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ABSTRACT
Clustered count data, common in health-related research, are routinely
analyzed using generalized linear mixed models. There are two well-known
challenges in small-sample inference in mixed modeling: bias in the naïve
standard error approximation for the empirical best linear unbiased estima-
tor, and lack of clearly defined denominator degrees of freedom. The
Kenward–Roger method was designed to address these issues in linear
mixed modeling, but neither it nor the simpler option of using between-
within denominator degrees of freedom has been thoroughly examined in
generalized linear mixed modeling. We compared the Kenward–Roger and
between-within methods in two simulation studies. For simulated cluster-
randomized trial data, coverage rates for both methods were generally
close to the nominal 95% level and never outside 93-97%, even for 5 clus-
ters with an average of 3 observations each. For autocorrelated longitu-
dinal data, between-within intervals were more accurate overall, and under
some conditions both the original and improved Kenward–Roger methods
behaved erratically. Overall, coverage for Kenward–Roger and between-
within intervals was generally adequate, if often conservative. Based on
the scenarios examined here, use of between-within degrees of freedom
may be a suitable or even preferable alternative to the Kenward–Roger
method in some analyses of clustered count data with simple covari-
ance structures.
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1. Introduction

Advances in collection and digitalization of medical and health-related data have expanded the
sources, volume, and types of information available for use in research. Count data are common
in health care research and are often clustered organizationally (e.g., participants within sites of
cluster-randomized trials), temporally (e.g., repeated measurements for participants in longitu-
dinal studies), or both. Due to practical limitations, the number and size of clusters in these stud-
ies are not always large. To carry out appropriate inferential analyses of such data, we must
consider both the clustering, which may violate the usual modeling assumption of independent
observations, and the non-Gaussian distribution of the counts, which tend to yield non-Gaussian
model residuals.
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Generalized linear mixed models (GLMMs) have become popular for modeling clustered data
that violate standard linear model assumptions of independent, Gaussian errors. In mixed model-
ing, however, there are two well-known challenges in inference for fixed effects when samples are
not large. The first is approximating the standard error of the empirical best linear unbiased esti-
mator (EBLUE), which cannot generally be written in closed form. The standard naïve approxi-
mation of this standard error is computed by substituting estimates of the variance parameters
for their true values. Because sampling variability in the variance parameter estimates is ignored,
however, the naïve approximation is biased downward for intrinsically linear covariance struc-
tures, resulting in anticonservative confidence intervals and p-values (Kenward and Roger 2009).
In linear mixed models, the error of the naïve approximation does converge to zero as the num-
ber of clusters goes to infinity (Demidenko 2004), but as with other asymptotic methods, it can
be difficult to determine how large a sample is needed to rely on asymptotic properties.
Complicating this issue, the effects of increasing sample size at Level 1 (number of observations
per cluster) and at Level 2 (number of clusters) are not the same.

The second challenge is choosing denominator degrees of freedom for F tests of fixed effects
and, equivalently, the appropriate degrees of freedom for the t distribution cutoff used in con-
structing Wald-type confidence intervals (Littell 2002). The residual degrees of freedom used for
inferences in ordinary least squares regression (N – k! 1 for total sample size N and k explana-
tory variables) are anticonservative when used for inference for fixed effects in mixed models.
Asymptotically, of course, the t and F distributions converge to Gaussian and v2 distribution,
respectively, and approximating degrees of freedom for mixed models becomes unnecessary with
a sufficiently large number of clusters. But with sample sizes encountered in practice, the choice
of degrees of freedom can have meaningful effects on inference, biasing both confidence limits
and p-values.

1.1. Kenward–Roger method

To address these challenges, Kenward and Roger proposed a method that combines a standard
error approximation based on a Taylor series expansion with a Satterthwaite-type degrees of free-
dom approximation (Kenward and Roger 1997). Their method has been shown to perform well
in linear mixed model contexts, where Level 1 errors are assumed to be Gaussian (McNeish and
Stapleton 2016; Luke 2017; Staggs 2017; Francq, Lin, and Hoyer 2019). Kenward and Roger later
developed an improved version of their method to account for bias in covariance parameter esti-
mates, which can negatively affect performance of their original method for models with non-lin-
ear covariance structures (Kenward and Roger 2009). Results of the original and improved
Kenward–Roger methods differ only for models with non-linear covariance structures. Following
SAS, we denote these methods KR and KR2, respectively, when they need to be differentiated.
Neither has been thoroughly studied for analysis of clustered count data using GLMMs.

In early work designed to compare methods of analysis for clustered count data, Bell and
Grunwald simulated longitudinal count data under various covariance structures and compared
Type I error rates for (1) unadjusted tests from Poisson GLMMs fit with maximum likelihood,
and (2) Kenward–Roger-based tests from Poisson GLMMs fit with residual pseudo-likelihood
(akin to residual or restricted maximum likelihood) (Bell and Grunwald 2011). Although cluster
sizes as small as 3 were considered, the smallest number of clusters was 10. When the covariance
structure specified for the GLMM was correct, Type I error rates for the two test types were very
similar and generally conservative (0.02–0.05). When the GLMM covariance structure was incor-
rect, error rates remained conservative except for autocorrelated data with clusters of size 10.
Because the unadjusted tests were based on (unrestricted) maximum likelihood estimates, which
are only unbiased asymptotically, and the KR tests were based on residual (restricted) pseudo-
likelihood estimates, differences between the unadjusted and adjusted test types were conflated
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with differences between the unrestricted and restricted likelihood methods, making it difficult to
separate effects of test type and estimation method.

Stroup reported good performance for the Kenward–Roger method in simulation studies
where GLMMs were fit to clustered count data under a limited range of conditions (Stroup 2018;
Stroup 2015). Specifically, Stroup simulated clustered negative binomial data with skewed,
Gamma-distributed, random cluster intercepts. Because random cluster effects in GLMMs are
assumed to be Gaussian, the simulated data allowed Stroup to assess the method’s robustness
against violation of this assumption, but not the method’s performance with data generated from
the correct model. In addition, compound symmetry was the only covariance structure Stroup
examined. Dur!an Pacheco et al. also simulated and analyzed clustered negative binomial data but
did not compare options for estimating degrees of freedom or consider fewer than 10 clusters,
average cluster sizes smaller than 30, or covariance structures other than compound symmetry
(Dur!an et al. 2009). In more recent work, the Kenward–Roger method performed very well in
Poisson mixed modeling of count data with as few as 10 clusters having compound symmetric
covariance structure; cluster sizes smaller than 12 and nonlinear covariance structures were not
examined (McNeish 2019).

Most recently, Jackson et al. simulated count data for different cluster-randomized trial scen-
arios, varying the number of clusters from 6 to 18 and cluster sizes from 37 to 127 (Jackson et al.
2021). Various approaches to analyzing the data were compared, including Poisson mixed model-
ing with pseudo-likelihood estimation, both with and without application of the Kenward-Roger
adjustment. Not surprisingly, unadjusted tests were prone to inflated Type I error rates, whereas
the Kenward-Roger tests were not, though under one study design Kenward–Roger Type I error
rates were excessively conservative (0.92% and 1.86%). Non-linear covariance structures were
beyond the scope of the study.

1.2. Between-within degrees of freedom

An alternative to approximating both the EBLUE standard error and denominator degrees of
freedom with the Kenward–Roger method is to use the unadjusted naïve EBLUE standard error
approximation with the between-within method for computing degrees of freedom (Schluchter
and Elashoff 1990). Under the between-within method, degrees of freedom are allocated based on
whether an explanatory variable varies only between clusters (a Level 2 variable) or varies across
observations within clusters (a Level 1 variable). Assuming a two-level model with a fixed inter-
cept, the between-within denominator degrees of freedom for cluster-level effects is defined as
number of clusters – number of (fixed) Level 2 parameters!1. For quantitative Level 1 variables,
between-within denominator degrees of freedom are computed by subtracting the degrees of free-
dom for Level 2 effects from the residual degrees of freedom, which simplifies to total sample size
– number of clusters – number of (fixed) Level 1 parameters. The formula is more complicated for
Level 1 categorical variables with multiple levels, but in the simpler case here, the between- and
within-cluster denominator degrees of freedom sum to the residual degrees of freedom. Whereas
clustering is simply ignored with residual degrees of freedom, the between-within method takes
the number of clusters and level of the explanatory variables into account, so we can expect its
results to be less anticonservative than those based on residual degrees of freedom. Used in con-
junction with the (biased) naïve EBLUE standard error approximation, however, the between-
within method may be anticonservative relative to the Kenward–Roger method.

Like the Kenward–Roger method, use of between-within degrees of freedom in GLMMs is not
well-studied. In a simulation study involving GLMM analysis of clustered binary data, Li and
Redden found that the between-within method generally outperformed the Kenward–Roger
method (Li and Redden 2015). For 10 or 20 clusters, the Kenward–Roger method yielded conser-
vative Type I error rates in tests for a Level 2 fixed effect, a problem exacerbated by unbalanced
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cluster sizes. As in most of the studies described above, covariance structures other than com-
pound symmetry were not examined.

The primary aim of our study was to compare the performance of the Kenward–Roger and
between-within methods in inference for fixed effects in negative binomial mixed models under a
range of small sample sizes. A secondary aim was to develop a better sense of the minimum sam-
ple size requirements for applying these methods in analyses of clustered count data. Both cluster-
and observation-level fixed effects were examined. In keeping with the statistics community’s shift
away from binary hypothesis testing, we did not directly examine Type I error rates or statistical
power. Instead we compared the coverage and average length of confidence intervals, which sub-
sume hypothesis tests and reflect precision of estimation (and, by extension, test size and statis-
tical power).

2. Methods

To address these research aims, we carried out two simulation studies. In the first we examined
inferences for a Level 1 and a Level 2 effect in a scenario resembling a cluster-randomized trial,
where compound symmetry is assumed. In the second we examined inferences in a scenario
involving temporal clustering and a cross-level interaction between time (Level 1) and a dichot-
omous Level 2 variable under both correct (autoregressive) and incorrect (compound symmetry)
covariance structures.

2.1. Simulation study 1

In the first simulation study, we generated count data to resemble outcomes from a cluster
randomized trial, where each cluster (e.g., study site) is randomly assigned to one of two treat-
ment arms, and individuals are nested within clusters. We considered an extensive combination
of study parameters, including two ICCs (0.1, 0.4), a varying number of clusters (5, 10, 15, 20),
and a range of average cluster sizes (3, 6, 12) for a total of 24 conditions. For average cluster size
n, we simulated data for an equal number of clusters of size n! 2, n ! 1, n, nþ 1, and nþ 2 to
yield the specified number of clusters (5, 10, 15, or 20). One thousand datasets were simulated
for each of the 24 unique conditions.

Each dataset was generated by simulating a negative binomial draw for each hypothetical indi-
vidual. Unlike the Poisson distribution, the negative binomial is not restricted to have variance
equal to its mean and can therefore be used to generate, and model, data that are over-dispersed
relative to the Poisson distribution. Letting yij denote the outcome for the jth individual in the ith

cluster, yij was drawn from a negative binomial distribution with dispersion (scale) 5 and mean
kij computed as follows:

log kij
! "

¼ lij ¼ b0 þ b1 $Armi þ b2 $ xij þ ui

where lij denotes the linear predictor, Armi is an indicator for the ith cluster’s randomly assigned
study arm (0 or 1), individual-level covariate value xij was drawn from distribution N(0, rx

2), ran-
dom cluster intercept ui was drawn from distribution N(0, ru

2), and fixed parameters b0, b1, and
b2 were set to 1. For conditions with (log-scale) ICC ¼ 0.1, rx

2 was set to 0.65 and ru
2 to 0.10;

for ICC ¼ 0.4, rx
2 was set to 0.35 and ru

2 to 0.40.
After simulating the data, we fit a negative binomial mixed model to each dataset. Consistent

with the generating model, each model included study arm and the covariate (x) as explanatory
variables, as well as a random cluster intercept. Each dataset was analyzed by fitting two varia-
tions of this GLMM using residual pseudo-likelihood as implemented in the SAS GLIMMIX
Procedure. First, we fit the model to each dataset with the Kenward–Roger method specified to
obtain 95% confidence limits for the two fixed effects of interest. Then we re-fit the model to
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each dataset but with between-within degrees of freedom specified instead of the Kenward–Roger
method. The KR and KR2 versions of the Kenward–Roger method were not compared because
the covariance structure (compound symmetry) is linear. Coverage rates for the 95%
Kenward–Roger and between-within intervals were computed as the percentage of simulated
datasets for which the confidence interval contained the true parameter value. In addition, we
computed the average length of the intervals produced under each method for comparison.

2.2. Simulation Study 2

In the second simulation study, we simulated longitudinal count data of the kind we might
encounter in a study where patients are randomly assigned to one of two treatment arms and
repeatedly assessed over time to compare the average rate at which symptoms change for patients
in the two arms. We considered a range of participant counts (5, 10, 15, 20) and a varying num-
ber of time points per participant (3, 6, 9) for a total of 12 conditions. Again, 1,000 datasets were
simulated for each unique condition.

Following the method of Kalema and Molenberghs (2016), we simulated correlated, negative
binomial draws for each hypothetical participant using the Poisson-Gamma conceptualization of
the negative binomial distribution. As draws from a Poisson distribution with a Gamma-distrib-
uted rate parameter follow a negative binomial distribution, negative binomial draws for partici-
pants i¼ 1, 2, … , m with time points j¼ 1, 2, … , n can be simulated by drawing from a
Poisson(kij) distribution with kij ¼ hijelij , where !ij is a draw from a multivariate Gamma distri-
bution, and lij is the linear predictor. Correlations between draws for the ith participant are
induced by drawing !i1, !i2, … from an n-dimensional Gamma distribution with a non-diag-
onal variance-covariance matrix.

For each hypothetical participant, the value of the linear predictor was computed as follows:

lij ¼ b1 $Timei þ b2 $Armi $Timei þ ui

where Timej is the jth time point (0, 1, 2, … ), Armi is an indicator for the ith participant’s study
arm (0 or 1), random participant intercept ui was drawn from distribution N(0, 0.01), and fixed
parameters b1 and b2 were set to 0.10 and 0.05, respectively. Thus, on average, values for the two
arms are equal at baseline, increase by 0.10 per time point for Arm ¼ 0, and increase by 0.15 per
time point for Arm ¼ 1.

Using the SimCorrMix package in R (Fialkowski and Tiwari 2019), we simulated a vector of n
draws (!i1, !i2, … ) for each hypothetical participant from a multivariate Gamma distribution
with n x n variance-covariance matrix

P
, where

P
had first-order autoregressive structure with

q¼ 0.3. The shape and rate of the Gamma distribution were set to 12 and 6, respectively, imply-
ing a marginal mean of 2 and a marginal variance of 0.33. After multiplying each Gamma draw
by the corresponding exponentiated value of the linear predictor to compute kij, the ijth count
outcome was drawn from the Poisson(kij) distribution.

We analyzed each simulated dataset by fitting two models. First, we fit the correct model: a
negative binomial mixed model with Time and Arm x Time as explanatory variables, a random
participant intercept, and a first-order autoregressive structure. Confidence intervals for the
explanatory variables were computed using the KR, KR2, and between-within methods. Then we
fit the same negative binomial mixed model but with compound symmetric covariance structure
specified, meaning outcomes for each pair of time points for a given participant were incorrectly
assumed to have the same correlation, regardless of the temporal distance between them. Again,
confidence intervals were computed using the KR, KR2, and between-within methods. After
excluding simulated datasets for which the software did not provide confidence limits for both
fixed effects (e.g., due to failure to converge after 100 iterations of the GLIMMIX algorithm), we
computed coverage rates and average interval lengths as in Study 1.
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3. Results

Looking first to the cluster-randomized trial data of Study 1, coverage rates for the
Kenward–Roger and between-within intervals were generally adequate, ranging from 93.2% to
96.8% and from 93.0% to 96.7%, respectively (Tables 1 and 2). For the Level 1 covariate the
between-within intervals generally had lower coverage than the corresponding Kenward–Roger
intervals. In some conditions this meant being closer to the nominal 95% rate, but more often it
meant falling below it (Table 1). Coverage did not consistently improve with more clusters or
larger average cluster size. For the Level 2 effect, coverage rates for the Kenward–Roger and
between-within intervals were nearly identical in most cases (Table 2). For the effects at both lev-
els, intervals tended to be wider for the higher ICC (0.40). This was much more pronounced for
the Level 2 effect, whose average interval widths for the higher ICC were almost twice those for
the lower ICC (0.10) across most combinations of cluster size and count. Estimation problems
were rare in Study 1, even for the smallest sample size conditions; models converged and pro-
vided confidence limits for both fixed effects for 99.7% of simulated data sets under both the
Kenward–Roger and between-within methods.

Turning to the temporally clustered data in Study 2, all three confidence interval types tended
to be conservative (Tables 3 and 4). There was little difference in coverage rates between the KR
and KR2 intervals. The between-within intervals were generally more precise (shorter), and
although in a few cases their coverage was too low (90.8%-93.2%), their over-coverage was less
severe, making them more accurate overall. Importantly, when the correct, autoregressive

Table 1. Study 1: coverage rates and average lengths of 95% confidence intervals for Level 1 covariate.

Coverage rate

ICC ¼ 0.10 Average cluster size 3 observations 6 observations 12 observations

Interval KRa BWb KR BW KR BW

5 clusters 95.5 95.1 96.2 94.8 93.9 93.0
10 clusters 96.1 94.9 94.5 93.4 93.3 93.3
15 clusters 95.2 93.8 94.9 94.6 94.7 94.4
20 clusters 95.8 95.4 94.5 94.1 95.0 94.6

Average length

Average cluster size 3 observations 6 observations 12 observations

Interval KR BW KR BW KR BW

5 clusters 0.15 0.13 0.07 0.07 0.05 0.04
10 clusters 0.08 0.08 0.05 0.05 0.03 0.03
15 clusters 0.07 0.06 0.04 0.04 0.02 0.02
20 clusters 0.05 0.05 0.03 0.03 0.02 0.02

Coverage rate

ICC ¼ 0.40 Average cluster size 3 observations 6 observations 12 observations

Interval KR BW KR BW KR BW

5 clusters 96.2 95.5 95.3 94.2 95.4 95.0
10 clusters 96.0 95.2 95.7 95.0 95.8 95.6
15 clusters 95.3 94.5 94.8 94.6 93.3 93.3
20 clusters 96.5 95.9 94.3 94.0 94.5 94.4

Average length

Average cluster size 3 observations 6 observations 12 observations

Interval KR BW KR BW KR BW

5 clusters 0.20 0.18 0.10 0.09 0.06 0.06
10 clusters 0.11 0.11 0.06 0.06 0.04 0.04
15 clusters 0.09 0.08 0.05 0.05 0.03 0.03
20 clusters 0.07 0.07 0.04 0.04 0.03 0.03

aKR¼ Kenward–Roger interval.
bBW¼ between-within interval.
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structure was specified for datasets with 3 time points, the average length of at least one of the
two Kenward–Roger intervals was over 3.4-8.1 times the average length of the between-within
interval, despite the three interval types having comparable coverage rates. Both the KR and KR2
intervals displayed this erratic behavior.

Surprisingly, interval coverage rates in Study 2 did not consistently improve with the number
of clusters, though coverage was generally closer to 95% with 20 clusters than with 5. Similarly,
coverage tended to be closer to the nominal rate when there were 9 time points than when there
were only 3. Overall, specifying the auto-regressive covariance structure seemed to provide little
benefit over fitting the simpler random intercept model with compound symmetry.

The three methods were generally comparable in the percentage of simulated data sets for
which the model converged and produced confidence limits for both fixed effects of interest
(Table 5). Compared to the KR and KR2 methods, the between-within method yielded both con-
fidence limits for an additional 2.5–4.8% of simulated datasets when the autoregressive model
was fit to datasets with 3 time points and 10–20 clusters. For the autoregressive model, estimation
problems became more frequent for all three methods as the number of clusters increased and as
the number of time points increased.

4. Discussion

Accurate small-sample inference for fixed effects in analyses of clustered data is critical, and the
impact of the Kenward–Roger method on mixed modeling has been enormous; the original paper

Table 2. Study 1: coverage rates and average lengths of 95% confidence intervals for Level 2 effect.

Coverage rate

ICC ¼ 0.10 Average cluster size 3 observations 6 observations 12 observations

Interval KRa BWb KR BW KR BW

5 clusters 95.1 94.7 96.8 96.7 95.2 95.2
10 clusters 95.9 96.1 94.9 94.9 94.3 94.3
15 clusters 95.7 95.7 95.7 95.7 94.6 94.6
20 clusters 93.2 93.1 95.3 95.3 95.0 95.0

Average length

Average cluster size 3 observations 6 observations 12 observations

Interval KR BW KR BW KR BW

5 clusters 1.71 1.68 1.72 1.72 1.66 1.66
10 clusters 0.91 0.91 0.89 0.89 0.89 0.89
15 clusters 0.70 0.70 0.70 0.70 0.69 0.69
20 clusters 0.59 0.59 0.59 0.59 0.58 0.58

Coverage rate

ICC ¼ 0.40 Average cluster size 3 observations 6 observations 12 observations

Interval KR BW KR BW KR BW
5 clusters 95.6 95.8 95.7 95.7 95.7 95.6
10 clusters 94.2 94.1 94.0 94.1 95.1 95.1
15 clusters 94.7 94.7 95.6 95.6 93.5 93.4
20 clusters 94.1 94.2 94.7 94.7 94.8 94.8

Average length

Average cluster size 3 observations 6 observations 12 observations

Interval KR BW KR BW KR BW

5 clusters 3.41 3.40 3.47 3.46 3.42 3.42
10 clusters 1.78 1.78 1.82 1.82 1.81 1.81
15 clusters 1.40 1.40 1.40 1.40 1.38 1.38
20 clusters 1.17 1.17 1.17 1.17 1.16 1.16

aKR¼ Kenward–Roger interval.
bBW¼ between-within interval.
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has been cited thousands of times. The method has been studied primarily in linear mixed mod-
els, where Level 1 errors are assumed to be Gaussian. Count data, however, are discrete, bounded
by zero on the left, often severely skewed to the right, and prone to yielding non-Gaussian resid-
uals when modeled. Because neither the Kenward–Roger method nor the use of between-within
degrees of freedom has been thoroughly studied for modeling clustered count data, we compared

Table 3. Study 2: coverage rates and average lengths of 95% confidence intervals for time.

3 time points 6 time points 3 time points

KRa KR2b BWc KR KR2 BW KR KR2 BW

AR(1) model: Coverage rate 5 clusters 99.2 99.2 99.1 94.8 94.6 91.1 96.9 97.0 96.4
10 clusters 98.6 98.6 98.2 98.3 98.3 98.1 97.1 97.1 96.8
15 clusters 97.0 96.9 96.2 96.7 96.7 95.6 96.7 96.8 96.5
20 clusters 97.4 97.7 97.0 96.8 96.7 96.7 96.5 96.6 96.6

KR KR2 BW KR KR2 BW KR KR2 BW

AR(1) model: Mean interval length 5 clusters 4.91 3.77 1.42 0.61 0.60 0.37 0.21 0.21 0.17
10 clusters 3.54 2.12 0.83 0.27 0.27 0.24 0.13 0.13 0.12
15 clusters 1.34 5.45 0.67 0.20 0.20 0.19 0.10 0.10 0.10
20 clusters 1.77 2.89 0.54 0.17 0.17 0.16 0.09 0.08 0.08

KR KR2 BW KR KR2 BW KR KR2 BW

Compound symmetry model:
Coverage rate

5 clusters 99.5 99.5 99.2 94.7 94.7 90.8 96.9 96.9 96.0
10 clusters 98.9 98.9 98.5 98.4 98.4 98.0 96.8 96.8 96.7
15 clusters 96.7 96.7 96.5 96.7 96.7 95.9 97.0 97.0 97.0
20 clusters 97.7 97.7 97.0 96.6 96.6 96.6 96.6 96.6 96.6

KR KR2 BW KR KR2 BW KR KR2 BW

Compound symmetry model:
Mean interval length

5 clusters 2.39 2.39 1.41 0.73 0.73 0.36 0.23 0.23 0.17
10 clusters 1.24 1.24 0.83 0.29 0.29 0.24 0.13 0.13 0.12
15 clusters 1.03 1.03 0.67 0.24 0.24 0.19 0.10 0.10 0.10
20 clusters 0.76 0.76 0.54 0.18 0.18 0.16 0.08 0.08 0.08

aKR¼ Kenward–Roger (1997) interval.
bKR2¼ Improved Kenward–Roger (2009) interval.
cBW¼ between-within interval.

Table 4. Study 2: coverage rates and average lengths of 95% confidence intervals for Time x Arm.

3 time points 6 time points 9 time points

KRa KR2b BWc KR KR2 BW KR KR2 BW

AR(1) model: Coverage rate 5 clusters 99.6 99.6 99.5 98.5 98.6 97.2 95.9 95.8 92.3
10 clusters 97.9 98.0 97.2 99.1 99.1 97.9 97.4 97.3 96.7
15 clusters 97.8 97.7 97.1 95.2 95.0 93.7 96.1 96.0 95.3
20 clusters 92.6 93.0 92.4 94.2 94.2 93.7 97.2 97.1 96.9

KR KR2 BW KR KR2 BW KR KR2 BW

AR(1) model: Mean interval length 5 clusters 6.24 5.34 1.49 0.73 0.74 0.32 0.23 0.23 0.15
10 clusters 4.00 2.28 0.88 0.30 0.30 0.25 0.13 0.13 0.12
15 clusters 1.52 5.45 0.70 0.21 0.21 0.18 0.09 0.09 0.09
20 clusters 1.96 2.11 0.59 0.17 0.17 0.16 0.08 0.08 0.08

KR KR2 BW KR KR2 BW KR KR2 BW

Compound symmetry model:
Coverage rate

5 clusters 99.9 99.9 99.6 98.4 98.4 97.1 95.7 95.7 92.5
10 clusters 98.2 98.2 97.6 98.9 98.9 97.9 97.2 97.2 96.6
15 clusters 98.0 98.0 97.4 95.5 95.5 94.2 96.5 96.5 96.0
20 clusters 94.3 94.3 93.2 94.4 94.4 93.8 97.2 97.1 96.6

KR KR2 BW KR KR2 BW KR KR2 BW

Compound symmetry model:
Mean interval length

5 clusters 2.54 2.54 1.49 0.66 0.66 0.32 0.22 0.22 0.15
10 clusters 1.32 1.32 0.88 0.30 0.30 0.24 0.13 0.13 0.12
15 clusters 1.08 1.08 0.70 0.23 0.23 0.18 0.09 0.09 0.09
20 clusters 0.83 0.83 0.60 0.18 0.18 0.16 0.08 0.08 0.08

aKR¼ Kenward–Roger (1997) interval.
bImproved Kenward–Roger (2009) interval.
cBW¼ between-within interval.
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their performance in confidence intervals using simulated data across a variety of small-sample
conditions reflective of situations encountered in health-related research.

In our analyses the between-within intervals were often more precise than those computed
using the Kenward–Roger method and, overall, provided comparably accurate, if not more accur-
ate, coverage rates. In Study 1 coverage rates for both interval types were adequate (93–97%) and
often in the 94–96% range, even for the small-sample conditions. Differences were more striking
for the auto-correlated data in Study 2, where coverage rates overall were less accurate for both
interval types. Here the between-within intervals were often shorter than their overly conservative
Kenward–Roger counterparts and provided coverage rates closer to the nominal 95% rate under
most conditions. In addition, the between-within intervals were less susceptible to estimation
problems in the autoregressive models when there were only 3 time points per cluster.

The autoregressive and compound symmetry models in Study 2 performed about equally well
overall in terms of interval coverage rates. Although the correct covariance specification (first-
order autoregressive) provided a slight advantage in coverage when there were at least 15 clusters,
there was a substantially higher rate of estimation problems for the autoregressive models than
for the compound symmetry models under many sample size conditions. Estimation problems
became more frequent as sample size increased.

It should be noted that although non-Gaussian data can often be transformed to yield Level 1
residuals consistent with the linear mixed model assumption of Gaussian errors, this approach
can be problematic for count data. In a study involving comparisons of different approaches to
modeling clustered binomial and count data, Stroup observed that “transformations consistently
were no help and often made matters worse.” (Bell and Grunwald 2011, p. 122). Moreover, count
data are not always amenable to normalizing transformation. For example, zeros cannot be log-
transformed without first shifting them, along with all the non-zero counts, upward by some con-
stant, a workaround we find unsatisfying. Further, if zero is the most common observed value in
a set of count data, no rank-preserving transformation can move the mode to the middle of the
distribution. It seems better to assume clustered count data follow a distribution with support on
the non-negative integers and fit a GLMM or another appropriate model.

Critically, the results of this study alone cannot be used for definitive guidance on sample size
requirements for GLMM analysis of clustered count data, which will depend on study specifics,
including anticipated effect sizes, covariance structure and parameters, and numbers of fixed and
random effects in the model. A sample size sufficient for accurate confidence interval coverage
may be insufficient for estimating effects with the desired precision or power. We do however
offer two general observations.

Table 5. Percentage of simulated datasets in Study 2 for which model converged and provided confidence limits for both
fixed effects of interest.

3 time points 6 time points 9 time points

KRa KR2b BWc KR KR2 BW KR KR2 BW

AR(1) model 5 clusters 98.9 99.2 99.8 98.2 98.1 98.4 96.7 96.7 96.8
10 clusters 96.7 97.1 99.2 96.6 96.4 96.8 94.7 94.2 95.2
15 clusters 94.6 95.3 98.6 93.6 94.2 94.2 91.5 91.9 91.3
20 clusters 93.5 94.4 98.3 94.8 93.6 94.5 85.9 86.0 86.4

KR KR2 BW KR KR2 BW KR KR2 BW

Compound symmetry model 5 clusters 99.9 99.9 99.9 99.8 99.7 99.7 99.7 99.8 99.7
10 clusters 99.1 99.0 99.1 99.7 99.7 99.7 98.6 98.6 98.6
15 clusters 99.3 99.3 99.3 97.7 97.6 97.7 99.3 99.0 99.3
20 clusters 99.3 99.3 99.3 94.1 94.0 93.9 98.3 98.2 98.2

aKR¼ Kenward–Roger (1997) interval.
bImproved Kenward–Roger (2009) interval.
cBW¼ between-within interval.
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First, where interval coverage rates deviated markedly from the nominal rate for conditions
with a small number of clusters (5 or 10), the problem was usually over-coverage. For these cases,
in other words, the Kenward–Roger and between-within intervals over-corrected for anticonserva-
tive bias associated with use of residual degrees of freedom and the naïve EBLUE standard error
approximation. Conservative bias with the Kenward–Roger method has been observed in other
GLMM contexts, as well (Bell and Grunwald 2011; Li and Redden 2015; Jackson et al. 2021). In
using either of these methods in practice, therefore, we would tend to be more concerned with
the minimum number of clusters required to achieve the desired level of precision in estimating
effects (or in terms of the binary hypothesis testing framework, the desired level of statistical
power) than with having enough clusters to guard against interval under-coverage and over-esti-
mated precision. Analyses with very small samples and complex covariance structures would be
an exception (Schaalje, McBride, and Fellingham 2002).

Second, we note that recommendations for the number of clusters needed in mixed modeling
are often too high, at least if accurate interval coverage for fixed effects is the criterion. Mixed
modeling is sometimes described as a large-sample method, requiring dozens if not scores of clus-
ters, but this need not be the case if we are not relying on asymptotic results (e.g., to overcome
the effects non-Gaussian errors). In cluster-randomized trials even ten clusters can be prohibi-
tively expensive, and it is important for researchers to know there are reasonably accurate meth-
ods for analyzing clustered count data when the number of clusters is not large.

As institutional data sharing and pervasive monitoring of health-related data both within and
outside the clinical setting become increasingly common, the ability to draw accurate inferences
from complex clustered data is critical. Given the prevalence of clustered count data in medical
and health-related research, more guidance is needed regarding sample size and the choice of
methods for standard error approximation and denominator degrees of freedom. This study rep-
resents a step toward development of such guidance. Based on the scenarios examined here, use
of between-within degrees of freedom may be a suitable or even preferable alternative to the
Kenward–Roger method in some analyses of clustered count data with simple covariance struc-
tures. Opportunities for advancing this line of research include considering more complex covari-
ance structures, models with random slopes, and GLMMs for clustered data with other
distributions.
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