
R is an open source statistical programming language 
and environment for (essentially) all operating systems 
that has gained a widespread following in quantitative 
disciplines (R Development Core Team, 2007b). This 
following is perhaps most prevalent in the statistical sci-
ences, where many published works now provide R rou-
tines so that the proposed methods can be immediately 
implemented. The speed of implementing many methods 
in R is astonishing when compared with some of the older 
“standard” software programs, with which a consider-
able amount of time can pass between development of a 
method and its implementation in the program, if indeed 
it is ever implemented. One of the real benefits of R is that 
users contribute to the R Project by making packages that 
contain sets of functions and then contributing the pack-
ages to the community of R users. An R package includes 
a set of functions, often with a particular goal in mind, 
and a set of help files. Currently, there are approximately 
900 packages available that provide specialized routines 
for a wide variety of topics that are available on the Com-
prehensive R Archival Network (CRAN; R Development 
Core Team, 2007a), which is a network of servers around 
the world that have up-to-date versions of R, R packages, 
and R documentation. Information on the wide variety of 
R resources available to the community of R users is avail-
able on the R Project Internet home page (R Development 
Core Team, 2007c).

R has recently gained a following in the applied sci-
ences, where researchers are often interested in imple-
menting new methods and producing high-quality graph-
ics, with the added benefit of working within a relatively 
complete object-oriented statistical environment. The be-

havioral, educational, and social sciences are examples 
of applied areas in which R has made tremendous gains 
in popularity over the last several years. For example, 
Doran and Lockwood (2006) provide details on using R 
to fit value-added longitudinal models for behavioral and 
educational data using R (R Development Core Team, 
2007b) with the nlme package (Pinheiro, Bates, DebRoy, 
& Sarkar, 2006), there is a special issue in Journal of Sta-
tistical Software on Psychometrics in R (de Leeuw, 2006), 
and statistical texts used in the applied behavioral, educa-
tional, and social sciences are beginning to incorporate 
R (e.g., Everitt, 2005; Fox, 2002). However, there is not 
much in the collections of packages specifically designed 
for the idiosyncratic needs of applied behavioral, educa-
tional, and social science researchers. The purpose of the 
present article is to formally introduce the Methods for the 
Behavioral, Educational, and Social Sciences (MBESS; 
Kelley, 2007b) R package, which is designed to imple-
ment functions that are especially useful for substantive 
researchers and methodologists in the behavioral, educa-
tional, and social sciences and to highlight some of the 
user-friendly functions contained within MBESS that are 
not widely available elsewhere.

Confidence Intervals for Effect Sizes Based on 
Noncentral Distributions

Distributions such as (central) t, F, and 2 are very im-
portant for null hypothesis significance testing, because 
such distributions describe the sampling distribution of t, 
F, and 2 variates when the null hypothesis is true. When 
the null hypothesis is false, the sampling distribution of t, 
F, and 2 variates is noncentral, where the magnitude of 
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confidence intervals for standardized effect sizes.) This 
limitation is overcome with MBESS, which is a package 
used within the R statistical language and environment. 
MBESS thus fits within a broader environment for statis-
tical computations that can be used in conjunction with R 
and all of the other add-on packages.

MBESS implements the three main noncentral dis-
tributions in easy-to-use functions. The functions are 
conf.limits.nct(), conf.limits.ncf(), and 
conf.limits.nc.chisq() for the noncentral t, F, 
and 2 distributions, respectively.1 These functions return 
the noncentral parameters that have at their desired quan-
tiles (e.g., 1 /2 and /2) the estimated noncentral pa-
rameter, which is how confidence intervals for noncentral 
parameters are formed (see, e.g., Steiger, 2004, or Steiger 
& Fouladi, 1997, for a discussion of confidence interval 
formation procedures for noncentral parameters).

Although there are numerous options that can be used, 
at minimum, the functions for confidence intervals for 
noncentral t, F, and 2 parameters require users to specify 
the observed test statistic, the degrees of freedom, and 
the desired level of confidence. An example call to the 
conf.limits.nct() function would be of the form

R> conf.limits.nct(t.value=tObs., df= , 
conf.level=1- )

for a (1 100% confidence interval for the noncentral-
ity parameter of the t distribution, where tObs. is the ob-
served t value,  is degrees of freedom, and 1  is the 
level of confidence interval coverage. When nonsymmet-
ric, such as one-sided, confidence intervals are of inter-
est, the lower and upper Type I error rate can be specified 
individually (instead of specifying the 1  confidence 
level, as above). This is done by using alpha.lower 
and alpha.upper in place of conf.level in stan-
dard applications of the function. An example call to the 
conf.limits.ncf() function for a nonsymmetric 
confidence interval would be of the form

R> conf.limits.ncf(F.value=FObs., 
df.1= 1,  df.2= 2, alpha.lower=0, 
alpha.upper= )

for a (1 )100% upper confidence interval, where FObs. is 
the observed F value, 1 is the numerator degrees of free-
dom, and 2 is the denominator degrees of freedom. An ex-
ample call to the function conf.limits.nc.chisq() 
for a confidence interval would be of the form

R> conf.limits.nc.chisq(Chi.
Square= 2

Obs., conf.level=1 , df= ),

for a (1 )100% confidence interval, where 2
Obs. is the ob-

served 2 value. Given conf.limits.nct(), conf.
limits.ncf(), and conf.limits.nc.chisq() 
functions, a confidence interval can be formed for noncen-
trality parameters whose estimates follow noncentral t, F, 
or 2 distributions.

Usually, however, what is of interest is the confidence 
interval for the effect size parameter, not the confidence 
interval for the noncentrality parameter. By transforming 
the limits of the confidence intervals for the noncentrality 

the noncentrality parameter indexes the difference between 
the null and the alternative hypotheses. Central distribu-
tions are thus special cases of their corresponding noncen-
tral counterparts when the noncentrality parameter equals 
zero (i.e., when the null hypothesis is true). When calcu-
lating probability values under the null hypothesis, central 
distributions are necessary because the probability value is 
conditional on the null hypothesis being true (i.e., the prob-
ability of obtaining data as extreme or more extreme than 
the observed data if the null hypothesis is true).

Noncentral distributions are necessary for calculat-
ing confidence intervals for many effect sizes that are 
bounded or that have been standardized (e.g., Cumming 
& Finch, 2001; Smithson, 2003; Steiger & Fouladi, 1997). 
A major push in the behavioral, educational, and social 
sciences is the use of effect sizes and confidence intervals 
for effect sizes (e.g., Cohen, 1994; Cumming & Finch, 
2001; Grissom & Kim, 2005; Meehl, 1997; Rosenthal, 
Rosnow, & Rubin, 2000; Steiger, 2004; Steiger & Fou-
ladi, 1997; Wilkinson, L., & the American Psychological 
Association Task Force on Statistical Inference, 1999). 
It has even been argued that null hypothesis tests should 
be banned (Schmidt, 1996) and that the future of quanti-
tative research should be based on confidence intervals 
for effect sizes (Thompson, 2002). Indeed, if significance 
tests were actually banned and confidence intervals for 
effect sizes required, at present, many researchers would 
have a difficult time reporting the results of their research, 
because such methods are not implemented in standard 
software for the most commonly used effect sizes.

For effect sizes that follow noncentral distributions, the 
quantiles of the particular distribution are a function of not 
only the degrees of freedom, but also a noncentrality pa-
rameter. Popular statistical packages that are widely used 
in the behavioral, educational, and social sciences do not 
perform such calculations without special programming 
scripts, making it difficult for many researchers to obtain 
the critical values necessary for confidence interval for-
mation for effect sizes that follow noncentral distributions. 
As a result of the added complexity of the probability den-
sity function because of the noncentrality parameter, find-
ing confidence limits for noncentral parameters involves 
complicated iterative routines (Cumming & Finch, 2001; 
Smithson, 2003; Steiger & Fouladi, 1997).These routines 
have been implemented in MBESS in the form of easy-
to-use R functions for the noncentral t, noncentral F, and 
noncentral 2 distributions.

Due to the importance of working with noncentral 
distributions for forming confidence intervals for many 
effect sizes, such as the standardized mean, the standard-
ized mean difference (e.g., Cumming & Finch, 2001; Kel-
ley, 2005; Steiger & Fouladi, 1997), the squared multiple 
correlation coefficient (e.g., Algina & Olejnik, 2000; 
Smithson, 2001, 2003), standardized regression coeffi-
cients (e.g., Kelley & Maxwell, 2008), the coefficient of 
variation (e.g., Kelley, 2007c), and the root-mean-square 
error of approximation (RMSEA; e.g., Browne & Cudeck, 
1993), the lack of easy-to-use noncentral distribution 
functions is clearly a shortcoming of the widely available 
analytic tools. (See Kelley, 2007a, for a general review of 
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interval for the noncentrality parameter are transformed 
into the limits of the effect size of interest (e.g., see the dis-
cussion in Steiger, 2004; Steiger & Fouladi, 1997). Steiger 
(2004) provides an important and timely review of many 
important standardized effect sizes, all of which can be 
implemented with MBESS either directly or with a small 
number of additional (hand or R) calculations after obtain-
ing the confidence limits for the noncentrality parameter 
with the noncentral confidence interval functions.

Sample Size Planning
Although there are some functions within R and within 

certain R packages for planning sample size from a power 
analytic perspective, where the goal is to obtain results that 
reach statistical significance, the MBESS package con-
tains functions for planning sample size from the power 
analytic perspective (e.g., Cohen, 1988; Kraemer & Thie-
mann, 1987; Lipsey, 1990; Murphy & Myors, 2004) as 
well as from the accuracy in parameter estimation (AIPE) 
perspective (e.g., Hahn & Meeker, 1991; Kelley & Max-
well, 2003, 2008; Kelley, Maxwell, & Rausch, 2003; Kel-
ley & Rausch, 2006; Kupper & Hafner, 1989). Whereas 
the goal of the power analytic approach is to plan sample 
size so that there is some desired probability of rejecting 
a false null hypothesis, the goal of the AIPE approach is 
to obtain a sufficiently narrow confidence interval with 
some desired probability.

Methods to plan sample size for standardized effect 
sizes from the AIPE perspective—so that the widths of 
the confidence intervals are sufficiently narrow—are 
beginning to receive attention in the literature as a way 
to overcome limitations of null hypothesis significance 
tests and as a general way to learn about the phenomenon 
of interest from data. Although such methods have not 
historically received much attention for standardized ef-
fect sizes (cf. Algina & Olejnik, 2000; Bonett & Wright, 
2000), this is in part due to the difficulties of forming 
confidence intervals for standardized effect sizes, as dis-
cussed in the previous section. Going beyond forming 
the intervals and planning sample size in order to achieve 
sufficiently narrow confidence intervals can be quite dif-
ficult due to the necessary iterative nature of the proce-
dures. The planning of sample size from the AIPE per-
spective takes two forms: one where the expected width 
of the confidence interval is sufficiently narrow, and one 
where there will be some desired degree of assurance (i.e., 
a probability) that the confidence interval observed in a 
particular study will be sufficiently narrow. The former 
is generally simpler than the latter, because incorporating 
a desired degree of assurance into the procedure requires 
finding a value to base sample size that will not lead to a 
wider than desired confidence interval width with more 
than the desired probability.

Example functions for sample size planning from the 
AIPE perspective that are available in MBESS are the 
standardized mean difference (Kelley & Rausch, 2006) 
using the ss.aipe.smd() function, the squared mul-
tiple correlation coefficient (fixed or random regressors) 
using the ss.aipe.R2() function (Kelley, 2007d), 
the coefficient of variation using the ss.aipe.cv() 

parameter to the scale of the effect size, using the confi-
dence interval transformation principle that allows con- 
fidence limits from one metric to be transformed into  
confidence limits of another metric under certain condi-
tions (e.g., Steiger, 2004; Steiger & Fouladi, 1997), con-
fidence intervals for the population effect size of interest 
can be obtained. A set of functions exist that determine the 
limits of the confidence intervals directly (these functions 
call upon the noncentral functions discussed above) for 
several important and widely used effect size measures.

For example, a confidence interval for the standard-
ized mean difference can be obtained with the ci.smd() 
function. An example call to the ci.smd() function 
could be of the form

R> ci.smd(smd=d, n.1=n1, n.2=n2, 
conf.level=1- ),

where smd is the standardized mean difference argu-
ment and d the observed standardized mean difference, 
n.1 and n.2 are the sample size arguments for Groups 1 
and 2, with n1 and n2 being the sample sizes of Group 1 
and Group 2, respectively, and conf.level is the con-
fidence interval argument, with 1  being the desired 
level of confidence. For example, suppose a researcher 
performs an experiment in which the observed standard-
ized mean difference between the treatment group and the 
control group is .525, where there were 64 participants in 
each of the two groups. The ci.smd() function could 
be used as

R> ci.smd(smd .525, n.1 64, n.2 64, 
conf.level .95),

which yields a 95% confidence interval,

 CI.95  [.17152    .87647], 

where CI.95 represents a 95% confidence interval for , 
the population standardized mean difference.2

The structure of the confidence interval procedure for 
the standardized mean, a standardized contrast in ANOVA 
or ANCOVA context, the squared multiple correlation 
coefficient (based on random or fixed regressors), the 
 signal-to-noise ratio in an ANOVA context, the coefficient 
of variation, standardized regression coefficients, and the 
root mean square error of approximation are of the same 
form as for the standardized mean difference. Confidence 
intervals for these effect sizes can be obtained with the 
ci.sm(), ci.sc(), ci.sc.ancova(), ci.R2(), 
ci.snr(), ci.cv(), ci.src() [or ci.rc() for 
unstandardized regression coefficients] and ci.rmsea() 
functions, respectively.3 The ease with which these func-
tions can be used is greater than in many programs, some 
of which require complicated code and others of which are 
stand-alone programs, with the added bonus that all of the 
functions from MBESS are part of the larger R statistical 
computing environment. These confidence intervals are all 
based on exact confidence intervals for noncentral distri-
butions, which is of course the ideal approach. For effect 
sizes that do not have stand-alone functions, the use of the 
confidence interval functions for noncentral parameters 
can many times be used, where the limits of the confidence 
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squared multiple correlation coefficient, ss.aipe.
rc.sensitivity() for an unstandardized regres-
sion coefficient, ss.aipe.src.sensitivity() 
for a standardized regression coefficient, ss.aipe.
cv.sensitivity() for the coefficient of variation, 
and ss.aipe.sc.sensitivity()and ss.aipe.
sc.ancova.sensitivity() for ANOVA and AN-
COVA standardized contrast, respectively.

Sample size planning for the power analytic approach 
is available for certain tests in R by default and with other 
specialized packages (e.g., the pwr package for some gen-
eral linear model tests [Champely, 2006], and asypow for 
the asymptotic power of likelihood tests [Brown, Lovato, 
Russel, & Halvorsen, 2006], and MBESS). R, MBESS, 
pwr, and asypow together provide a large set of functions 
that can be used to plan an appropriate sample size for a 
wide variety of effects under the power analytic perspec-
tive (e.g., the effects discussed in Cohen, 1988).

Installation and Help
As mentioned, R is available for essentially all modern 

operating systems (e.g., Microsoft Windows, Macintosh, 
Linux, Unix). At the R Project Web page (www.r-project 
.org/), there is a link to CRAN (cran.r-project.org/), where R 
and the available add-on packages can be downloaded. Ac-
tually, after downloading and installing R, either in source 
form or in executable format, MBESS and other packages 
can easily be installed with the automatic package installa-
tion feature from within a Microsoft Windows environment. 
From R’s toolbar, the Package option allows packages to be 
installed with the Install Package(s) option. From the Install 
Package(s) option, the desired package(s) can be selected 
and installed (after a download site has been selected).

Although this article introduces many of the important 
and useful functions contained within MBESS, there are 
optional specifications not outlined in the article. A set of 
help files also accompanies MBESS. For any function in 
MBESS (or R more generally), the help file can be dis-
played with the help function, help(). For example, the 
associated help files for the ci.smd() function can be 
called on using

R> help(ci.smd).

Alternatively, one can search for functions and help files 
by using the help.search() function. For example, 
suppose one is interested in functions that pertain to the 
standardized mean difference, but is not aware of what 
those functions are. The help.search() function 
could be called on as

R> help.search("standardized mean 
difference"),

where functions that mention the string in quotes are re-
turned (seven functions from MBESS, in this case). The 
R Project Web site (R Development Core Team, 2007c) 
also has a search feature that can be useful when learning 
what functions relate to different methods or techniques. 
On the R Project Web site (R Development Core Team, 
2007c), there are many freely available manuals, books, 
and technical reports (under the Manuals and Other links, 

function (Kelley, 2007c), for unstandardized regression 
coefficients using the ss.aipe.rc() and for standard-
ized regression coefficients using the ss.aipe.src() 
function (Kelley & Maxwell, 2008), and the standardized 
ANOVA and ANCOVA contrasts using the ss.aipe 
.sc()  and ss.aipe.sc.ancova() functions (Lai & 
Kelley, 2007). The available functions will be augmented 
as the AIPE approach is extended to other effect sizes.

As an example of the AIPE approach to sample size 
planning, suppose a researcher would like to have a 99% 
degree of assurance that the width of the 95% confidence 
interval for the standardized mean difference will be no 
wider than .30 units. For the hypothesized population value 
(delta) of .50, the necessary sample size can be obtained 
with the ss.aipe.smd() function as follows:

R> ss.aipe.smd (delta=.50, conf.
level=.95, width=.30, degree.of. 
assurance=.99),

which yields a necessary sample size of 362 (Kelley & 
Rausch, 2006). Thus, with 362 participants per group, a 
researcher can have 99% assurance that the width of the 
confidence interval for  will be no larger than .30 units. 
The other functions that implement the AIPE approach to 
sample size planning are used in an analogous fashion.

Planning sample size usually requires one to specify 
one or more population parameters as if they were known 
exactly. In almost all circumstances, the estimated popu-
lation value will differ from the actual population value. 
This affects the appropriateness of the sample size be-
cause of the misspecified population value. A series of 
functions for many of the sample size functions discussed 
have corresponding sensitivity analysis functions, where 
the effects of misspecifying the population value(s) and 
the effect of a particular sample size can be determined. 
The effect of misspecifying the population value(s) is de-
termined by specifying a particular population effect size 
and an estimated effect size(s). Another option is to spec-
ify a particular sample size to assess the effect of sample 
size on properties of the confidence intervals. A Monte 
Carlo simulation study is conducted within the functions 
for the cases discussed, on the basis of the specifications 
given. When the specified effect size and the population 
effect size differ, the sample size is based on the speci-
fied effect size given, but the data are generated from a 
distribution where the effect size is the population value 
specified. This allows one to determine the effect of mis-
specification of the population value on the characteris-
tics of the results (e.g., proportion of confidence intervals 
less than some desired width, mean or median confidence 
interval width, proportion of confidence intervals that 
do not contain zero, etc.). In some power analytic con-
texts, this information is available analytically. However, 
it is generally not available for applications of AIPE. The 
same is true when specifying a particular value of sample 
size to discern the effect on the characteristics of the re-
sults. The functions that implement a sensitivity analy-
sis in the AIPE context within MBESS are ss.aipe.
smd.sensitivity() for the standardized mean 
difference, ss.aipe.R2.sensitivity() for the 
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be addressed to K. Kelley, Inquiry Methodology Program, Indiana Uni-
versity, 201 North Rose Avenue, Bloomington, IN 47405 (e-mail: kkiii@
indiana.edu).
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respectively, in the Documentation section). Of particular 
importance is “An Introduction to R” (Venables, Smith, 
& The R Development Core Team, 2007), which is a very 
informative manual for users of R. There are also several 
active R mailing lists, which provide a forum for discus-
sion related to R. Furthermore, Kelley, Lai, and Wu (2008) 
provide an R tutorial that also uses MBESS, with exam-
ples of statistical methods useful for researchers working 
in the behavioral, educational, and social sciences.

As with all other packages, there is an MBESS page on 
CRAN that has the most up-to-date released version of the 
package and its corresponding manual (via the MBESS 
Web page: cran.at.r-project.org/src/contrib/Descriptions/
MBESS.html). Although Microsoft Windows and Mac-
intosh executable files are provided on (most) R package 
pages, executable files are not provided for Unix or Linux. 
The source files (i.e., set of files and code that defines 
MBESS), however, are operating system independent and 
are available on the MBESS page. Detailed directions on 
how to install packages from source files for Macintosh, 
Unix, and Linux are given on the R Web page.

Looking to the Future
I have not outlined all of the features available with 

MBESS. In addition to the confidence interval forma-
tion and sample size planning issues, there are functions 
to perform other techniques, such as visualization tech-
niques for longitudinal data [see the visualizing individual 
trajectories functions, vit() and vit. fitted()], 
visualizing techniques for interactions in a multiple re-
gression context [see the interaction plotting functions 
intr.plot() for 3-D representations of interactions 
and intr.plot.2d() for 2-D representations], and 
the estimation of various effect sizes (as well as their vari-
ances and unbiased analogs, where appropriate).

MBESS is an ongoing project that will continue to be 
developed and expanded so that important quantitative 
methods can be made available to researchers in the be-
havioral, educational, and social sciences. The goal is that 
MBESS will be a useful tool for researchers—both sub-
stantive ones and methodologists—in the behavioral, edu-
cational, and social sciences. Actually, the methods imple-
mented within MBESS are more general than serving only 
the needs of researchers working within the behavioral, 
educational, and social sciences. For example, many of the 
methods implemented within MBESS are directly appli-
cable to various aspects of business and managerial, bio-
logical and medical, and wildlife and fisheries research. 
MBESS is an open source project, and thus, anyone can 
obtain and modify the source code in any way that he or 
she sees fit. Because MBESS is part of the R environment, 
the methods within MBESS can be used in conjunction 
with the basic R installation and the many other R pack-
ages that are freely available.
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