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Abstract—In today’s healthcare environment, nurses play an
integral role in determining patient outcomes. This role becomes
especially clear in intensive care units such as the Neonatal
Intensive Care Unit (NICU). In the NICU, critically ill infants
rely almost completely on the care of these nurses for survival.
Given the importance of their role, and the volatile conditions
of the infants, it is imperative that nurses be able to focus on
the infants in their charge. In order to provide this level of care
there must be an appropriate infant to nurse ratio each day.
However traditional staffing models often utilize a number of
factors, including historical census counts, which when incorrect
leave a NICU at risk of operating barely reaching, or even below
the recommended staffing level. This work will present the novel
ADMIT (Admission Duration Model for Infant Treatment) model,
which yields personalized length of stay estimates for an infant,
utilizing data available from time of admission to the NICU.

I. INTRODUCTION

It has been well established that the nurse to patient ratio
has a direct relationship to patient morbidity [1], [2]. In fact
earlier studies have shown that this relationship not only
extends from general hospital care to the nurse-infant ratio
in the NICU, but may actually become more pronounced in
intensive care units such as these [3]–[5]. Beyond the obvious
danger of inadequate nurse ratios on infant care, understaffing
presents an additional risk through the inclusion of float nurses.
A float nurse is an attempt to adjust for staffing issues in a
hospital, utilizing nurses from a similar unit that is overstaffed
to work in the at risk unit. For the NICU nurses typically float
from Pediatrics or the Pediatric Intensive Care Unit. However,
the practice of floating has not been well documented and may
present additional issues due to a lack of familiarity with the
patients and procedures of the new unit [6].

Further, unit staffing is not only a critical factor for infant
outcomes, but also for the nurses themselves. The nature of
care in the NICU has been shown to be highly stressful, and
has been shown to be exacerbated in units that experience
continual understaffing [7], [8]. It is important to note that
prolonged stress at this level has been linked to increased job
dissatisfaction and nurse “burn out syndrome” [2], [7].

It is then unsurprising that there has been a substantial
amount of prior research into determining appropriate NICU
staffing levels. Many traditional staffing techniques rely on
features such as historical census count, while newer models
may factor in the architectural features of a particular NICU.
The increased focus on a patient centric atmosphere and
improved family privacy, has led to the architectural redesign

of many NICU units to utilize individual patient care rooms,
colloquially called PODs. Recommendations for each POD
designate a certain number of nurses as a base staffing required
for the unit to operate safely [9], [10]. This then raises the
question, why then are staffing issues so ubiquitous in the
NICU? We believe the answer to this question stems from
the unique care requirements of each infant, and can be
contributed to the failure of traditional staffing models to
accurately address all aspects of the infant’s condition.

Unfortunately both architectural and traditional models fail
to capture the critical acuity aspect of an infant’s condition.
Acuity is a proxy for the level of care each infant requires
based on their condition, and the official staffing ratio guide-
lines published in [11] are based in part on this acuity level.
For example two NICU may each have 20 admitted infants,
but NICU-1 may contain all infants classified as “continuing
care” which require a 1:4 nurse to infant ratio, while NICU-2
may have all “unstable” infants each requiring a 1:1 staffing
ratio. It is clear that no historical model can account for this
degree of granularity, and the problem is once again reduced to
a reactive staffing exercise. Newer more complex models have
been created to account for the volatile nature of the infant’s
conditions. However, as we will see these models suffer from
a period of training lag, making them unusable for anywhere
from 8-30% of the infants admitted to the NICU.

This paper will present a novel length of stay prediction
model dubbed ADMIT (Admission Duration Model for Infant
Treatment). The model is intended to allow charge nurses to
accurately predict a personalized length of stay for each infant
in the NICU. Allowing for significantly simplified staffing
as the required nurse to infant ratio can be determined for
extended periods of time, based on the empirical acuity of the
infant and their modeled length of stay. Further unlike existing
models that as we will see suffer from a training lag, the AD-
MIT model is intended to provide these predictions utilizing
information available at the time of the infants admission.

II. RELATED WORK

While there are currently no prior works focused directly
on utilizing the length of stay for effective unit staffing, there
are works which attempt to predict an infant’s length of stay
in a NICU based on data from electronic health records. These
works present models which employ a variety of machine
learning techniques such as artificial neural networks, linear
and regression mixture models. Each utilizes various clinical
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features such as provider orders, procedures and medications
to produce their predictions [12]–[14].

The issue with these prior works comes not based on their
results, but rather from the types and quantity of information
needed by each model. A closer look at the features utilized
reveals many involve post-admission information, such as
orders placed and procedures preformed. These features are
a result of patient care, and must be generated over a period
of time. This period forces a lapse from the time an infant is
admitted to the NICU, until the point when the models have
sufficient data to provide accurate length of stay predictions.
However our data reveals 30% of all infants were discharged
within 1 week. Thus this lapse then prevents the usage of these
models in short term scheduling.

Further, long before ADMIT or any of the other models
discussed above, hospitals had created their own prediction
techniques. Two of the most well known are the CRIB, and
SNAP models [15], [16]. The CRIB model focuses on features
such as gestational age, and FiO2, whereas the SNAP model
utilizes 26 physiological features such as blood pressure, heart
and respiratory rates. It is important to note that these models
do not directly predict length of stay, but rather produce risk
scores. However, it has been shown by Berry et al. that these
scores can be used as a predictor of the length of stay [17].

In this case an issue arises in that while there may be
a correlation between these scores and the infant’s length of
stay, these models were not created with the intention of being
length of stay predictors. They both perform well for the task
of predicting high-risk infants, but will not obtain the level
of accuracy possible from a specialized model. Additionally
both models make use of data obtained after admission, again
subjecting them to the lag issue described above.

III. DATA

The data used for this analysis was provided as a part of
the Vermont Uniform Hospital Discharge Data Set (VUHDDS)
[18]1. The VUHDDS is a dataset containing inpatient, emer-
gency room and outpatient records of all fourteen of Vermont’s
general acute care hospitals. Each instance in the dataset
represents a single patient and contains 77 features detailing all
facets of the patient’s hospitalization. These features include
method of admission, hospital identifier, up to 19 procedure
and 19 diagnosis codes including the required diagnosis re-
lated group (DRG) and major diagnostic category (MDC).
The diagnoses provided by the VUHDDS are represented
as International Classification of Diseases, Ninth Revision,
Clinical Modification (ICD-9-CM) codes [19]. Further, the
records also contain detailed socioeconomic information, such
as the patient’s home zip code, binned age range, gender and
the principal payment type of their insurance.

1Hospital discharge data for use in this study were supplied by the Vermont
Association of Hospitals and Health Systems-Network Services Organization
(VAHHS-NSO) and the Vermont Department of Financial Regulation (DFR).
All analyses, interpretations or conclusions based on these data are solely that
of the authors. VAHHS-NSO and DFR disclaim responsibility for any such
analyses, interpretations or conclusions. In addition, as the data have been
edited and processed by VAHHS-NSO, DFR assumes no responsibility for
errors in the data due to coding or processing by hospitals, VAHHS-NSO or
any other organization, including the authors

Feature Code Value
Admission Source 15 Newborn Born in this Hospital

Patient Home Zip Code 05401 Burlington
Gender 1 Male

Insurance Principle Payer 6 Blue Cross
Second Diagnosis 7746 Fetal/neonatal jaund NOS

Hospital Healthcare Service Area 2 Burlington
Critical Access Hospital Flag 0 Not a Critical Access Hospital

SCU Days - Class 12 Days in a Special Care Unit

TABLE I: Sample Infant Instance

A. Feature Selection

As this work is focused on the determination of length
of stay from the time of admission many of the 77 features
were removed. Primarily these were related to the patient’s
discharge including discharge status, and the DRG and MDC
codes, as these codes are calculated only after all diagnosis
and procedural information have been collected. Additionally,
as the emergency, procedure and diagnosis codes were not pro-
vided with timestamp information it could not be determined
if any were collected prior to the infant’s admission. As such
all were removed from consideration except for the secondary
diagnosis, justified below. In the end seven features, and one
class value remained, a sample instance can be seen in Table
I. Of the final feature vector 4 of the 7 features pertained to
either the socioeconomic data of either the patient or hospital
itself. This is logical, as this information is the most readily
available at the time of admission. Of the seven features, two
in particular warrant additional consideration.

The Critical Access Flag: Indicates a “limited-service
hospital designed to provide essential services to rural and
frontier communities” [20]. As such these hospitals are likely
not equipped to handle the sickest and smallest newborns. The
infants who need such a level of care are likely born at, or
transported to, a more equipped NICU. For the sake of this
work we assume that the infant is provided the appropriate
level of care at the hospital indicated.

Secondary Diagnosis: While it may appear that we are
violating the claim that the ADMIT model works at the time
of admission by using the secondary diagnosis, we claim that
this is in fact the diagnosis with which an infant would be
admitted into the NICU as the primary diagnosis is typically
related to their type of birth itself, see Table II.

While these codes may be useful for an insurance company,
they are not diagnostically very useful to a NICU. Infants
are admitted directly from labor and delivery or from another
NICU through transfer, and would typically be admitted with
a specific diagnosis. As the primary diagnosis will contain the
birth details, the secondary diagnosis must then contain the
admission diagnosis. In fact the primary diagnosis had only
51 unique values, while the secondary diagnosis presented 525
unique values. For comparison, Table III details the top 3 most
prevalent secondary diagnoses. It is important to note here that
N/a is a legitimate secondary diagnosis, likely indicating no
additional complications to the birth.

B. Infant Data

The infant data was obtained by filtering inpatient records
whose admission type was marked as “newborn”; it should be
noted that the admission source might vary based on whether
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Primary Diagnosis Value

V3000 Single Liveborn Born In Hospital,
Delivered Without Mention Of Cesarean Section

V3001 Single Liveborn Born In Hospital,
Delivered By Cesarean Section

V3101 Twin Birth Male Liveborn, Born In Hospital,
Delivered By Cesarean Section

TABLE II: Top 3 most prevalent primary diagnosis

Secondary Diagnosis Value
N/a No Secondary Diagnosis

7746 Unspecified fetal and neonatal jaundice
76621 Post-term infant

TABLE III: Top 3 most prevalent secondary diagnosis

the infant was born in-hospital or transferred from another
NICU. For this work a total of 28,087 infant records were
aggregated over 5 years of records from 2008 through 2012. As
with all data collected from actual working environments there
were some quality issues. Detailed examination highlighted 26
records with ages in the 20’s or 30’s. This is clearly an error,
and these records were subsequently removed, resulting in total
of 28,061 records used for the remainder of this work. It is
important to note that the VUHDDS does not directly specify
days spent in an NICU, rather the dataset provides two distinct
length of stay metrics, one for total patient days and one for
days spent in Special Care Units (SCU). However we claim the
only unit equipped to treat those patients marked as “newborn”
would be the NICU. Thus the SCU days can be considered a
direct proxy for the days spent in the NICU for each infant.

C. Data Analysis

Critical Care by nature is a heavily imbalanced problem,
with 96.05% of the 28,061 newborns in the dataset spending
0 days in a special care unit (NICU). As stated in prior works,
the length of stay statistics for the remaining 1,108 infants who
were admitted to the NICU are heavily right skewed. Looking
further we can see 8.39% of all infants admitted to the NICU
leave after only a single day under care, this is most likely due
to those infants who are admitted for distress during delivery,
but after observation have no adverse effects.

Additionally, while 1,108 infants may appear to be a small
dataset we can show that this figure is indeed reflective of the
true admission rate. These 1,108 infants came from a total of
28,061 births over 5 years provided by the dataset, averaging
to 5,612.2 births per year captured by the VUHDDS. As a
point of reference in the year 2012 the CDC recorded a total
of 6,009 births in the state of Vermont2. This shows that the
VUHDDS average captured approximately 93.40% of all births
in the state. Additionally as the number of births continues to
grow annually the VUHDDS likely captures a slightly higher
percent of total births on a year-by-year basis. Thus, while the
figure of admitted infants seems low we have no reason to
believe the imbalance is not reflective of the true percentage
of admissions to a NICU.

IV. INITIAL ANALYSIS

We began our evaluation by considering the number of
days admitted to the NICU as a continuous function. Beyond

2http://www.cdc.gov/nchs/data/nvsr/nvsr62/nvsr62 09.pdf

standard regression classifiers we utilized models specifically
created for datasets containing low occurrence high importance
instances, due to the admission length imbalance. The results
from the regression evaluations can be seen in Table VI.

Several of the models performed well demonstrated not
only by their high correlation coefficient to the true length
of stay, but also in their Mean Absolute Error (MAE). The
MAE is a measure of closeness to the true length of stay, and
thus we can see these models consistently produce predictions
within 1 day of the infants true stay duration. However, despite
their demonstrated accuracy, all of the evaluated regression
models produced significant variance within their length of
stay predictions. The Root Mean Square Error (RMSE) is
representative of a models bias-variance tradeoff, and when
used in conjunction with the MAE can be used to discern a
sense of magnitude for the variance. As seen in Table VI the
RMSE is substantially larger then the MAE, which indicates
that the result includes a large variance3. As with MAE, RMSE
is provided in the same units as the length of stay, indicating a
variance on the order of multiple days. This range of variance
effectively renders these models useless in a clinical setting.

As a result it became clear that we required a fundamental
shift in our consideration of the length of stay problem. Prior
work by Torgo et al. has detailed the use of set intervals
to transform a regression problem into discrete classes on
which to learn a classification model [21]. However, while
they transform the data back before evaluation, we maintain the
discretized data for evaluation step. We began with the most
fundamental transformation, treating each day as a discrete
class. Not only does this involve the most direct transformation
process, it also yields the most detailed estimate of the number
of days an infant will spend in a NICU.

V. MODEL DESIGN

The ADMIT model utilizes an augmentation of the Ada-
Boost algorithm, known as LogitBoost [22]. It is trained on
all 28,061 infants, using the reduced 7-feature dataset. The
decision to utilize LogitBoost over the standard Ada-Boost
algorithm was based on consideration of each algorithm’s
loss function [23]. While similar, an added logistic term in
LogitBoost performs a “dampening” effect during the feature
reweighing. As boosting ensembles are designed to utilize
weak classifiers in an iterative fashion, at each iteration the
training instances are dynamically reweighted based on the
incorrect predictions from the prior iteration. Due to the imbal-
anced nature of the length of stay problem it is likely that the
base classifier will initially perform poorly. However without
the logistic dampening, the standard Ada-Boost has been
shown to potentially reweight these instances too aggressively,
actually decreasing the overall performance [24], [25].

The base learner utilized by the ADMIT model is the
decision stump, as the branching step does not rely on
any particular distance measure. This becomes particularly
important when utilizing features such as ICD9-CM codes,
which have no inherent concept of distance. While it is true
these codes are grouped by related condition, codes 460-519
(diseases of the respiratory system4) are not more or less

3http://www.eumetcal.org Mean Absolute Error & Root Mean Squared Error
4http://www.health.gov.bc.ca/msp/infoprac/diagcodes/
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Fig. 1: ADMIT Model - Parameter Tuning

similar to those groups in either direction. ICD-CM codes 390-
459 represent diseases of the circulatory system, while codes
520-579 represent diseases of the digestive system.

Finally unlike more complex algorithms such as Support
Vector Machines (SVM), LogitBoost has only three main
parameters that directly effect performance. These are the
number of boosting iterations, weight threshold and shrinkage
parameter. Optimal values of 30, 100 and 1 respectively were
confirmed through evaluation of AUROC, seen in Figure 1.

VI. RESULTS AND ANALYSIS

It is important to note that 5-fold cross-validation was used
for all evaluations. The decision to utilize 5, over 10-fold was
a result of the data imbalance. As the majority of infants
are not admitted to the NICU, increasing the fold count and
thus decreasing the hold-outset size, would result in each fold
containing a larger percentage of non-admitted infants and thus
skewing the results [26].

A. Classification Models

In addition to the evaluation of the ADMIT model we
compared our analysis against a representative set of classi-
fication models, representing three main categories. Firstly we
included common baseline models such as Naive Bayes and
C4.5. Secondly, models which focus on non-linearly separable
data such as SVM. Finally as with the regression models, those
that have been proven effective on imbalanced and noisy data
such as Ada-Boost and Random Forrest. The results from all
classification model evaluations can be seen in Table VII.

Analysis: An initial observation was the substantially re-
duced MAE and RMSE, indicating a much improved error
bound over the prior regression models. Looking further, the
effectiveness of Random Forest and Naive Bayes indicated
some degree of noise within the dataset, but interestingly the
typically high performing SVM produced results equivalent to
a random classifier. This may be a result of SVM’s reliance
on a Euclidian distance metrics, which have been shown to
perform sub-optimally on imbalanced data [27]. However,
with the distance invariant decision stump as the base learner
it was surprising that Ada-Boost performed so poorly. As
mentioned above, literature suggests this it could be a result
of an overfitted model due to aggressive instance reweighting.
This is supported by the overall performance of the ADMIT
model found at the bottom of Table VII.

Class ROC Area Class ROC Area
0-7.071 0.980 49.500-56.571 0.965

7.071-14.142 0.947 56.571-63.643 0.946
14.142-21.214 0.958 63.643-70.714 0.931
21.214-28.286 0.961 70.714-77.786 0.867
28.286-35.357 0.962 77.786-84.857 0.951
35.357-42.429 0.981 84.857-91.929 0.759
42.429-49.50 0.954 91.929-99 0.939

Avg. AUROC 0.979

TABLE IV: Weekly Discharge Performance - ADMIT

Feature Correlation Value
Critical Access Hospital Flag 0.106

Second Diagnosis 0.053
Healthcare Service Area 0.038

Zip Code 0.026
Sex 0.012

Principle Payer 0.010
Admission Source 0.007

TABLE V: Pearson’s Correlation Results

Our next step was to demonstrate the generalizability of the
ADMIT model by evaluating the performance over larger class
intervals. We created another transformation increasing the
interval size from a single day to represent weekly discharges,
which resulted in 14 distinct classes. The results for each class
are detailed in Table IV. Finally, we conducted a correlation
analysis to ensure that none of the features contained latent
information correlated to the length of stay in the NICU. The
analysis utilized the Pearson’s correlation, and the results can
be seen in Table V. With a value of only 0.106 even the
highest correlation fails to indicate any significant influence
over the number of days an infant will spend in the NICU,
again demonstrating the effectiveness of the ADMIT model.

VII. CONCLUSION

To recap, this work provides a tool to aid in the dynamic
requirements of NICU nurse staffing. Used in conjunction with
an infant’s acuity level the ADMIT model will allow charge
nurses to gain a deeper understanding of the future staffing
requirements, utilizing each infant’s personalized expected
length of stay. The results show the ADMIT model performs
well, and has been evaluated on a representative dataset,
spanning 5 years and incorporating 14 hospitals located in 13
different locations within Vermont. This model will hopefully
aid in furthering the overarching goal of improved quality of
care and patient safety.
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Model Correlation Coefficient Mean Absolute Error Root Mean Squared Error
Linear Regression 0.712 1.008 4.036

Regression Additive Regression 0.683 0.904 4.195
Reduced Error Pruning 0.719 0.729 4.019
M5- Regression Tree 0.723 0.754 3.966

Tree Based Models M5- Model Tree 0.744 0.716 3.847
Nearest Neighbour KNN 0.5318 0.862 4.957
Rule Based Models M5-Rule Learner 0.746 0.715 3.835

TABLE VI: Regression Model Performance

Model Average AUROC Mean Absolute Error Root Mean Squared Error
Naive Bayes Naive Bayes 0.923 0.001 0.026

SVM - Radial Kernel 0.500 0.020 0.099
Support Vector Machine SVM - Polynominal Kernel 0.577 0.020 0.020

Reduced Error Pruning 0.499 0.001 0.0268
Tree Based Models C4.5 0.499 0.001 0.027
Nearest Neighbour KNN 0.911 0.001 0.027

Ripper 0.514 0.001 0.027
Rule Based Models PART 0.932 0.001 0.025

Ada-Boost - Decision Stump 0.586 0.016 0.080
Ensemble Methods Random Forrest 50 Trees 0.939 0.001 0.026

ADMIT 0.971

TABLE VII: Classification Model Performance
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