Abstract 
Today the healthcare industry is undergoing one of the most important and 

challenging transitions to date, the move from paper to electronic healthcare records. 
While the healthcare industry has generally been an incrementally advancing field, this 
change has the potential to be revolutionarily. Using the data collected from these 
electronic records exciting tools such as disease recommendation systems have been 
created to deliver personalized models of an individual’s health profile. However despite 
their early success, tools such as these will soon encounter a significant problem. The 
amount of healthcare encounter data collected is increasing drastically, and the 
computational time for these applications will soon reach a point at which these systems 
can no longer function in a practical timeframe for clinical use. This paper will begin by 
analyzing the performance limitations of the personalized disease prediction engine 
CARE (Collaborative Assessment and Recommendation Engine). Next it will detail the 
creation and performance of a new single patient implementation of the algorithm. 
Finally this work will demonstrate a novel parallel implementation of the CARE 
algorithm, and demonstrate the performance benefits on big patient data. 
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Introduction 
Medical research has taken place for decades. It has provided what we as a society feel are some of 
the greatest modern achievements, from the discovery of bacteria and viruses to the development of 
antibiotics. Today, as the healthcare industry begins its transition into the digital age it is easy to 
see the event as a mere coming of age, simply the transformation of the medical community’s paper 
documentation into electronic form. However, it provides so much more. This transition has laid 
the foundation for another fundamental advancement in the field of healthcare, the evolution from 
preventative care into personalized treatment plans. 

It has been well documented that early detection and treatment of many diseases is directly 
correlated with improved health outcomes for the patient (Etzioni et al., 2003) (Wilkinson, 
Donaldson, Hurst, Seemungal, & Wedzicha, 2004) (Lard et al., 2001). As a result, regular so called 
“wellness-visit programs” have been implemented by many companies and care providers in order 
to promote preemptive testing for certain conditions (Kickbusch & Payne, 2003; Ozminkowski et 
al., 2002). However, as the identification and treatment of these diseases are performed in the same 
manner for multiple individuals based primarily on their current health state, i.e. age, gender, race, 
prior lab results, etc. this type of care falls closer to preventative medicine than personalized care. 

Where as prior studies have guided preventative medicine treatment strategies by 
providing historical probabilistic models based on the outcomes of patients who developed similar 
conditions, new predictive techniques can help create personalized models of a patients future 
health risks tailored to the individual’s health profile. In order to create these personalized models, 
data mining techniques have been applied to population-level health data aggregated from 
electronic healthcare records (EMR). 

While classical data mining methodology such as clustering, decision trees and cohort 
analysis produced encouraging results, there was unfortunately a problem (Jensen, Jensen, & 
Brunak, 2012; Bellazzi & Zupan, 2008). As with paper records, each additional medical encounter 
by a patient resulted in additional data added to their electronic health record, and the quantity of 
data soon exceeded the ability of standard data processing techniques. In response, new data 
processing techniques and algorithms are being created, such as Google’s MapReduce, Yahoo’s 
Hadoop, etc. (Mayer-Sch¨onberger & Cukier, 2013). These techniques utilize the concepts of task 
segmentation and distributed computing in order to alleviate some of the computational load from 
a single machine, and allow for significantly improved runtimes for parallelizable tasks. Due to the 
time critical nature of medical conditions, the utility of any model created is directly proportional to 
the time taken to create it.  As such we must focus on training time of a model order to allow 
personalized healthcare models to be created within a useful timeframe. 

Among the most notable examples from emerging Electronic Medical Records (EMR) 
based technology, is the disease prediction model. These models utilize a patient’s personal 
healthcare data in order to rank the likelihood of the individual obtaining specific diseases. One 
such idea came from the University of Notre Dame in the form of a disease prediction technique 
called CARE (Collaborative Assessment and Recommendation Engine) (Davis, Chawla, Christakis, 
& Barabási, 2010). The CARE algorithm in its current state is extremely accurate, with an 
implementation already being licensed for clinical use. 

However despite CARE’s effectiveness, one of the algorithm’s foundational features, the 
ability to train risk models from population level healthcare records, has the potential to be- come 
one of the greatest implementation weaknesses. The CARE algorithm utilizes immense amounts of 
individual healthcare encounters in order to build a detailed similarity model for a specific 
individual, and collaborative filtering is intrinsically a computationally expensive algorithm. These 
facts combined with the ever-increasing amount of EMR encounter data present in hospital 
databases create a major operational issue. 

This paper will focus on the primary issue of CARE’s usability in a clinical setting. It will 
begin by identifying the limitations of the current CARE algorithm, and aim to provide a set of 
optimal performance parameters. Next some of the accuracy limitations will be addressed through 
the creation of a single patient version of CARE. Finally this work will demonstrate a novel 
distributed computing implementation of the CARE algorithm. This implementation will address 
issues with both execution time and disease coverage while attempting to provide near industry 
level performance. 
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Related Work 
At the time of its publication, the CARE algorithm was the first of its kind, receiving a 

United States patent. However, to date many other diseases recommendation systems have been 
created (Tassy & Pourqui´e, 2013; Jensen et al., 2012; Austin, Tu, Ho, Levy, & Lee, 2013; 
AbuKhousa & Campbell, 2012). While these systems utilize many different machine learning and 
data mining techniques in order to produce their recommendations, each still potentially suffers 
from the dependence on high volume datasets. Typically these systems fall into two main 
categories, making use of either a patient’s phenotypic profile, or their medical, disease and family 
histories as the training set of disease occurrences. Among the most widely known is the system 
HARM (McCormick, Rudin, & Madigan, 2012). Similarly to CARE, HARM is a personalized disease 
recommendation system, but rather than of using collaborative filtering HARM utilizes a 
significantly more complex mathematical model based on association rules. However as with 
CARE, and many of the other systems mentioned above, the authors of HARM do not discuss the 
potential for parallelization or distributed computing in their paper. Conversely, it has already been 
well established that distributed computing can provide significant improvement in runtime for 
computationally expensive systems (Goil & Choudhary, 1997; Stonebraker et al., 2010). 

Collaborative filtering techniques like those employed by CARE have been used for some 
time in online product recommendation systems such as Amazon.com (Linden, Smith, & York, 
2003). However, their application to disease prediction is relatively new. This practice has been 
brought about by a fundamental shift in how we think about diseases. Recently there has been a 
focus on modeling diseases as a network rather than isolated instances, allowing for the utilization 
of numerous networking-modeling techniques (Steinhaeuser & Chawla, 2009). However, 
healthcare information is extremely private, and the difficulties associated with of transporting and 
housing large scale healthcare data platforms have been some of the major obstacles preventing 
techniques such as these from widespread adoption. 

There exists some prior work evaluating privacy when using collaborative filtering 
techniques on distributed data sets, such as the work done by Berkvosky el. in (Berkovsky, Eytani, 
Kuflik,& Ricci, 2007). This paper details the concern of passing around sensitive information just to 
perform calculations on the data. However in his implementation, Berkvosky details a method for 
subset data selection in order to pass a minimal amount of identifiable information to the system. 
The solution proposed in our paper aims to take the method one step further, and rather than 
distribute a minimal data subset for computation, distribute the computation to each data site. 
Further, this paper also aims to address privacy concerns by transmitting only the result of 
calculations over the network. The architecture provided in this paper is more akin to the work 
described in class MapReduce problem, where the data are summarized at each node and then 
these summary results are returned to the requester (Dean & Ghemawat, 2008). 

Additional work related to the concept of personalized distributed data can be seen in the 
Lathia et. paper (Lathia, Hailes, & Capra, 2007). Lathia details a method for creating a custom 
similarity ranking based on random instances to protect the privacy of data. This similarly data 
could then be passed around without fear of revealing personalized information. 

Current CARE Architecture 
The current CARE architecture can be seen in Figure 1 and is fairly straightforward. The basic steps 
for the algorithm are detailed below. 

  

1. CARE begins with an individual presenting a set of diseases. This set is the accumulation 
of diseases over their personal medical history. 

 

2. The individual’s disease similarity is then compared to all other patients in the provider’s 
existing database and an initial filtering is done. 

 

(a) This filtering partitions the total dataset to include only those patients with whom the  
current test patient has some disease similarity, as collaborative filtering will yield no 
benefit between two individuals who do not have any disease in common. 
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3. Collaborative filtering is then performed on this filtered dataset. 

 

4. Finally a probabilistic ranking of diseases for the individual is returned. 

 

 

 
 

Figure 1: Current CARE Implementation (Chawla & Davis, 2013). 
 

Data 
The data used in this analysis is the same dataset utilized within the CARE research. The 

data consists of anonymized Medicare claims records collected by the Harvard University Medical 
School. There are approximately 13 million individual patients, accounting for just over 32 million 
hospital visits, and contains a total of 18 thousand unique disease codes. Each record represents a 
single hospital visit and is comprised of a patient ID number and up to 10 individual diagnoses 
from the visit. The diagnosis codes are defined by the International Classification of Diseases, Ninth 
Revision, Clinical Modification (ICD-9-CM), published by the World Health Organization (WHO) 
(Slee, 1978). 

Through the ICD-9-CM code each disease is given a unique code, which can be up to 5 
characters long. These codes may include specifics of the condition, such as the anatomical location. 
However, these fine-grained details are not required for the CARE algorithm, and as a result the 5 
digit diagnosis codes can be collapsed to a 3-digit generalization of the diseases. For example codes 
461.0 and 461.1 can be collapsed into the generic diagnosis code 461. The correctness of this 
generality is documented within the CARE paper, and as such will be used going forward in this 
work as well (Davis et al., 2010). 

It is important to note that a disease may be diagnosed to an individual multiple times 
throughout their medical history. However, as multiple diseases are not useful when comparing 
patient’s disease sets, only unique diseases are required for recommendations. Figure 2 shows that 
the average number of unique diseases converges to approximately 7 per patient over the full 
dataset. This value will be used when identifying outliers from the randomly selected patients, 
helping to reduce the bias between datasets and execution time. 

 

 

Sequential CARE Implementation 
As stated prior the current implementation of CARE is executed in a sequential manner. Our 
evaluation began with a detailed benchmarking on the existing CARE architecture. The goal of 
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these benchmarks was to identify areas of computational resource restrictions, as well as any areas 
of algorithmic complexity that could not be solved with improved hardware. 

 
Figure 2: Average Number of Unique Diseases Per Patient 

CARE was designed to operate within a clinical healthcare environment, and as this 
environment operates in a time-critical manner the primary benchmark metric used was execution 
time. Further a secondary metric for evaluation is the total number of patients used for training, as 
a proxy for recommendation accuracy. This proxy is a result of the sparse nature of disease 
networks. A large sampling of patients is required in order to ensure sufficient similarity 
comparisons for the disease ranking calculations. 

Evaluation Environment 

To perform the evaluation of CARE the Opteron machine at the Notre Dame Center for Re- search 
Computing (CRC) was utilized. This machine contains 4, 16-core 2.3 GHz AMD Opteron processors 
with 128 GB RAM. 

As this machine is a time-shared system it is likely to experience performance fluxuations, as a 
result of user process load. In order to account for this all simulations were run 5 times, and the 
results averaged to obtain stable performance estimates. Additionally, prior to each benchmark 
CARE was run once in an attempt warm the cache for the new set of diseases and visits. 

Further to ensure that the performance benchmarks were accurate and repeatable CARE was 
complied using the -O0 flag to disable any specific complier optimizations. This was decided as the 
parallel CARE implementation was run on the CRC Sun Grid Engine (SGE). Given that CARE has 
no specific system requirements, SGE workers could theoretically be dispatched to any machine 
with a spare core. As such, optimizations were removed to ensure uniform execution patterns 
across all worker machines. Finally all extraneous system calls, branching and logging were all 
removed from the CARE source code. This was done in an effort to stabilize the code from any 
branch prediction within processors, to ensure as consistent a pipeline as possible between each 
subsequent benchmark. 

 

 

 

Execution Mode 

In the course of this evaluation it became clear that CARE was constructed with some specific 
design considerations. The current implementation CARE effectively performs an all-pairs 
computation for diseases similarity against every patient within the database. This design has since 
been designated Batch Mode, as this is a process that would likely be executed as an overnight 
batch job.   In contrast this work details a new version of CARE, which performs   
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Figure 3: Average Total Runtime of Unmodified CARE 

 

Total 
Patients 

I/O Execution 
Percent 

CPU Computation 
Percent 5 13.27 24.95 

10 8.49 61.31 
25 1.73 88.55 
50 0.73 90.96 

100 0.35 92.64 
250 0.15 93.00 

 

Table 1:  I/O Vs.  CPU Breakdown as a Percent of Total Execution Time 

 

on-demand recommendations for a single patient. This implementation is similarly designed 
Individual Mode, and is detailed below. The following sections will detail the performance 
evaluations of each recommendation mode. 

 

Batch Mode 

As started prior, Batch Mode is akin to a daily overnight job, run by a medical provider to 
preprocess disease rankings for all current patients. These preprocessed results could then be used 
to provide instant queryable results. Further these results could be used to generate automated 
reports to alert doctors if a fast acting disease obtains a high probability ranking. 

 

Results and Analysis  

The initial performance analysis was performed on an unmodified version of the CARE 
algorithm, and base runtimes were established over a varying number of patients (Figure 3). 

Further as the goal of this work was to demonstrate the implementation of a scalable 
disease prediction algorithm, which could utilize big data from the largest of provider networks 
within an industry feasible timeframe, it was important to first determine which computational 
area would benefit most from optimization. In order to achieve this the major internal CARE 
functions were divided into the two fundamental computational classes, I/O and CPU bound, and 
their percent of total computation time was calculated (Table 1). Note the remaining percentage of 
execution time for smaller patient datasets was consumed by standard system calls and data 
structure initialization. As you can see these calls are not a bounding feature as they reduce to 
under six percent with a dataset of only 250 patients, well below even the smallest provider 
networks. 

The primary product of these initial evaluations was the confirmation that the CARE 
algorithm is highly CPU bound. Further, the program was not only CPU bound, but worse the all-
pairs computation for disease rankings resulted in an exponential runtime as a factor of total 
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patients. In fact as you can see from the comparison between Figure 3 and Table 1, the percent of 
execution time from I/O becomes minimal before the runtime even begins it’s rapid increase. This 
further reinforces the need to focus on CPU bound functionality. 

The standard CARE algorithm computes the disease rankings for all patients contained in a 
four thousand person dataset in just over 17 minutes. At only four thousand patients this dataset is 
a reasonable analog for even the smallest of medical practices. As stated earlier patient counts can 
be used as a proxy for CARE accuracy, and a dataset this small is a significant concern. Additionally 
these base implementation results highlight another major issue. Studies have shown that an entire 
clinical encounter, including recording a patient’s medical history and vitals lasts around just 17 
minutes (Mechanic, McAlpine, & Rosenthal, 2001). At a runtime of matching this figure, these 
results effectively eliminate the usage of Batch Mode as a feasible method for intra-day and on-
demand disease rankings. 

Individual Mode 

While the batch method is useful for preprocessing diseases rankings, there are two 
significant drawbacks to utilizing this method. First Batch Mode does not take into account new 
patients, operating under the assumption that the patient is already contained within the provider’s 
database. This implies that new patients will not be able to achieve their disease rankings until the 
following day. This delay then limits the ability of CARE to be utilized in many healthcare settings, 
particularly those which operate in a time-critical manner such as intensive care units. 

The second drawback focuses on the accuracy of the CARE recommendations. Healthcare 
providers are constantly updating patients medical records with new and potentially vital in- 
formation. By choosing to utilize CARE recommendations based on the prior days records you are 
potentially creating a situation where an individual’s recommendations are incomplete or incorrect. 

In order to address these concerns this work has implemented an extension of CARE, which 
calculates disease rankings for a single patient. This Individual Mode of CARE utilizes the current 
state of the database when the rankings are requested, and can be run on any patient, prior or new, 
as long as their diagnosis history is provided. 

Results and Analysis 

After modifying the CARE algorithm to perform on-demand computation, the logical first 
step was to compare the execution time to that of Batch Mode (Figure 4). By removing the all-pairs 
comparison, CARE is able to handle substantially larger datasets. It was able to process just under 
400 thousand patients in the equivalent timespan of the four thousand patient dataset, at 17 
minutes. Again, as the number of patients in the provider database can be used as a proxy for 
ranking the Individual Mode would provide disease rankings at a significantly higher confidence 
level. It is important to note that the Batch Mode would create disease rankings for 3,999 more 
patients than would the Individual Mode implementation. However when diagnosing a patient, 
accuracy for that individual may be more important than would be the diagnosis for multiple 
potentially unrelated patients at once. In fact, if Individual Mode CARE were initialized at the start 
of a patients primary care visit, their diseases rankings could be calculated against a dataset of up to 
300 thousand patients. After execution there would be almost one third of the total encounter time, 
5 of the total 17 minutes, remaining for medical staff to analyze and 
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Figure 4: Average Total Runtime of Unmodified CARE 

 

discuss the results. Further, the Individual Mode implementation directly addresses the issue of 
utilizing CARE in a time-sensitive environment. In these scenarios CARE could be initialized at the 
time of the patients admission. CARE would then be able to produce a preliminary set diseases risk 
within the early minutes of treatment, a critical period of time for high-risk patients. 

Analyzing the outcome from Individual Mode yields an interesting result as related to the 
general CARE algorithm. The results show that execution time is not independently correlated with 
the size of the patient dataset used. Instead, the execution time is also directly correlated to the 
number of diseases per patient. This comes as a result of the preprocessing step taken by CARE, 
noted earlier, where only those patients that share a common disease are utilized for the 
collaborative filtering algorithm. The results of this implementation decision are shown by Figure 4 
where the patient with the maximum number of diseases has a significantly higher runtime, as does 
the patient with the minimum number of diseases when run on the same dataset. 

 

Parallel CARE Implementation 
While the work of creating a single user implementation of CARE shows that it is possible 

to improve the execution time, the computational requirements of collaborative filtering limit the 
maximal performance gains that can be achieved by the current CARE architecture. After 
evaluating both the current implementation and improved single patient CARE algorithms, it 
became clear that the fundamental CARE architecture would need to be changed to obtain any 
further performance improvements. In order to understand how the CARE algorithm could benefit 
from optimizations, such as parallel execution, it was first important to understand where 
internally did CARE stall. 

This paper has previously shown that CARE is CPU bound, but now going further it is 
important to define where this occurs. In order to answer this the CPU bound components were 
broken down into the individual functions as a percent of total runtime (Table 2). It is clear that the 
CPU bounding is dominated by one function, Best Match. 

 

 

 

 

 

 

 

 

10 80 200 400

0

200

400

600

800

1000

1200

Total Patients (in thousands)

A
vg

 T
o

ta
l R

u
n

ti
m

e
(s

)

Maximum Diseases

Minimum Diseases



 

 2nd International Conference on Big Data and Analytics in Healthcare, Singapore 2014 9  

Total 
Patients 

Best Match Load Patient Load Disease 
5 65.28 15.86 18.86 

10 87.84 6.69 5.47 
25 98.08 1.36 0.55 
50 99.20 0.64 0.15 

100 99.62 0.33 0.04 
250 99.88 0.15 0.01 

 

Table 2: Function Breakdown of CARE Execution 
 

 Percent of Time Per Function 
Total 
Patients 

Vector Similarity Merge Visits System Calls 
25 41.78 10.32 47.90 
50 41.69 10.05 48.26 

100 42.24 8.22 49.54 
250 42.13 7.52 50.36 

Average 42.51 7.85 49.64 
SD 1.30 2.19 1.35 

 

Table 3:  Component Breakdown of Best Match Function 

 

Taking this further the Best Match function was broken  down  to  analyze  exactly  what 
was causing the bottleneck (Table 3). Note that due to the short execution time and sparse nature of 
the disease network, analyzing datasets containing less than 10 patients creates highly variable and 
non-convergent results. Thus all datasets below 25 patients were excluded from this evaluation. 

Looking at the table it is interesting to see that the percent of time spent in each component 
of the function remains unchanged as a product of number of patients in the dataset. This result 
lends itself well to the potential benefits of parallelization as it shows that even though the 
algorithm has an exponential runtime the amount of time spent in each function is stable. 

Distributed CARE 

Taking a deeper look at the sequential Batch Mode implementation it becomes possible to 
utilize the exponential increase in runtime to our advantage. While many see only the increased 
runtimes, the real value comes in the other direction. The exponential decay of runtime as a 
function of decreasing dataset sizes. By breaking down the Best Match function on smaller subsets 
of the total patient list it becomes possible to achieve significant performance benefits. These 
benefits can manifest as a minimization of computation time, or as the increase in size of the 
possible training datasets within the encounter timeframe. 

Distributed Architecture 

The distributed model for the CARE algorithm is a result of the existing CARE framework, 
where each patient’s disease ranking is calculated independently. While all patient’s medical 
histories are used as training for the model, creating the disease network for a patient is an 
independent event. As a result, the distributed version of CARE partitions the set of all patients into 
equal size subsets. These subsets are then distributed to up to 50 individual worker nodes 
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Figure 5: Distributed CARE Architecture 

 

 
Figure 6: Average Total Runtime of Distributed CARE 

 

using the WorkQueue algorithm created by the Cooperative Computing Lab (CCL) at Notre Dame (Bui, 
Rajan, Abdul-Wahid, Izaguirre, & Thain, 2011). Under this framework each worker node receives a copy 
of the CARE algorithm as well as information about the subset it is tasked to compute. After completion 
only the disease risk rankings need to be returned and stored in a database. This process is shown in 
Figure 5. 

Evaluation Metric Extension 

For the analysis of Distributed CARE model this paper will utilize an additional performance 
metrics designated Derived Time. Due to the time-shared nature of tasks on the CRC machines an 
accurate time for large-scale tasks cannot be measured. However, accurate execution times can be 
measured for each task. Derived Time then is an extension of standard time and is calculated assuming 
each task will begin as the task in front of it ends. Each block of tasks will execute in parallel and the total 
Derived Time will be a result of the average I/O overhead added to the average computation time for a 
task multiplied by the number of worker cycles that must be completed for the entire dataset. This method 
is utilized for all datasets over 104 patients. 
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Analysis and Results 

By utilizing the exponential decay aspect of the Batch Mode implementation it is clear that the 
execution time of CARE can be significantly improved. Additionally this improvement 

 
 

Task Count 
Avg IO 

Overhead (s) 
 

Avg CPU Time (s) 
 

Num Worker 
Cycles 

Derived 
Execution 
Time (Hours) 10000 0.017 134.358 200 7.465 

25000 0.021 43.811 500 6.088 
50000 0.098 19.412 1000 5.419 

100000 0.101 6.658 2000 3.755 
 

Table 4: Avg Total Runtime per Task of Distributed CARE 

 
Task Count 1000 10000 25000 50000 

Patients Per Task 50 5 2 1 
No Cache 43618.23 43609.78 46276.27 57924.65 

Cache First Access 58597.37 50521.59 57008.15 54396.94 
Cache Subsequent Access 29.92 32.11 29.89 31.43 

 

Table 5: Avg IO Overhead for 50000 Patient Dataset in µs 

 

does not suffer from the trade off of reduced numbers of patient disease risk calculations, as does the 
current Individual Mode improvement. As you can see Figure 6 demonstrates the significant 
improvements of Distributed CARE. It is important to note that Distributed CARE still exhibits an 
exponential execution time as a function of total patients in the dataset. This is expected, as Distributed 
CARE makes no effort to change the internal framework of CARE. The goal was to process significantly 
larger patient datasets in a practical timeframe, both of which Distributed CARE achieves. 

While another exponential program may not seem like much of an improvement the following 
shows that it is not only an improvement, but also necessary for widespread adoption of CARE. Using the 
standard Batch Mode execution times above we were able to fit the exponential function 60.3882e0.00073x 

to model the projected runtime of CARE. At this estimation the computation for 100000 patients, a number 
easily achievable by major practices, would take 7.04e25 years. This figure effectively eliminates CARE’s 
usage on a practice wide basis, forcing it to be used only in specialized cases. This figure effectively eliminates 
CARE’s usage on a practice wide basis, forcing it to be used only in specialized cases. As you can see through 
Table 4 increasing the task count, and thus decreasing the patients per worker task dramatically decreases the 
computation time down to just under 4 hours. With runtimes at just 1/6 of a day, significantly more patients 
could benefit from the usage of CARE. 

However in order to fully utilize the Distributed CARE algorithm, you must look further and consider 
optimizations within each run. This work decided to utilize as many workers as allowed, in this case 50, under 
the assumption that the any medical practice using CARE will have had over 50 patients pass through their 
system, allowing for at least a minimum of one patient per worker. As such, all optimizations will come through 
variations in the distributed subset size. When analyzing a distributed system for performance optimizations it 
becomes important to look not only at the execution time for a task, but also at the time needed for 
communication overhead between the master and worker nodes. Again, as you can see from Table 4 the 
majority of a task’s execution time is spent in CPU bound calculations. It should be noted that while 
computation time exponentially decreases with the task count, I/O overhead increases. This shows that in 
theory for large datasets if the task count is too high I/O overhead may actually increase the total execution 
time of Distributed CARE. Unfortunately it was not possible to reach that limit even when utilizing all patients 
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with over 5 diseases. However, it should be considered that medical practices with datasets containing millions 
of patients might be achieving sub-optimal performance by trying to partition the dataset too tightly. 

As an additional note, distributed systems today are becoming significantly more common, and as such 
many controller systems are implementing tools to improve performance of these distributed systems. For 
example WorkQueue algorithm has the ability to cache input files for distribution to worker nodes. As you can 
see in Table 5 enabling caching effectively eliminates all overhead from the master, reducing the need for 
dataset specific optimizations. While there may be diminishing returns on reduced execution time, a practice 
may utilize as many computational resources as available and be confident that they are operating at optimal 
performance levels. 

 

Summary and Recommendations 
 

To recap, this paper has shown the performance limitations of the current CARE algorithm. While 
some claim that an overnight batch execution is sufficient, as it can process a large patient dataset with a high 
degree of accuracy, this method is non-viable for medical usage. Big data providers such as Facebook do utilize 
similar batch events to help with data processing, but the information generated does not have the safety-
critical nature of healthcare data. In the event that a disease is incorrectly recorded, a patient may have to wait 
up to 24 hours to receive updated disease risks. This turnaround time may be unacceptable, especially for time 
critical units. 

In order to solve the issue of computation time this paper has outlined two distinct methods. First a 
single patient version of CARE, which can be utilized to perform disease risk rankings on demand with a fairly 
high degree of accuracy. This method is intended to be utilized in the case above where updated rankings must 
be regenerated due to error, or for a new patient who was not present in the database when the last batch job 
was run. The second method is a distributed computation of the CARE algorithm. This implementation can be 
used to generate on-demand rankings for a single patient with a high degree of accuracy, or executed as a 
nightly batch job on significantly larger patient sets for large practices or hospitals. 

 

 

Future Work 
As stated earlier the current CARE implementation has been licensed to an external entity, and as such 

we cannot comment on any current development efforts. However, in the academic setting we are currently 
investigating the possibility of augmenting the CARE algorithm with additional EMR data. This data aims to 
move beyond ICD-9 disease comparisons and include features such as patient medications and procedures. 
Although the additional features in the data may serve to improve performance, they will further exacerbate the 
issue of computational complexity. Each additional feature will be included as a part of the all pairs comparison 
performed by the collaborative filtering, compounding the exponential runtime, and further reinforcing the 
need for a distributed computing framework such as that introduced in this work. 
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