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Abstract
In line with the current trajectory of healthcare reform, significant emphasis has been placed on improving the utilization of 
data collected during a clinical encounter. Although the structured fields of electronic health records have provided a con-
venient foundation on which to begin such efforts, it was well understood that a substantial portion of relevant information is 
confined in the free-text narratives documenting care. Unfortunately, extracting meaningful information from such narratives 
is a non-trivial task, traditionally requiring significant manual effort. Today, computational approaches from a field known 
as Natural Language Processing (NLP) are poised to make a transformational impact in the analysis and utilization of these 
documents across healthcare practice and research, particularly in procedure-heavy sub-disciplines such as gastroenterology 
(GI). As such, this manuscript provides a clinically focused review of NLP systems in GI practice. It begins with a detailed 
synopsis around the state of NLP techniques, presenting state-of-the-art methods and typical use cases in both clinical set-
tings and across other domains. Next, it will present a robust literature review around current applications of NLP within 
four prominent areas of gastroenterology including endoscopy, inflammatory bowel disease, pancreaticobiliary, and liver 
diseases. Finally, it concludes with a discussion of open problems and future opportunities of this technology in the field of 
gastroenterology and health care as a whole.
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Introduction

Fostered by the current trajectory of healthcare reform and 
widespread adoption of electronic health records (EHR), the 
availability of large repositories of digital health and well-
ness data have given rise to lofty expectations around the 
future of medicine in the age of Big Data. Although notable 
progress has been made in the areas of predictive analyt-
ics and personalized medicine, the complexity of clinical 
workflows and patient care has presented several notable 
barriers to the effective utilization of analytical methods in 

practice. Among the most prominent is the understanding 
that, to date, many analytical methods operate on an incom-
plete set of patient data.

Technical constraints of the algorithms underlying many 
state-of-the-art methods often require that data be discretely 
coded and represented in a standardized vector, or matrix 
format. As a result, such methods have relied heavily on clin-
ical billing codes, medication lists, lab procedures, or, even 
in the most advanced systems, extensive lists of discretely 
captured clinical events. Yet, from a clinical perspective, it 
is well understood that much of the defining information 
regarding a patient’s condition is captured not within dis-
crete fields, but in the narrative style “clinical note” [1]. In 
fact, recent work has found that even for data traditionally 
viewed as highly distinct, e.g., laboratory and medication 
records, a significant portion of relevant information may 
only be available as part of clinical text [2].

Unfortunately, knowledge of where such rich information 
exists has not translated to the development of more effec-
tive analytical tools. As extraction of the necessary struc-
tured data from within the unstructured free-form EHR, text 
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embodies a well-established challenge, one in part stemming 
from extremely specialized terminologies, and high degree 
of variability across the structure of content of each note and 
across differing institutions and practitioners [3–6]. While 
manual annotation by a clinical expert remains a gold stand-
ard in the attainment of such data, the approach has become 
impractical across the ever-growing volumes of available 
data on which these algorithms operate [7]. Rather, research-
ers have turned to translational methods, exploiting a sundry 
of automated computational methodologies from a domain 
formally known as Natural Language Processing (NLP).

Representing an intersection of linguistics and statistical 
modeling, NLP techniques offer a means to perform com-
plex low-level language tasks including entity recognition 
(e.g., identifying medications, procedure names, locations), 
relation detection (e.g., linking dosages to a specific medi-
cation), as well as high-level grouping techniques such as 
topic modeling to identify themes in text. Consequently, the 
notion that NLP methods could be used to efficiently process 
clinical text has existed for almost four decades. However, 
only recently has the increasing availability of digitalized 
clinical text documents aligned with improved computa-
tional resources and advancing NLP methods to make sub-
stantial progress in that goal [8–10].

Today, with demonstrated success in use cases spanning 
dictated examination notes, to automatic detection of new 
symptom patterns, NLP is poised to make a transformational 
impact on the field of health care, particularly in procedure-
heavy sub-disciplines such as gastroenterology (GI). As 
such, this manuscript aims to provide a clinically focused 
review of NLP systems in GI practice. To do so, it will begin 
with a detailed overview around the state of NLP techniques, 
presenting state-of-the-art methods and typical use cases in 
both clinical settings and across other domains. Next, it will 
then present a robust literature review around current appli-
cations of NLP within four prominent areas of GI practice 
including endoscopy, inflammatory bowel disease (IBD), 
pancreaticobiliary, and liver diseases. Finally, it concludes 
with a discussion of open problems and future opportunities 
of this technology in the field of gastroenterology and health 
care as a whole.

Natural Language Processing

Dating back to the 1950s for use in automated language 
translation, the theory of NLP has since been shown to be 
highly adaptable, finding utility across numerous domains 
and applications in modern society [11]. Prominent exam-
ples include keyword and phase processing for information 
retrieval in search engines and databases [12], speech rec-
ognition technologies [13], question-and-answer tools such 
as smart assistants [14], and the automated summarization 

of lengthy text documents [15]. While the algorithms and 
end-products across such applications are highly distinct, 
the underlying NLP methodologies that provide structured 
data necessary for these tools to operate remain fairly con-
sistent. Often viewed as a pipeline, originating with the raw 
unstructured text and ending with discrete elements, NLP 
techniques can be viewed as encompassing a breadth of both 
syntactic and semantic language tasks.

Syntactic Text Analysis

The process often begins from a syntactic perspective, with 
a focus on isolating distinct terms, where the complete body 
of a text document is broken down into unique paragraphs 
or sentences (a process known as segmentation) and then 
further into individual words (known as tokenization). 
Depending on the application, these terms (or tokens) are 
traditionally subjected to various forms of structural and 
morphological normalization, processes that aim to stand-
ardize differences caused by grammatical considerations 
such as inflection in number, tense, gender, person, and 
case. Further normalization of capitalization, punctuation, 
abbreviations, and spelling correction is also common in 
the effort to standardize the diverse terminology within the 
original text.

By enumerating the resulting set of “clean” tokens as a 
single wide vector for each document, where each feature 
represents a unique token as either raw counts or in more 
complex weightings such as term frequency and inverse doc-
ument frequency (tf–idf), it is possible to obtain a basic form 
of structure on which machine learning tools can operate 
[12, 16]. This structure provides a direct means to: build pre-
dictive models (such as spam classification [17]), machine 
translation (e.g., English to Spanish [18]), and even develop 
topical representations of text (e.g., automatically grouping 
themes of articles published within scientific journals [19]).

Semantic Text Analysis

Beyond the enumeration of terms, many state-of-the-art 
NLP techniques seek to provide a more nuanced form of 
structure, by extracting meaningful semantic relations from 
the raw unstructured text. To do so, methods often employ 
linguistic structure analysis. Again taking “cleaned” tokens, 
the process begins by going just slightly beyond simple syn-
tactical analysis, utilizing a probabilistic model to label each 
token with its respective part-of-speech in each sentence. 
Trained on massive corpuses of annotated text, these models 
have been shown to be incredibly accurate and exist for a 
multitude of different languages [20, 21].

Based on the resulting labels, and known grammatical 
rules of a respective language, parse trees can be constructed 
for each sentence, together forming a foundation on which 
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several common methodologies act. Most commonly these 
include a form of Named Entity Detection, where specific 
persons, organizations, products, geographies, and other 
well-known objects, events, or quantities are recognized 
within the discrete tokens, e.g., labeling Apple as a com-
pany, iPhone as a product, and 2019 as year in the sentence: 
Apple released 3 new iPhones in 2019 [22]. Finally, at the 
conclusion of the modern NLP pipeline we find Depend-
ency parsing and Relation Detection, where relationships 
between the named entities are formalized, allowing us to 
link complex phenomena such as cost of a product to the 
product name, or time and location [23]. Recently, modern 
graph-based methods have combined and extended these 
final two steps to include entity-linking, a form of word 
disambiguation allowing researchers meaningful separate 
similarly named entities based on context (e.g., recogniz-
ing that Apple is a company and not the fruit in the above 
example) [24].

State‑of‑the‑Art Text Analysis: Embedding 
Representations

This pipeline has repeatedly demonstrated clear value and 
has become a standard in many disciplines. Yet, it has 
become clear the diverse nature of writing has furthered 
notion that syntax alone cannot be wrangled into a cohesive 
array of terms, as such a process overlooks the existence 
of synonyms or other semantically similar entities that are 
pervasive across text from different sources and individuals. 
Consequently, state-of-the-art NLP methods have emerged 
focused on semantic similarity between words in the form 
of embeddings. By learning the relationship between term 
ordering, these models provide a vector representation for 
each term such that interchangeable or semantically similar 
entities are numerically close together. Primarily used for 
improving syntactically focused models, embeddings tech-
niques have provided a significant boost in modeling tasks, 
including opinion/sentiment analysis, information retrieval 
tasks including relevance ranking, and improvements to 
speech recognition [25–27].

Although outside the scope of this review, the processes 
used to create these embeddings commonly rely on neu-
ral network architectures and require massive repositories 
of available text (such as the entire body of Wikipedia) 
to learn accurate relationships. Recently, this concept has 
been expanded, allowing for singular representations of full 
sentences, paragraphs, or even entire documents [28]. Con-
versely, researchers have also begun work to capture rela-
tionships at a much more granular level, not only between 
the series of terms, but between the specific characters 
that comprise each token. Known as character or byte-pair 
embeddings, these new methods present a great opportunity 

for text limited domains, or domains with highly specialized 
vocabularies that may prove difficult to model [29–31].

Evolving Utility of Natural Language 
Processing in Health Care

As we look to the multitude of available NLP methods, it is 
important to remember the efficacy of such techniques has 
conventionally been predicated on the availability of large 
text repositories; over which stochastic models (part-of-
speech taggers, entity recognition, embedding representa-
tions, etc.) could be accurately trained. It is then unsurpris-
ing that widespread transition from paper documentation to 
electronic health records has fostered a great deal of interest 
in studying the implications of applying these techniques to 
clinical text problems [32, 33].

Specifically, with workflows that place a significant 
emphasis on procedural or operational reports, fields such as 
radiology and oncology have led the way in adoption of NLP 
techniques. To date, several reviews have highlighted suc-
cessful NLP applications for diseases or clinical outcomes 
prediction (pulmonary embolism, tuberculosis, fractures, 
and several forms of cancer and their respective stages), 
decision support tools that aid practitioners through remind-
ers or recommendations (e.g., need for additional imaging), 
QI initiatives to understand division workflows, and even 
improved cohort identification for use in epidemiologic stud-
ies [34–36]. Further, the utility of NLP for healthcare tasks 
has continued to expand to other areas including bio-surveil-
lance for influenza outbreaks, identification of postopera-
tive complications, and automated code assignment [37–39]. 
Finally, emergent NLP applications in health care have 
begun to extend beyond the confines of practitioner-curated 
data. Most pointedly in the field of mental health, where 
researchers have looked to less conventional sources of text, 
such as social media and online forum posts to achieve early 
detection of depression or suicidal ideation [40, 41].

Clinical Tools for NLP

Notably, challenges in developing these and other NLP 
methodologies to addressing problems across the clinical 
domain have stemmed not only from the historically limited 
availability of data, but also from the complexity of clini-
cal text itself. Rife with abbreviations, nonstandard uses of 
common terms, multiple phrasing and codings for the same 
components, and complex relational dependencies between 
elements, clinical text presents a unique array of challenges 
to the standard language models used in traditional NLP 
[42].
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Recognizing this, the National Library of Medicine 
(NLM) has undertaken a significant effort to facilitate the 
development of tools specifically designed for the unique 
properties of biomedical text. Known as the Unified Medi-
cal Language System (UMLS), the NLM maintains three 
distinct tools (Metathesaurus®, semantic network, and 
SPECIALIST NLP Tools) [43]. At a fundamental level, the 
SPECIALIST NLP Tools represents a set of low-level NLP 
methodologies (part-of-speech taggers, entity recognition 
and normalization models, etc.) trained on an extensive 
biomedical lexicon to aid with text analysis tasks. However, 
these tools are limited in their generalizability, particularly 
in addressing terms that are syntactically difficult to coalesce 
but are semantically related (e.g., Hematochezia: bright red 
blood per rectum, or Dysphagia: swallowing difficulties).

This form of higher-level standardization often requires 
curated ontologies to group related terms, instruments found 
within the two remaining UMLS tools. Drawing on over 
one million biomedical concepts from nearly 200 source 
vocabularies, the Metathesaurus represents a means to link 
alternative names of the same concept (e.g., Linitis plastica, 
diffuse stomach cancer, Brinton’s disease) and map between 
various coding systems and focused ontologies (SNOMED, 
ICD-9-CM, MeSH, etc.), The semantic network in turn pro-
vides a further “Upper-level ontology” categorization of all 
UMLS concepts, capturing over 100 semantic types (e.g., 
cell function, neoplastic process, virus) and 54 qualifiers 
(e.g., interacts with, treats, affects) to allow for improved 
relationship mapping between concepts [44]. Moreover, in 
line with trends across the NLP field, semantically focused 
emergent work has provided state-of-the-art embeddings 
specifically designed on biomedical vocabularies: Examples 
include BioWordVec and PMCVec (both trained across the 
titles and abstracts from all the 27 million documents in Pub-
Med database) [45, 46]. Together with these and other emer-
gency tools, practical NLP applications have been utilized 
in a myriad of research and practice settings ranging from 
EHR phenotyping to automated discovery of new medical 
ontologies [47, 48].

Current Applications of NLP in Digestive 
Diseases

Together with increased documentation, the tools have 
provided a means to rapidly advance the uptake of NLP 
methodologies across several clinical specialties and sub-
specialties, including that of gastroenterology.

NLP was initially used in the field of gastroenterology in 
1984 when a database system was developed by integrating 
gastrointestinal radiologic, endoscopic, and pathologic stud-
ies using a natural language format. Easy retrieval of data on 

a given patient was made possible allowing intercorrelative 
studies among radiology, endoscopy, and pathology [49].

While GI is considered a procedure-heavy domain, gas-
troenterology specialty societies have emphasized on the 
importance of maintaining high-quality performance during 
procedures and routinely assessing certain quality metrics. 
Such routine measurement has been hampered by the costs 
and time required to manually review and assess compliance 
with quality measures. In addition, GI is a rapidly evolving 
field, and as a result, many procedures, state-of-the-art thera-
pies, and diagnosis lack specific ICD codes making data-
base research challenging and often inaccurate. Therefore, 
Natural Language Processing appears particularly promis-
ing in gastroenterology offering the potential to address the 
above issues along with several other applications in this 
field. Multiple studies have utilized NLP covering a wide 
spectrum of digestives diseases including endoscopy, inflam-
matory bowel disease (IBD), pancreaticobiliary, and liver 
diseases.

Review Methodology

Electronic database searches were conducted using Medline, 
Ovid EMBASE, and Google Scholar through June 2019. 
The search terms were “Natural Language Processing” and 
“gastroenterology OR digestive diseases OR endoscopy 
OR hepatology OR IBD (Inflammatory bowel diseases) OR 
pancreaticobiliary diseases.” Our search yielded 652 results. 
Abstracts were screened and articles discussing applications 
of NLP in GI were included. We included articles written 
in English and excluded articles unrelated to NLP. Our final 
review included 40 studies utilizing NLP applications in the 
field of gastroenterology.

Endoscopy

Colonoscopy is a high-volume procedure used routinely for 
colorectal cancer (CRC) prevention. There is considerable 
variation in the quality of the procedure among different 
endoscopists, and lower quality has been linked to increased 
cancer incidence [50–53]. The American Society of Gastro-
intestinal Endoscopy (ASGE) published a list of 15 quality 
indicators to improve safety and performance of colonos-
copy [50], and experts have called on providers to routinely 
report on their colonoscopy performance [54]. However, 
manually extracting data pertinent to colonoscopy quality 
is difficult as it is often imbedded as unstructured text within 
health records leading to very few physicians reporting their 
quality metrics [55]. In addition, manual data extraction is 
not free of error. In fact, in a multicenter Veterans Health 
Administration (VHA) study, the error rate was not statis-
tically significant between the NLP program and certified 
gastroenterologists (25.4% vs. 21.1%, respectively, p = 0.07) 
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[56]. In addition, currently used endoscopic software can 
provide data on a limited number of quality measures. Given 
the time-intensive nature of manual medical record review, 
several studies have demonstrated the feasibility of NLP in 
extracting colonoscopy specific quality metrics with > 90% 
accuracy [56–60]. Quality indicators accurately extracted 
using NLP include screening indication, family history of 
CRC, cecal intubation rate, adequacy of bowel preparation, 
and presence and location of polyps [61]. A common qual-
ity measure implemented is the “adenoma detection rate” 
(ADR) defined by the proportion of screening colonoscopic 
examinations performed by a physician that detect one or 
more adenomas. Both Natural Language Processing and 
manual review produced comparable values for ADRs in 
multiple studies [57, 58, 62, 63]. By using a NLP program, 
Marcones et al. reported that the ADR and withdrawal time 
worsened by the end of the day after analyzing more than 
80,000 colonoscopies [64]. Patel et al. [65] used a NLP tool 
and found that a longer mean withdrawal time of 11 min 
resulted in statistically significant increase of ADR and 
proximal polyp–serrated detection rate. Moreover, public 
reporting of colonoscopy quality was associated with a 
higher ADR [66]. A NLP system was used to analyze out-
patient colonoscopy examinations to determine physician 
characteristics associated with higher ADR [67]. Hakerma 
et al. evaluated multiple colonoscopy-related quality meas-
ures based on gastroenterology society recommendations 
by using an NLP engine that extracts 21 variables for 19 
quality metrics from free-text pathology and colonoscopy 
reports. The average accuracy was 0.89, and the average 
agreement score (Cohen’s K) was 0.62 [59]. With further 
refinement and development, such system can be used on 
a substantially larger scale for routine quality measurement 
of several metrics.

A fully automated system using NLP technology and 
guideline-based clinical decision support (CDS) was accu-
rately used to predict colonoscopy surveillance intervals by 
analyzing more than 10,000 reports and comparing them to a 
manually reviewed sample (Cohen’s K = 0.74 consistent with 
substantial agreement between manual review and CDS sys-
tem). Similar to the ADR, a fully automated system would 
allow tracking of another quality metric that is less likely 
to be manipulated by the individual provider and compare 
adherence rates to surveillance guidelines between provid-
ers. This would help justify costs and allow for education in 
proper surveillance intervals.

An NLP tool allowed to analyze more than 100,000 
colonoscopy and pathology reports in a multicenter study 
to determine that gastroenterology specialization, more 
recent completion of training, and greater procedure vol-
ume are associated with serrated–polyp detection [68]. By 
analyzing a substantial number of reports, NLP increased 
the strength of the analysis leading to more precise estimates 

while requiring less manual review. This technology was 
also used to measure the variation in pathologist’s interpreta-
tion of colorectal adenomas and serrated polyps by evalua-
tion 85,526 reports [69].

NLP can also be used to generate prediction models in 
endoscopy. Hong et al. [70] developed a five-item prediction 
model to determine the risk of advanced colorectal neoplasia 
at the first screening colonoscopy by means of NLP from 
the EHR system (AUC 71.6%), while Blumenthal et al. [71] 
developed a model predicting future non-adherence with 
outpatient colonoscopy (AUC 70.2%).

Besides colonoscopy, NLP algorithm was highly accurate 
in identifying dysplasia in Barrett’s esophagus with 97.1% 
accuracy and 93.6% precision [72].

Inflammatory Bowel Diseases

The diagnosis of IBD and other outcome variables is chal-
lenging based on diagnosis and procedure billing codes 
who are often inaccurate or lacking altogether. Therefore, 
IBD database research has been limited by the absence of 
administrative codes for key disease-related variables. Natu-
ral Language Processing was used to address these issues by 
identifying data within text reports.

One example is the absence of diagnostic or billing codes 
to identify patients with non-cancer dysplasia making the 
follow-up of large cohorts of IBD patients with dysplasia 
difficult. After creating a validation cohort using a manually 
reviewed random sample, Hou et al. identified colonic dys-
plasia in a VHA cohort with IBD using NLP with an accu-
racy of 97.1% for the detection of low-grade dysplasia. This 
can help to further study the natural history and outcomes 
of colonic dysplasia IBD patients [73]. In another study, 
narrative concepts using NLP were successfully utilized 
with codified data to enhance case definition of ulcerative 
colitis and Crohn’s disease with an accuracy of 94% and 
95%, respectively, compared with 91% and 92% when using 
codified data alone, allowing for efficient analysis of large 
IBD cohorts [74].

Medication side effects, such as arthralgia, are not 
coded by gastroenterologists, while joint pain, if present, 
is usually mentioned in their notes. NLP was used to iden-
tify the notes stating if the patient had joint pain, allowing 
to compare the prevalence of arthralgia between patients 
on vedolizumab and those on anti-TNF inhibitors. Per-
formance characteristics were better for NLP than ICD9 
codes in identifying patients with arthralgia with a PPV 
and sensitivity of 90% and 83% for NLP compared to 79% 
and 52% for ICD9 codes, respectively [75]. Same applies 
to endoscopy in IBD, where the absence of procedure 
codes for surveillance and non-surveillance colonoscopy 
limits the use of available registries in researching surveil-
lance practices and related quality measures. Automatic 
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Retrieval Console (ARC) is a software that uses NLP pipe-
lines to breakdown documents into structured fragments of 
text based on parts of speech, negated terms, and a library 
of medical and non-medical terms. In a VHA study, ARC 
was able to reliably perform document classification of 
surveillance and non-surveillance endoscopy with a speci-
ficity of 88% and sensitivity of 77% [76].

Stoma-related complications from IBD surgeries dif-
fer dramatically by stoma type between ileostomies and 
colostomies. Using solely CPT (Current Procedural Ter-
minology) codes to differentiate between the two types of 
stoma had poor sensitivity (35% for ileostomy and 75.2% 
for colostomy). Incorporation of an NLP-based software 
increased sensitivity to more than 95% [38]. Accurately 
identifying these outcomes and many more in IBD using 
NLP may open new opportunities for database research 
in this field by allowing EHR-based determination of 
variables.

Pancreaticobiliary Diseases

ERCP remains the highest risk endoscopic procedure widely 
used in practice [77]. Given the proven efficacy of NLP in 
quality measures in colonoscopy as described previously and 
the impact of colonoscopy feedback on ADR, Imler et al. 
extracted ERCP quality measures from 23,674 procedures 
over an 8.5-year period using NLP and compared them to 
society guidelines and across providers. The accuracy of 
NLP to identify 13 ERCP quality measures ranged from 
90 to 100% compared to a manually selected sample with 
intraprocedure measures having lower values [78]. This 
may guide quality improvement in advanced endoscopy 
and identify providers who are not meeting society-endorsed 
benchmarks. At present, there is no standard nationwide pro-
gram or system to identify patients with pancreatic cysts 
and current practices rely on individual practitioners and 
their use of manually entered patient databases. Intraductal 
papillary mucinous neoplasms (IPMNs), one of the most 
common pancreatic cysts with malignant potential, may 
not always be identified, tracked, and treated optimally. A 
NLP system used to identify IPMNs from a patient database 
outperformed a manually maintained surgical registry with 
sensitivity of 97.5% and positive predictive value of 95.5% 
[79], while Merhabi et al. [80] efficiently identified pancre-
atic cysts from medical reports using multiple NLP-based 
concepts with recall of 97.4% and precision of 98.5%. This 
could open the door to additional applications of NLP in 
pancreaticobiliary diseases such as implementing a surveil-
lance program that automatically detects new pancreatic 
cysts as they are discovered or the ability to recognize con-
comitant conditions such as patients with pancreatic cysts 
who develop new or worsening diabetes mellitus.

Hepatology

Kung et al. [81, 82] used a NLP algorithm that included lab-
oratory data, radiology reports, and clinic notes to increase 
the sensitivity identification of patients with cirrhosis com-
pared to commonly used noninvasive markers. A NAFLD 
(nonalcoholic fatty liver disease) identification algorithm 
was also created using NLP and was superior to an algorithm 
using ICD-9 data alone (AUC of 0.85 vs. 0.75, p < 0.0001) 
[83]. Hepatocellular adenomas were also identified with 
high accuracy with similar methods [57]. Sada et al. [84] 
identified patients with hepatocellular carcinoma by using 
pathology reports from VHA database with significantly 
increased positive predictive value compared to diagnosis 
codes alone (97% vs. 68%, respectively).

In a national retrospective VHA database, NLP was used 
in an effort to identify patients diagnosed with hepatorenal 
syndrome (HRS), an acute condition that is more challeng-
ing to identify with NLP than chronic conditions that typi-
cally have much higher data density. Improved phenotyping 
of HRS was noted using NLP over ICD-9 codes [85].

Imler et al. [86] used NLP as a potential tool to predict 
patients who will be susceptible to alcohol abuse in order 
to offer intervention before their disease leads to cirrhosis.

Practice Implications

In brief, studies to date have demonstrated that NLP can be 
successfully utilized in extracting endoscopy quality metrics 
and analyzing factors associated with better value leading 
to quality improvement initiatives. In addition, prediction 
models for several GI diseases and outcomes can be devel-
oped with the assistance of NLP systems and colonoscopy 
surveillance intervals can be accurately predicted. Narra-
tive concepts could be used to enhance case definition for 
GI disease-related variables that lack administrative codes 
opening new opportunities for database research. Moreover, 
NLP can also be used as a surveillance program for early 
identification of conditions that may have otherwise gone 
unnoticed.

Future Applications of Natural Language 
Processing

The future of NLP consists of routine use of software appli-
cations to extract key information from unstructured data 
for both clinical research and quality improvement [87]. 
Once the NLP is set up, it can review thousands of records 
quickly and provide accurate reports. Incorporation of these 
tools across multiple centers may permit tracking of quality 
measures through national registries and provide feedback to 
providers, administrators, and payers in order to demonstrate 
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adherence to national benchmarks and would constitute the 
basis of quality improvement initiatives. Natural Language 
Processing potentially can be used for reporting quality met-
rics to the Centers of Medicare and Medicaid services for 
national benchmarking. Such programs have the potential to 
significantly reduce the burden on practitioners in reporting 
quality metrics in a timely, low-cost, and accurate matter. 
In fact, NLP linked to clinical decision support software 
was more accurate in determining colonoscopy surveillance 
intervals than expert gastroenterologists [88]. This can help 
in monitoring both overuse and underuse of colonoscopy 
and may reduce inappropriate referral for open access endos-
copy. As many quality metrics are currently only based on 
billing and administrative data, incorporating NLP tools to 
efficiently extract information from EHRs may be better able 
to reflect the quality of care in complex conditions such as 
IBD. In addition, many studies that were thought to be pro-
hibitively expensive when using a manual data extraction 
method would be feasible. Another area with potential for 
future applications is the integration of NLP into clinical 
decision support systems. CDS requires not only patient-
specific information extracted from the EHR but also medi-
cal knowledge regarding best practices in diagnosing and 
treating a range of conditions. Consequently, advanced NLP 
systems are needed to find and formally present publications, 
guidelines, and actionable recommendations. The ideal sys-
tem will have an NLP module that monitors the EHR for 
insertion of new data into specific fields. For example, when 
a patient presents to the hospital for upper gastrointestinal 
bleeding and data are entered into the EHR, the NLP system 
will extract information and look-up decision rules such as 
the Glasgow–Blatchford score in order to identify patients 
who can be safely discharged and others who will likely 
require early medical intervention. Furthermore, the system 
can identify patient-specific transfusion thresholds based on 
comorbidities among other specific interventions required. 
These advanced NLP systems will be able to process text 
and document types ranging from informal notes typed to a 
patient’s records from multiple providers and incorporated 
to highly structured peer-reviewed publications in scientific 
journals.

An NLP–CDS system can assist on an administrative 
level, as an integrated NLP system will be able to automati-
cally map endoscopy reports and assign appropriate ICD 
codes for financial, and analytical purposes. A NLP has also 
the potential to streamline prior authorizations. “Next-gen-
eration” electronic prior authorization will become a deci-
sion support tool with the incorporation of evidence-based 
algorithms and machine learning. The algorithmic programs 
factor in the therapy policy and restrictions, gather patient-
specific data, and outcomes of patient populations with simi-
lar characteristics to present the prescriber with therapy rec-
ommendations. Selection of one of these recommendations 

triggers automatic prior authorization approval. This would 
be particularly of benefit in IBD where prior authorization 
burden is linked to treatment delays, disease progression, 
and patient suffering [89].

Another advantage of NLP is that it may help providers 
in using natural language in patient care documentation, as 
structured note systems force providers to create unnatural 
and overly structured notes which take extra time and are 
hard to read [90, 91]. Future NLP systems will decrease 
the workload on healthcare providers through automatic 
text summarization. This consists of automatically sum-
marizing multiple records to produce a concise and fluent 
summary. This is generated through extractive methods that 
work by identifying important sections of the text and gen-
erating them verbatim, and more importantly abstractive 
methods that generate a new shorter text that conveys the 
most critical information [92]. For example, when a patient 
with extensive history of Crohn’s disease presents for a new 
clinic visit, automatic text summarization can effectively 
condense the high-yield information required for a treatment 
plan including previous therapies, endoscopy reports, and 
immunizations records. Another technology that will fur-
ther NLP is continuous voice recognition. Integrating voice 
recognition software with a NLP system will substantially 
enhance its functionality and enable physicians to dictate 
their report while the natural processor translates the report 
into a structured encoded form [93]. Ambient virtual scribes 
can interpret the physician’s narrative, use NLP to parse the 
information, detect structured data, assign the necessary 
ICD-10 code, and prepare orders and electronic prescrip-
tions for sign-off.

In the research domain, NLP may have a role in enhanc-
ing the efficiency of physician decision-making in clinical 
trial enrollment by reducing the pool of potential candidates 
for screening and increasing the efficacy of trial–patient 
matching. This has the potential to significantly reduce the 
effort to conduct clinical research and expand both access to 
trials and number of trials available [94]. The pharmaceuti-
cal industry may also benefit from NLP applications through 
computational phenotyping and biomarker discovery. With 
the sheer numbers of research publications accumulating in 
public and proprietary repositories, no human team, however 
specialized, can maintain an up-to-date overview. While cur-
rent information extraction software consists of text mining 
of named entity types with explicitly known relations, the 
future of NLP lies in finding new pieces of information that 
are not explicitly stated in available documents and have to 
be discovered by associative, semantically unspecified rela-
tionships. An autonomous, self-organized semantic engine 
was able to discover potential novel biomarkers and pheno-
types for diabetes and obesity by self-organized text mining 
of 120,000 PubMed abstracts, public clinical trial summa-
ries, and internal research documents. This shows promise 
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and has the potential to impact pharmaceutical research, for 
example by shortening time to market of novel drugs, or 
speed up early recognition of dead ends and adverse events 
[95].

On a larger scale, NLP may have an important role in 
the future for population surveillance. For example, it can 
assist in identifying health disparities in an ethnic or racial 
group in certain chronic conditions. In addition, NLP may 
have a role in predictive analytics in health care. A recent 
study showed that a NLP system accurately predicted sui-
cide attempts by monitoring social media activity [96]. With 
the high prevalence of chronic diseases in gastroenterology, 
NLP may be used to predict patients at higher risk of devel-
oping psychosocial conditions and medication non-adher-
ence and would therefore benefit from early interventions.

Limitations and Open Problems

As with many new technologies, the effective adoption and 
integration of NLP and NLP-related tools into clinical prac-
tice remain an open challenge. This section highlights sev-
eral of the most salient and pressing concerns as they relate 
to limitations of NLP in GI and other sub-specialty practices, 
as well as presents opportunities for their advancement.

Generalizability of NLP Application Tools

Although the application and validation of NLP methodolo-
gies in single-site settings are an essential component of the 
development pipeline, if such tools are to be used widely 
they must be adapted across EHR systems and reporting 
styles [96]. Work by Carrell et al. has illustrated a number 
of important challenges encountered in translating an NLP 
system measuring colonoscopy quality developed in one 
academic medical center to four diverse healthcare systems 
where notable challenges included the diverse language in 
endoscopy and pathology reports used between different 
sites, heterogeneous report structure, and a lack of metadata 
establishing linkages between pathology and colonoscopy 
reports in comprehensive EHRs [6].

However, challenges in generalizing methods span well-
beyond changes and updates in EHR systems, or varia-
tion of policies and practices among different institutions. 
Variability in the availability of free text itself (vs. scanned 
documents and images saved into the EHR) has a profound 
impact on application usability, a concern that has become 
increasingly relevant as NLP systems are now beginning to 
rely on the merger of endoscopy images and reports. This 
integration of sources presents several challenges in GI as, 
for example, current NLP tools aiming to evaluate ADR and 
other quality measures in endoscopy may only focus on free 
text provided in the procedure and pathology reports. Yet, 

the indication may, however, be on a clinic progress note, 
and the withdrawal time may be calculated by comparing the 
time stamps on the photographs of the appendiceal orifice 
and retroflexion in the rectum. Moreover, while a large num-
ber of NLP-based tools have been applied on colonoscopy 
reports, expanding to outpatient reports and discharge sum-
maries has illuminated similar issues given the diversity of 
systems used to record patient data.

First steps in addressing such diversity have utilized large 
multicenter systems that utilize standardized EHR systems 
such as those found in the VHA [97]. Nonetheless, these 
controlled approaches have yet to be tested with registries 
such as The GI Quality Improvement Consortium. For 
such high stakes applications for public reporting of qual-
ity and pay-for-performance tools, gastroenterologists may 
not accept the level of accuracy provided by currently used 
NLP tools.

Report Language and Structure

Similar to other NLP tasks, there have been challenges to 
the standardization of clinical text found in GI reports as a 
result of spellings and alternative phrasings discussed ear-
lier. Moreover, ambiguity in abbreviations is also common: 
“ANC,” for example, may stand for “acute necrotic collec-
tion” or “absolute neutrophil count,” and “IM” may stand for 
“intestinal metaplasia,” “intramucosal,” or “intramuscular,” 
making any form of semantic and phrase analysis difficult. 
Moreover, as a product of how these reports are gener-
ated, similar terms can take on extremely different mean-
ings based on the section being completed. For example, 
the term “bleeding” has different meanings whether it is in 
the indications, findings, or recommendations section of a 
colonoscopy report. These complexities are further com-
pounded, as it is known that a high degree of variability 
exists in the description of pathology specimens provided 
during procedures such as endoscopy both within and across 
sites (e.g., A, B, C; 1, 2, 3; part 1, part 2, part 3). Finally, 
reliance on NLP techniques can be problematic in both 
clinical and research settings when evaluating subjective GI 
symptoms in such as dyspepsia or bloating that may need 
to be methodologically evaluated to delineate the clinical 
phenotype. Depending on software to quantitatively evaluate 
these symptoms may erroneously affect research results and 
clinical decisions.

Direct adaptation of existing methods to address these 
barriers represents a challenging endeavor, as the specific 
characteristics of each section can be revised and updated 
continuously. Thus, doing so would necessitate dedicating 
substantial time and effort to software modification, frequent 
development cycles, and the creation of novel NLP tech-
niques. Broadly, current efforts have focused on the linguis-
tic elements. On the one side, expanding the current view 
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of embeddings as a single representation of a term, with the 
creation of context-specific representations [98, 99], while 
from another prospective seeking to provide meaningful 
translation between subjective symptom descriptions and 
clinical presentation [100, 101].

Practitioner Utilization: General Acceptability, 
Training, and Incentive Structure

At a high level, NLP tools encounter many of the well-doc-
umented challenges of translating decision support systems 
into practice without disrupting the patient–provider work-
flow [4, 102, 103], including poor usability of models in the 
constraints of daily practice, and concerns over situations 
in which provider expertise conflicts with the computerized 
recommendations, especially as outcomes are increasingly 
tied to compensation or reimbursement. These concerns 
have only been magnified by a lack of familiarity of NLP 
by practitioners and study coordinators [6]. Additionally, 
widespread concern has been seen around acceptability of 
such technology by the provider and patient alike. Driven 
by a lack of interpretability of NLP tools, there may be lim-
ited satisfaction with computer-based recommendations for 
therapy or colonoscopy intervals, particularly from those 
systems using embedding representations and neural net-
work architectures common in recent NLP research.

Widespread efforts have been undertaken to improve 
acceptability of analytic tools into clinical practice at both 
the national and organization levels; however, significant 
work remains to be done. For example, Internet-based clini-
cal decision support systems for appropriateness of colo-
noscopy have seen limited success but still require further 
testing and removal of certain organizational and cultural 
obstacles prior to widespread adoption. These include the 
development of rigorous evaluation metrics and more con-
sistent reporting standards [4], improved provider buy-in 
through improved training and integration of providers 
and administrators into the design of such tools, and finally 
interdisciplinary collaborations with practitioners and 
human–computer interaction (HCI) experts remain needed 
to improve the usability of the tools themselves [104].

Conclusion

In summary, NLP facilitates the access and retrieval of valu-
able and meaningful healthcare information for multiple uses 
in the field of digestive diseases with the potential to reduce 
medical costs and errors. This is particularly beneficial with 
the availability of large databases and the current healthcare 
reform. However, NLP systems remain underutilized and 
still have many challenges to overcome. The development 
of NLP applications requires close collaboration between 

NLP experts and clinicians who can provide the necessary 
domain knowledge [8].

Future integration of this system into EHR may allow for 
more direct clinician interaction with the resulted data and 
effective quality improvement. The potential applications for 
NLP are so complex and numerous that this area of research 
will succeed only as a result of coordinated community-wide 
effort.
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