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Abstract
Sequential estimation is a well recognized approach to inference in statistical theory. In sequential
estimation the sample size to use is not specified at the start of the study, and instead study outcomes are
used to evaluate a predefined stopping rule, if sampling should continue or stop. In this article we develop
a general theory for sequential estimation procedure for constructing a narrow confidence interval for a
general class of effect sizes with a specified level of confidence (e.g., 95%) and a specified upper bound
on the confidence interval width. Our method does not require prespecified, yet usually unknowable,
population values of certain parameters for certain types of distributions, thus offering advantages
compared to commonly used approaches to sample size planning. Importantly, we make our develop-
ments in a distribution-free environment and thus do not make untenable assumptions about the
population from which observations are sampled. Our work is thus very general, timely due to the interest
in effect sizes, and has wide applicability in the context of estimation of a general class of effect sizes.

Translational Abstract
Accurately estimating effect sizes is an important goal in many studies. A wide confidence interval at the
specified level of confidence (e.g., .95%) illustrates that the population value of the effect size of interest
(i.e., the parameter) has not been accurately estimated. An approach to planning sample size in which the
objective is to obtain a narrow confidence interval has been termed accuracy in parameter estimation. In
our article, we first define a general class of effect size in which special cases are several commonly used
effect sizes in practice. Using the general effect size we develop, we use a sequential estimation approach
so that the width of the confidence interval will be sufficiently narrow. Sequential estimation is a
well-recognized approach to inference in which the sample size for a study is not specified at the start
of the study, and instead study outcomes are used to evaluate a predefined stopping rule, which evaluates
if sampling should continue or stop. We introduce this method for study design in the context of the
general effect size and call it “sequential accuracy in parameter estimation.” Sequential accuracy in
parameter estimation avoids the difficult task of using supposed values (e.g., unknown parameter values)
to plan sample size before the start of a study. We make these developments in a distribution-free
environment, which means that our methods are not restricted to the situations of assumed distribution
forms (e.g., we do not assume data follow a normal distribution). Additionally, we provide freely
available software so that readers can immediately implement the methods.

Keywords: AIPE, power, sample size planning, sequential estimation, research design

The concept of effect size as a primary outcome of interest has
gained much traction over the last decade and is widely recognized

as an important part of research studies. This is different from,
though it can be complementary to, the dichotomous outcome of a
null hypothesis significance test that either rejects or fails to reject
one or more null hypotheses. Effect size has been defined as “a
quantitative reflection of the magnitude of some phenomenon that
is used for the purpose of addressing a question of interest” (p. 140
Kelley & Preacher, 2012). Effect sizes such as the standardized
mean difference, coefficient of determination, regression coeffi-
cient, path coefficient, and correlation, among others, are widely
used in psychology and related disciplines. The emphasis on effect
sizes in modern research seems to have stemmed from methodol-
ogists heavily emphasizing their importance for many years (e.g.,
Cohen, 1994; Meehl, 1997; Morrison & Henkel, 1970; Thompson,
2002), professional organizations requiring them in scholarly work
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(e.g., American Psychological Association, 2010; Association for
Psychological Science, 2014; Task Force on Reporting of Re-
search Methods in AERA Publications, 2006), journal editors
pushing for more emphasis on effect size as a way to quantify
practical meaning from a study, and journal reviewers, many of
whom have themselves embraced the call for more effect sizes. It
is clear that effect size now plays an important role in the research
landscape of psychology and related disciplines.

The need to focus on effect sizes, the importance of confidence
intervals for population effect sizes, and the limitations of null
hypothesis significance tests based on a p value that is less than or
greater than a specified Type I error rate has recently been put at
the front of methodological consideration. In particular, warnings
and recommendations long made by methodologists within psy-
chology and related disciplines, among others, about an overreli-
ance on null hypothesis significance tests and the corresponding p
value, have now been echoed by the American Statistical Associ-
ation (ASA) in what is “the first time the ASA has spoken so
publicly about a fundamental part of statistical theory and prac-
tice” (American Statistical Association, 2016). In an editorial by
the ASA’s Executive Director, on behalf of the ASA Board of
Directors (Wasserstein & Lazar, 2016), six principles are ad-
dressed that could “improve the conduct or interpretation of quan-
titative science” (p. 131). The ASA’s conclusions come 50 years
after Bakan stated that “the test of statistical significance in psy-
chological research may be taken as an instance of a kind of
essential mindlessness in the conduct of research” (Bakan, 1966, p.
436)—also acknowledging, however, that his ideas were not orig-
inal but what “everybody knows” (p. 423).

The ASA editorial goes on to say that “in view of the prevalent
misuses of and misconceptions concerning p-values, some statis-
ticians prefer to supplement or even replace p-values with other
approaches” (American Statistical Association, 2016, p. 132). The
suggestions for supplementing or replacing p values are “methods
that emphasize estimation over testing, such as confidence, cred-
ibility, or prediction intervals; Bayesian methods; alternative mea-
sures of evidence, such as likelihood ratios or Bayes Factors; and
other approaches such as decision-theoretic modeling and false
discovery rates. All these measures and approaches rely on further
assumptions, but they may more directly address the size of an
effect (and its associated uncertainty) or whether the hypothesis is
correct” (American Statistical Association, 2016, p. 132, emphasis
added). Our work addresses the size of the effect and its uncer-
tainty explicitly. Importantly, we address the effect and its uncer-
tainty without the prior specification of likely unknown population
values as is typical in research design texts. We believe that our
work is both timely and important for helping to advance psychol-
ogy and related disciplines by focusing explicitly on the estimation
of effect sizes of interest and the quantification of their uncertainty,
which is what the ASA editorial has asked of researchers.

Our work begins with the premise that point estimates almost
certainly differ from their population analogs. Correspondingly, as
many others have stated, it is important for effect sizes to be
accompanied by some measure of uncertainty, for which we use
confidence intervals, in order to convey the uncertainty of the
estimates at some specified level of confidence. Depending on
sample size, among other factors, when one constructs a confi-
dence interval whose interval width is not based on known param-

eters, then the interval width will generally vary, even with sam-
ples from the same population. Holding everything else constant,
narrower confidence intervals at a specific confidence level (e.g.,
.95) provide more precise information about the parameter of
interest than does a wider confidence interval at the same confi-
dence level. In an effort to construct sufficiently narrow confi-
dence intervals, the accuracy in parameter estimation (AIPE) ap-
proach to sample size planning (e.g., Kelley, 2007b, 2008; Kelley
& Lai, 2011; Kelley & Maxwell, 2003; Kelley & Rausch, 2006;
Lai & Kelley, 2011; Pornprasertmanit & Schneider, 2014; Terry &
Kelley, 2012), also known as the “the confidence interval ap-
proach,” has been developed for a variety of important effect sizes.
Such approaches are similar to the “fixed-width confidence inter-
val problem,” in which, instead of having an upper bound on the
length of the confidence interval, the length of the confidence
interval is exactly the desired width (e.g., Mukhopadhyay & Chat-
topadhyay, 2012; Mukhopadhyay & De Silva, 2009; Sproule,
1985).

The AIPE approach to sample size planning as it has been
developed thus far in the literature is a fixed-sample size approach
based on supposed values of one or more parameters in an effort
to obtain a sufficiently narrow confidence interval at the specified
level (e.g., 95%, 99%). However, a potential problem is that if the
supposed value of the population parameter(s) is incorrect, then the
(fixed) sample size from the AIPE perspective may be very dif-
ferent than what the (fixed) sample size would have been if the true
population parameter(s) were used. This problem also arises in
power analysis when the sample size is based on the supposed
population value (e.g., Cohen, 1988; cf. basing sample size on the
minimum value of the parameter that would be of theoretical
interest, Lipsey, 1990; Murphy & Myors, 2004). A remedy to
needing the generally unknown population values in traditional
applications of the AIPE approach is a sequential analysis ap-
proach. In a sequential analysis approach, population parameters
are not prespecified, and, as a result, the sample size cannot be
fixed in advance. That is, the procedure is not of the “fixed-n”
research design framework. Rather, the sample size deemed ap-
propriate in sequential estimation procedure depends on collecting
observations until an a priori specified criterion or stopping rule is
satisfied.

Sequential methods have been developed in various areas of
statistics beginning 75 years ago (e.g., Wald, 1943, 1945). In
sequential medical trials, Armitage (1960, pp. 9–10) advocated the
use of estimates of difference in effects of two treatments with
some desired standard error rather than basing a decision on null
hypothesis significance tests. In the context of clinical trials, Lai
(1998) discussed a sequential procedure for constructing fixed-
width confidence intervals for some population characteristics of
interest. Recently, for allocation of two treatments in clinical trials,
Bandyopadhyay and Biswas (2015) developed fixed-width confi-
dence intervals for response-adaptive allocation design. However,
sequential methods for inference have not had much impact in
psychology and related disciplines as of yet, with the notable
exception of item response theory (e.g., in the context of computer
adaptive tests; (e.g., Chang & Ying, 2009, and the references
therein). Our focus is in the research design context when making
inferences about population parameters, such as means, mean
differences, contrasts, a variety of standardized effect sizes, et
cetera, where we are proposing an alternative to fixed-n procedures
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such as how power analysis and accuracy in parameter estimation
are commonly employed. Chattopadhyay and Kelley (2016, 2017)
developed sequential procedures that consider cost and accuracy of
estimation from a minimum-risk point estimation perspective, in
which a function of cost and accuracy is minimized, but not
confidence interval width.

In this article, we begin by first introducing a general class of
effect size. We then introduce a sequential procedure to estimate
this general class of effect size in order for the confidence interval
for the population effect size of interest to be sufficiently narrow.
This idea, which we call sequential AIPE, is an extension of
methods that currently exists in this AIPE framework, which
currently requires the specification of population values or other
prespecified values (e.g., minimum population effect size value of
interest). We then discuss the AIPE problem for the general class
of effect size we develop, special cases of which are many com-
monly used effect sizes, and then we propose a sequential estima-
tion procedure. We then follow with some characteristics of our
sequential procedure for constructing the sufficiently narrow con-
fidence interval with a prespecified level of confidence. We then
evaluate the finite sample size properties for the final sample size
to assess the effectiveness of our method in realistic contexts.
Additionally, and importantly, we make our developments in a
distribution-free environment. The distribution-free environment
is important, though challenging. Because there is often no reason
to assume that the underlying distribution of the data for which an
effect size will be calculated would be known (e.g., gamma,
lognormal, normal), we do not rely on theoretical distributions. For
example, in applied research, normal distributions may be rare
(e.g., Micceri, 1989), and thus basing important decisions on
assumptions that are not realized may be problematic. We there-
fore avoid such issues by focusing on the most robust context of a
distribution-free environment (e.g., Wilcox, 2012). Thus, our de-
velopments offer a great deal of generality and flexibility and we
think they help extend the effect size, confidence interval, and
research design literatures.

Effect Sizes Based on Ratio of Two Parameters:
A General Framework

In this article we consider a general family of effect sizes which
we define as the ratio of two parameters, themselves a function of
one or more other parameters. Specifically, we develop the se-
quential procedure not for any one particular effect size, but
instead for a general effect size which has many special cases.

Consider the general effect size parameter, �, which can be
expressed as a ratio of functions of two parameters, �1 and �2, such
that � is defined as

� �
g1(�1)
g2(�2)

, (1)

where g1 and g2 are two continuous functions, �1 and �2 are
parameters each involving linear combinations of parameters cor-
responding to K groups or K different parameters from the same
group, provided g2(�2) � 0. For k � 1, . . . , K, suppose that �1k

and �2k be parameters for the kth group, such that

�1 � �
k�1

K

l1k�1k (2)

and

�2 � �
k�1

K

l2k�2k, (3)

where the l1k and l2k values are known constants. Suppose we are
trying to estimate the effect size parameter �, the population ratio
of functions of �1 and �2, on the basis of n observations from each
of the k groups. Let the observations from the kth group be Xk1, . . . , Xkn.
Further, let T1n and T2n be two estimators for estimating �1 and �2,
respectively, where T1n � �k�1

K l1kUkn is a linear combination of k
independent U-statistics and T2n � �k�1

K l2kVkn is a linear combi-
nation of k independent U-statistics. Let us now assume that for
k � 1, 2, . . . , K the U-statistic Ukn is an unbiased and consistent
estimator of �1k and the U-statistic Vkn is an unbiased and consis-
tent estimator of �2k. The U-statistics—that is, unbiased estimators
of the parameters of interest—are discussed in detail in Appendix
A. The effect size estimator of the effect size parameter �, based on
estimators of �1 and �2, is given by

Tn �
g1(T1n)
g2(T2n)

. (4)

This effect size measure, � in the population and Tn in a sample of
size n, is a general class of effect size measure that can be written in
terms of a numerator and denominator, in which each is written in
terms of a linear relation among the necessary parameters or its
estimators, whichever is applicable in the situation. Using several
examples, we show that some widely used effect size parameters and
their corresponding effect size estimators are special cases of the
forms given in Equation 1 and Equation 4, respectively.

Example 1: Standardized Mean Difference

Consider the standardized mean difference, which is a standard-
ized measure of separation between two group means. The popu-
lation standardized mean difference is defined as

� �
�1 � �2

�
, (5)

where �1 � �1 � �2 and �2 � �2, g1(�1) � �1 � �1 � �2 and

g2��2� � ��2 � ��2 � �. Here, �1 and �2 are the population
means from Groups 1 and 2, respectively, and � is the population
standard deviation of scores within the two groups under the
homogeneity of variance assumption (�1

2 � �2
2 � �2).

In practice, � itself is unknown as the population values of the
means for Groups 1 and 2, �1 and �2 respectively, and common
standard deviation, �, are unknown. Let X� 1n and X� 2n denote the
sample mean of scores on an outcome of interest from Groups 1
and 2, respectively. We use s1n

2 and s2n
2 to represent the usual

unbiased estimator of population variances from Groups 1 and 2,
respectively. X� 1n and X� 2n are each U-statistics of Degree 1 and spn

2

is the function of two U-statistics, s1n
2 and s2n

2 , both of which are of
Degree 2 such that

spn ��s1n
2 � s2n

2

2 (6)

is the square root of the pooled sample variance here, because the
sample sizes for both groups are the same. In this case, from
Equation 4, we use T1n � X� 1n � X� 2n, the difference of means from
two groups and T2n � spn

2 . Thus, Ukn � X� kn and Vkn � skn
2 . The
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known coefficients are l11 � 1, l12 � �1, l21 � 1/2 and l22 � 1/2
and K � 2. The numerator is the difference between means and the
denominator is the pooled variance. More formally, g1�T1n� �

X� 1n � X� 2n and g2(T2n) � sp. Thus, the effect size estimator for the
population standardized mean difference is

dn �
X� 1n � X� 2n

spn
. (7)

Consider now a variant of Equation 5 in which the control group
standard deviation is used as the divisor. Let Subscript 1 be
treatment group (T) and Subscript 2 denote the control group (C).
Then, interest would be in

�C �
�T � �C

�C
. (8)

For �C the homogeneity of variance need not be assumed, as
only one standard deviation is used. Here, the known coefficients
are l11 � l1T � 1, l12 � l1C � �1, l21 � l2T � 0 and l22 � l2C �
1 and K � 2. Thus, the effect size estimator for the population
standardized mean difference is

dCn �
(X� Tn � X� Cn)

sCn
. (9)

Here, the functions needed in this situation are g1(T1n) � T1n

and g2�T2n� � �T2n, where T1n � X� Tn � X� Cn and T2n � sCn
2 . We

use dCn to show that certain groups can be used in the numerator
but not the denominator, or vice versa.

Example 2: Coefficient of Variation

Consider the coefficient of variation, where the population value
is defined as

	 � �
�

. (10)

From Equation 1, �1 � �2 and �2 � �, where � is the
population mean and the � is the population standard deviation
(with K � 1). For estimating the unknown population coefficient
of variation, 	, the corresponding estimator is

kn �
sn

X� n

. (11)

From Equation 4, T1n � sn
2, which is the sample variance, and

T2n � X� n is the sample mean of n observations. Because K � 1,
U1n � sn

2 and V1n � X� n. The known coefficients are l11 � 1 and
l21 � 1. The necessary functions in this case are g1(T1n) � sn and
g2�T2n� � X� n. Thus, we see that kn is a ratio of two functions of two
U-statistics: sn

2 (a U-statistic of degree 2; of which, with g1(·), we
take the square root) and X� n (a U-statistic of degree 1).

Example 3: The Standardized Mean

The standardized mean, which is the reciprocal of the coefficient
of variation, is also an effect size of interest in some situations
(e.g., Cohen, 1988; Kelley, 2007a). From Equation 1, �1 � � and
�2 � �2. For estimating �/�, the estimator is X� n ⁄sn. According to
Equation 4, T1n � X� n is the sample mean and T2n � sn

2 is the sample
variance score from a sample of n observations. Here, K � 1, so

U1n � X� n and V1n � sn
2. The known coefficients are l11 � 1 and

l21 � 1. The functions needed in this situation are g1�T1n� � X� n and
g2(T1n) � sn.

Example 4: Regression Coefficient in Simple
Linear Model

Suppose (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are pairs of observations
from a simple linear regression model of the form

Yi � 
0 � 
1Xi � �i, (12)

where Yi is the dependent variable, Xi is the independent variable,
εi is the error for the ith individual, which is independent and
identically distributed across individuals in the population, and 
0

is the population intercept parameter and 
1 is the population slope
parameter. Now we consider the effect of X on Y, which is the
population slope defined as


1 �
�XY

�X
2 , (13)

where �XY is the population covariance between X and Y, and �X
2

is the population variance of X. Because the value of 
1 is
unknown in practice, it must be estimated, which is generally done
using least squares criterion:

b1n �
� (xi � x�n)(yi � y�n)

� (xi � x�n)
2

�
sXYn

sXn
2 , (14)

where sXYn is the unbiased estimator for covariance between X and
Y, and sXn

2 is the unbiased estimator for variance of X, based on a
sample of size n. These estimators are both U-statistics of Degree
2. From Equation 4, g1(T1n) � sXYn and g2(T2n) � sXn

2 and l11 �
l21 � 1. Hence, U1n � sXYn and V1n � sXn

2 . Thus, the estimator for
the regression parameter 
1 is a ratio of two functions of
U-statistics with Degree 2.

Example 5: Effect Size for Ordinal Data

In the case of ordinal data, Cliff’s delta can be used, which we
illustrate here (see, e.g., Cliff, 1993). Cliff’s delta is a measure of
how often randomly sampled values in one distribution are larger
than the randomly sampled values in a second distribution. Sup-
pose there are two sets of ordinal data of sizes n1 and n2, poten-
tially from two groups or distributions. Then, the sample estimator
of Cliff’s delta for the two groups or distributions is given by:

#(xi � yj) � # (xi  yj)
n1n2

� 2U
n1n2

� 1, (15)

where # is defined as the number of times and U is the Mann–
Whitney U-statistic which is the test statistic used in nonparamet-
ric two-sample location test. For details on Mann–Whitney
U-statistic, we refer to Kumar and Chattopadhyay (2013).

Example 6: Contrasts

We now consider contrasts, which are often used in analysis of
variance. For the kth group, suppose Xk1, . . . , Xkn are independent
and identically distributed random variables with means �k and
variances �k

2. Thus, in total, there are Kn observations from K
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groups. Then, the population contrast related to the corresponding
scenario is given by

� � �
k�1

K

ck�k, (16)

where c1, . . . , cK are known coefficients and �k�1
K ck � 1.

An estimator of the contrast � is �̂n � �k�1
K ckX� kn, where

X� 1n, . . . , X� Kn are the group means. In this case, from Equation 4,
we use T1n � �k�1

K ckX� kn, so Ukn � X� kn. The known coefficients are
l1k � ck for k � 1, 2, . . . , K. Here, g1(T1n) � T1n and g2(·) � 1.

Example 7: Univariate Parameters
and Their Functions

The parameters such as population mean, difference of popula-
tion means, population variance, and population Gini’s mean dif-
ference can be shown to satisfy Equation 1 with g1(�1) as the
parameter of interest and g2(�2) � 1. In fact, the sum or difference
of the above parameters themselves satisfy Equation 1 (i.e., the
difference in means, the difference in variances, etc.).

In all of the above mentioned examples, the effect sizes satisfy
Equation 1 and the corresponding estimators satisfy Equation 4.
Correspondingly, we describe � as a general effect size, namely
one that can be written in terms of a ratio of a numerator and
denominator in which coefficients are used to specify the relation
among the necessary parameters by group. We note that the
subscript n is used on the effect sizes estimator to denote
the sample size on which it is based. This is very important, as the
properties of the effect size estimator, Tn, based on different
sample sizes are considered. At this point we have developed a
general effect size and illustrated several examples. Now we
consider the accuracy in parameter estimation (AIPE) approach to
research design for estimation of the effect size parameter �.

Accuracy in Parameter Estimation for the General
Effect Size Parameter: A Fixed-Sample Size Approach

Our goal is to obtain a sufficiently narrow 100�1 � ��% con-
fidence interval for the effect size parameter � under the
distribution-free scenario. As we are working in a distribution-free
scenario, we do not assume the distribution of the scores from
which the sufficiently narrow confidence interval for � will be
calculated. In practice, the distribution of the scores is generally
unknown. In other words, because of the untenability of knowing
the distribution from which scores are sampled, we do not assume
any specific distribution of the scores. Correspondingly, we next
present developments in a distribution-free scenario. Under the
distribution-free scenario, the exact distribution of Tn cannot be
obtained. To be clear, this is not a limitation of our method per se,
but rather with the distribution-free scenario more generally.
Sproule (1985) developed a method to construct a fixed-width
confidence interval under distribution-free scenario using large
sample theory, but that method cannot be applied directly in our
problem as our general effect size may involve the ratio of func-
tions of one or more parameters. In this article, we use large
sample theory to find the asymptotic distribution of Tn, with which
we will construct the sufficiently narrow 100�1 � ��% confidence
interval for �, which, for practical purposes, we will show mo-

mentarily, yields intervals that, although approximate in finite
samples, tend to work well in a wide variety of situations.

Using Theorem 1 from Appendix A, the approximate 100
�1 � ��% confidence interval for � is given by

Jn � �Tn � z� ⁄ 2
�

�n
, Tn � z� ⁄ 2

�

�n
�, (17)

where �2/n is the asymptotic variance of Tn and z/2 is the 100(1 �
/2)th percentile of a standard normal distribution. The width of
the confidence interval Jn is given by

wn � 2z� ⁄ 2
�

�n
. (18)

In AIPE problems the sample size required to achieve sufficient
accuracy is solved so that the width of the confidence interval is no
larger than �. Thus, for a given �, we have

2z� ⁄ 2
�

�n
� �, (19)

which implies that the necessary sample size to construct 100(1 �
)% confidence interval for � will be

n � >4z� ⁄ 2
2 �2

�2 ?	 n�, (20)

where >·? is the ceiling function which takes the value to be the next
largest integer (e.g., >95.2?� 96). The expression in Equation 20 can
be found by solving for n in Equation 19. Thus, n� is the theoretically
optimal sample size required to make the 100�1 � ��% confidence
interval for �, provided �2 is known (recall that �2/n is the asymptotic
variance of Tn). Because in reality �2 is generally unknown, the
optimal sample size, n�, is also unknown because n� depends on �2.
In order to estimate the optimal sample size n�, we use a consistent
estimator, �̂n

2, for estimating �2. We note that any value of �̂n
2 does not

guarantee that the condition in Equation 20 is satisfied and thereby
estimate the optimal sample size n�. Also, we note that in several
sample size planning methods, often a researcher will use a supposed
value (say �2�) of the population parameter, �2, to compute n�.
However, �2� may differ considerably from �2, which can have a large
impact on the appropriate sample size. Further, and more troubling,
even if �2� differs from �2 by a relatively small degree, there can (still)
be a large impact on the appropriate sample size. Thus, using un-
known population values to estimate �2 with �2� can lead to poten-
tially poor choices for the appropriate sample sizes. So, we will use a
sequential procedure, which does not require the use of supposed
population parameter values to plan the sample size but will satisfy
the condition given in Equation 20.

Accuracy in Parameter Estimation for the General
Effect Size Parameter: A Sequential

Optimization Procedure

As opposed to fixed-sample procedures, in sequential proce-
dures the sample size is not fixed in advance. As previously
discussed, no fixed sample size procedure can provide a solution to
the accuracy in parameter estimation problem without making
assumptions about the distribution of the data. Here we propose a
purely sequential procedure to construct a 100�1 � ��% confi-
dence interval for the general effect size parameter �. Recalling
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that the effect size � subsumes many special cases, and that we
work within a distribution-free environment, our work is thus a
general and novel treatment and one that subsumes many potential
special cases that could have independently been developed.

In a sequential procedure, the estimation of parameter(s) occurs
in stages until a stopping rule is met. In the first stage, a small
sample called a pilot sample is observed and then the parameters
are estimated to check a predefined condition in a stopping rule. A
stopping rule is a rule that indicates, after every stage, whether
further sampling of one (or more) observation(s) should be stopped
or if it should continue. Thus, further sampling of observations is
carried out if the predefined condition in the stopping rule is not
met and further sampling is stopped once the predefined condition
in the stopping rule is satisfied. At a particular stage, if the predefined
condition is not met, the researcher collects one (or more) observa-
tion(s) and then estimates the parameter of interest based on the
collected observation(s). This process is repeated until the predefined
condition is met. For details about the general theory of sequential
estimation procedures, we refer interested readers to Chattopadhyay
and Mukhopadhyay (2013), Ghosh and Sen (1991), Mukhopadhyay
and Chattopadhyay (2012), or Sen (1981).

Recall that the optimal sample size n� is unknown due to �2

being unknown. We use the consistent estimator of �2, namely �̂n
2,

which is based on n observations drawn from the k groups. We
now develop an algorithm to find an estimate of the optimal
sample size via the purely sequential estimation procedure.

Stage I

Scores of m randomly selected individuals are collected from
each of the k groups. Mukhopadhyay and De Silva (2009, pp.
248–249). we recommend using the pilot sample size m given as

m � max
m0, >2z� ⁄ 2

� ?�, (21)

where m0(�0) is the least possible sample size required to estimate
�2 and >·? is the ceiling function of the term—the ceiling being the
smallest integer not less than (2z/2/�). Based on this pilot sample
of size m, an estimate of �2 is obtained by computing �̂m

2 . If
m  >4z�⁄2

2 ⁄�2��̂m
2 � m�1�?, then proceed to the next step. Other-

wise, if m � >4z�⁄2
2 ⁄�2��̂m

2 � m�1�?, stop sampling and set the final
sample size equal to m from each group.

Stage II

Obtain an additional m=(�1) observations. At this stage there
are (m � m=) observations from each of the k groups. Update the
estimate of �2 by computing �̂m�m�

2 . Now, check whether m �

m� � >4z� ⁄ 2
2 ⁄�2��̂m�m�

2 � �m � m���1�?. If m � m�  >4z� ⁄ 2
2 ⁄�2

��̂m�m�
2 � �m � m���1�? then go to the next step. Otherwise, if

m � m� � >4z� ⁄ 2
2 ⁄�2��̂m�m�

2 � �m � m���1�? then stop further
sampling and report that the final sample size is (m � m=) from
each group.

This process of collecting one (or more) observation(s) in each
stage after Stage 1 continues until there are N observations in each
group, such that N � >�4z� ⁄ 2

2 ⁄�2���̂N
2 � N�1�?. At this stage we

stop further sampling because the stopping rule has been satisfied
and report that the final sample size is N for single group designs

or N within each group for multiple group designs (and thus the
total sample size is KN in multiple group designs, as we have
assumed equal sample size per group).

Based on the algorithm just outlined, a stopping rule for the
sampling can be defined as follows:

N is the smallest integer n( � m) such that n �
4z� ⁄ 2

2

�2 ��̂n
2 � n�1�,

(22)

where the term n�1 is a correction term which ensures that the
sampling process does not stop too early for the optimal sample
size because of the use of the approximate expression. After each
and every stage, the stopping rule indicates whether the collected
sample size is more than the estimated optimal sample size. If the
collected sample size is less than the estimated optimal sample
size, then we collect additional m= observations in the next stage.
At some stage, when the collected sample size becomes equal to or
more than the estimated optimal sample size, we stop sampling.
Thus, N in Equation 22 is regarded as the estimator of the theo-
retically optimal sample size, n�, required to make the 100�1 �
��% confidence interval for � provided �2 is known.

For details about the correction term, refer to Chattopadhyay
and De (2016), Sen and Ghosh (1981), or Chattopadhyay and
Kelley (2016, 2017). Note that for large sample sizes, �̂n

2 � n�1

converges to �2. Figure 1 presents a flowchart which describes the
sequential procedure that we developed.

Figure 1. Flowchart that describes the sequential procedure developed.
The oval represents a user-defined choice, the rectangle an action, and the
diamond a check.
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Characteristics of Our Sequential Procedure

Based on the algorithm just outlined, it is important to ensure
that the sampling of an infinite number of observations is not
possible. If observations are collected using Equation 22, sampling
will stop at some stage with probability one. This is proved in
Lemma 2 given in Appendix A, which says that under appropriate
conditions, P(N � �) � 1. This result is very important as it
mathematically ensures that the sampling will be terminated even-
tually.

From Equation 22, note that N is a random variable because N
depends on the estimator of �2, which itself is a random variable.
Theorem 2, given in Appendix A, implies that the 100�1 � ��%
confidence interval for �,

�TN �
z� ⁄ 2�̂N

�N
, TN �

z� ⁄ 2�̂N

�N
, (23)

formed using N observations, achieves the specified coverage
probability 1 �  asymptotically. This property is called asymp-
totic consistency. Thus, in Theorem 2 we have proven that our
purely sequential procedure enjoys asymptotic consistency. Addi-
tionally, Theorem 2 proves that the confidence interval for � given
in Equation 23 always achieves a sufficiently narrow width (less
than �).

Application and Evaluation for Some Widely Used
Effect Sizes

As an illustration of our sequential procedure, we will show its
application in detail for the standardized mean difference, coeffi-
cient of variation, and the regression coefficient (slope) from a
simple linear model. Other effect sizes, as we previously ex-
plained, as well as linear functions of those effect sizes for multiple
groups, can be implemented in a similar way. We focus on these
three effect sizes because of their wide usage in psychology and
related fields.

Standardized Mean Difference

Suppose X11, X12, . . . , X1n are independent random samples
from a distribution F1 with mean �1 and variance �2, and X21, X22,
. . . , X2n are independent random samples from another distribu-
tion F2 with mean �2 and variance �2. The population standard-
ized mean difference, from Equation 5, is estimated by the sample
standardized mean difference as

dn �
(X� 1n � X� 2n)

spn
, (24)

where spn � �1
2�s1n

2 �s2n
2 � is the square root of the pooled sample

variance. Using Theorem 3 the asymptotic distribution of the
sample standardized mean difference, dn, is given by

�n�dn � �� ¡
L

N(0, �2), (25)

where the asymptotic variance of dn is given by

�2 � 2 �
(�1 � �2)(�13 � �23)

�4 �
(�1 � �2)

2

4�6 ��14 � �24

4 � �4

2 �
(26)

and �kj is the jth central moment of distribution Fk, for k � 1, 2.
Thus, we have a consistent estimator of �2, which is given as

�̂n
2 � max
Vn

2, n�3� (27)

with Vn
2 given by

Vn
2 � 2 �

(X� 1n � X� 2n)(�̂13n � �̂23n)

spn
4 �

(X� 1n � X� 2n)
2

4spn
6

��̂14n � �̂24n

4 �
spn

4

2
�,

where for k � 1, 2, �̂k3n and �̂k4n are U-statistics for �k3 and �k4,
respectively, which are defined in Equations 75 and 76. Theorem
4 shows that the (approximate) 100�1 � ��% confidence interval
for the population standardized mean difference, �, is given by

�dN �
z� ⁄ 2�̂N

�N
, dN �

z� ⁄ 2�̂N

�N
�, (28)

which is formed using N observations and achieves the specified
coverage probability of 1 � , asymptotically. Additionally, The-
orem 4 proves that the confidence interval for � given in Equation 28
always achieves a sufficiently narrow width (less than �).

The sequential procedure we developed can be used in con-
structing an approximate 100�1 � ��% confidence interval for the
parameter �, such that the width of the confidence interval is less
than � under a distribution-free framework. Additionally, using
Theorem 4, it can be shown that for large sample sizes, the
confidence interval will also achieve, asymptotically, the specified
coverage probability 1 � . Nevertheless, for different distribu-
tions the sampling distribution of the final sample size will vary
and this distribution has no known way to be analytically derived.
We illustrate the properties of the final sample size empirically
with a Monte Carlo demonstration. Note that our method is math-
ematically justified and we provide the Monte Carlo demonstration
for descriptive purposes as well as to illustrate the properties of our
method for a variety of finite sample sizes, realizing that our large
sample theory framework may not work well in all finite sample
size situations for arbitrary distributions.

Characteristics of the final sample size: An empirical
demonstration. We now demonstrate the properties of our
method using a Monte Carlo simulation for constructing 100
�1 � ��% confidence interval for population standardized mean
difference, �, such that the width of the confidence interval is less
than � and the confidence interval achieves, asymptotically, the
specified coverage probability 1 � . This is done by implement-
ing the sequential procedure via Monte Carlo simulations by
drawing random samples from three distributions (gamma, lognor-
mal, and normal) under several parameter combinations each.

We implement the proposed sequential procedure and, for the
sample size (N), we estimate the mean sample size �N��, the
standard error of N� (s(N�)), coverage probability (p), the standard
error of estimated coverage probability (sp), and average length of
confidence intervals w� N. We use 5,000 replications for each of the
conditions of the simulation study. We chose parameters of the
distributions that, in our experience, are reasonable scenarios in
applied research. In each replication, we first draw m observations
from the populations and then follow the algorithm of the purely
sequential procedure by drawing m=� 1 observations at each stage
after the pilot stage. We summarize our findings in Tables 1 and 2.
In all cases in Tables 1 and 2, the sixth column suggests that the
coverage probability is close to the target coverage probability of
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either 90% (see Table 1) or 95% (see Table 2), respectively. Also,
in all cases, the average width is less than �. The fifth column
indicates that the ratio of the average final sample size (N) to the
optimal sample size (n�) is close to 1. Furthermore, notice that the
mean confidence interval width is just below the desired width.
Thus, our procedure is shown to work well in a variety of situa-
tions, demonstrating empirically (for finite samples) what has been
shown mathematically (under large sample theory).

Coefficient of Variation

Suppose X1, X2, . . . , Xn are independent random samples from
a distribution F with mean � and variance �2, then using Theorem
1, the asymptotic distribution of the sample coefficient of variation
kn � sn ⁄ X� n is

�n(kn � 	) ¡
L

N(0, �2), (29)

where

�2 �
�4

4�2�2 � �2

4�2 �
�3

�3 � �4

�4 (30)

and �� � E[(X � �)�] for � � 3, 4, provided the fourth moment
exists. This approach yields the same asymptotic variance as found
by Albrecher, Ladoucette, and Teugels (2010) (although they used
a different method to derive the expression). Thus, kn, which is a
consistent estimator of the population coefficient of variation 	 �

�/� is distributed asymptotically normal with mean 	 and asymp-
totic variance �2/n.

Using Heffernan (1997) and Abbasi, Hemati, and Jafarei (2010),
we have estimators based on U-statistics for the population third
central moment, namely �3 � E[X � �]3 and the population fourth
central moment, namely �4 � E[X � �]4. Let the estimator be
denoted, respectively, as �̂3n and �̂4n. The expressions of �̂3n and
�̂4n are given in Equations 78 and 79 in Appendix B. Thus we have
a consistent estimator of �2 which is given as

�̂n
2 � max
Vn

2, n�3� (31)

where Vn
2 is given by

Vn
2 �

�̂4n

4X� n
2sn

2
�

sn
2

4X� n
2

�
�̂3n

X� n
3

�
sn

4

X� n
4
. (32)

The small positive term n�3, for large sample size n, is used to
ensure that we do not get a negative estimate of �2 as there is a
nonzero chance, though it may be small, that the sample estimate
of Vn

2 may be negative. Theorem 5 shows that the 100�1 � ��%
confidence interval for the coefficient of variation given by

�kN �
z� ⁄ 2�̂N

�N
, kN �

z� ⁄ 2�̂N

�N
� (33)

achieves the specified coverage probability of 1 � , asymptoti-
cally. Additionally, Theorem 5 proves that the confidence interval

Table 1
Summary of Final Sample Size for 90% Confidence Interval for �

Distribution
� N�

n� N� /n�

p
w� N(�) (sN� ) (sp)

N (10, 1) .3 548.5 548 1.001 .8986 .1998
N (9.7, 1) (.2) (.0013) (.0043)
N (10, 1) .4 553.3 552 1.002 .9056 .1998
N (9.6, 1) (.2) (.0017) (.0041)
N (10, 1) .5 559.5 559 1.001 .899 .1998
N (9.5, 1) (.2) (.0022) (.0043)
LN (2.991, .09975) .3 548.7 549 .9994 .9012 .1995
LN (2.96, .1028) (.2) (.0051) (.0042)
LN (2.991, .09975) .4 554.2 555 .9986 .9016 .1995
LN (2.95, .1039) (.2) (.0058) (.0042)
LN (2.991, .09975) .5 560 562 .9964 .8962 .1990
LN (2.939, .105) (.2) (.0082) (.0043)
Ga (100, .1) .3 548.6 548 1.001 .8968 .1997
Ga (94.09, .1031) (.2) (.0037) (.0043)
Ga (100, .1) .4 553.7 554 .9995 .897 .1996
Ga (92.16, .1042) (.2) (.0046) (.0043)
Ga (100, .1) .5 559.8 560 .9997 .8948 .1996
Ga (90.25, .1053) (.2) (.0056) (.0043)

Note. � is the population standardized mean difference; N� is the mean
final sample size; p is the estimated coverage probability; � is the upper
bound of the length of the confidence interval for �; s(N� ) is the standard
deviation of the mean final sample size (i.e., standard error of the final
sample size); n� is the theoretical sample size if the procedure is used with
the population parameters; s(p) is the standard error of p; w� N average length
of confidence intervals for � based on N observations; tabled values are
based on 5,000 replications of a Monte Carlo simulation study from
distributions Normal (N) with parameters mean and variance, lognormal
(LN) with parameters log-mean and log-sd, and Gamma (Ga) with param-
eters shape and scale. Table 2

Summary of Final Sample Size for 95% Confidence Interval for �

Distribution
� N�

n� N� /n�

p
w� N(�) (sN� ) (sp)

N (10, 1) .3 778.3 777 1.0020 .9538 .1999
N (9.7, 1) (.2) (.0016) (.0003)
N (10, 1) .4 785.0 784 1.0010 .9494 .1999
N (9.6, 1) (.2) (.0021) (.0031)
N (10, 1) .5 793.6 793 1.0010 .9456 .1999
N (9.5, 1) (.2) (.0026) (.0032)
LN (2.991, .09975) .3 779.4 779 1.0000 .9468 .1998
LN (2.96, .1028) (.2) (.0046) (.0032)
LN (2.991, .09975) .4 787.3 787 1.0000 .9464 .1998
LN (2.95, .1039) (.2) (.0054) (.0032)
LN (2.991, .09975) .5 796.6 798 .9983 .9458 .1995
LN (2.939, .105) (.2) (.0086) (.0032)
Ga (225, .0667) .3 778.5 778 1.0010 .9428 .1998
Ga (216.1, .0680) (.2) (.0037) (.0033)
Ga (225, .0667) .4 785.2 785 1.0000 .9448 .1998
Ga (213.2, .0685) (.2) (.0046) (.0032)
Ga (225, .0667) .5 793.9 794 .9999 .9448 .1997
Ga (210.2, .0690) (.2) (.0063) (.0032)

Note. � is the population standardized mean difference; N� is the mean
final sample size; p is the estimated coverage probability; � is the upper
bound of the length of the confidence interval for �; s(N� ) is the standard
deviation of the mean final sample size (i.e., standard error of the final
sample size); n� is the theoretical sample size if the procedure is used with
the population parameters; s(p) is the standard error of p; w� N average length
of confidence intervals for � based on N observations; tabled values are
based on 5,000 replications of a Monte Carlo simulation study from
distributions Normal (N) with parameters mean and variance, lognormal
(LN) with parameters log-mean and log-sd, and Gamma (Ga) with param-
eters shape and scale.
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for 	 given in Equation 33 always achieves a sufficiently narrow
width (less than �).

Characteristics of the final sample size: An empirical
demonstration. We now demonstrate the properties of our
method using a Monte Carlo simulation for constructing 100
�1 � ��% confidence interval for population coefficient of varia-
tion, 	, such that the width of the confidence interval is less than
� and the confidence interval achieves, asymptotically, the spec-
ified coverage probability 1 � . This is done by implementing the
sequential procedure via Monte Carlo simulations by drawing
random samples from two pairs of distributions: gamma, lognor-
mal and normal.

We implement the purely sequential procedure and, for the
sample size (N), we estimate the mean sample size (N�), the
standard error (s(N�)) of N�, coverage probability (p) and the stan-
dard error of estimated coverage probability (sp), and mean length
of confidence intervals w� N, based on 5,000 replications by drawing
random samples from several distributions (gamma, lognormal,
and normal). The parameters of the distribution are chosen to
represent possible scenarios in research. In all cases, the number of
replications used is 5,000. In each replication, we first draw m
observations from the populations and then follow the algorithm of
the purely sequential procedure by drawing m=� 1 observations at
each stage after the pilot stage. We summarize our findings in
Tables 1 and 2. In all cases in Tables 3 and 4, the sixth column
indicates that the coverage probability is close to the target cov-
erage probability of 90% and 95%, respectively. Also in all cases,
the average width is less than �. The fifth column indicates that the

ratio of the average final sample size (N) to the optimal sample size
(n�) is close to 1.

Regression Coefficient: Simple Linear Model

Suppose (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are pairs of observations
from a simple linear regression model of the form

Yi � 
0 � 
1Xi � �i (34)

where Yi is the dependent variable, Xi is the independent variable,
εis are independent and identically distributed errors, and 
0 and

1 are the unknown regression parameters. Now, we consider the
effect of X on Y, which is the slope 
1 � �XY /�X

2, where �XY is the
population covariance between X and Y, and �X

2 is the population
variance of X. Since the value of 
1 is unknown in practice, we
estimate it by

b1n �
� (xi � x�n)(yi � y�n)

� (xi � x�n)
2

�
sXYn

sXn
2 , (35)

where sXYn is the unbiased estimator for covariance between X and
Y for a sample of size n and sXn

2 is the unbiased estimator for
variance of X for a sample of size n. Using Theorem 6, the Central
Limit Theorem for b1n � sXYn/sXn

2 is

�n(b1n � 
1) ¡
L

N(0, �2), (36)

where the asymptotic variance is given by

Table 3
Summary of Final Sample Size for 90% Confidence Interval for 	

Distribution
	 N�

n� N� /n�

p
w� N(�) (sN� ) (sp)

N (10, 4) .2 178.8 147 1.2170 .8844 .0351
(.04) (.0049) (.0049)

N (10, 9) .3 368.6 360 1.0240 .889 .0389
(.04) (.0104) (.0044)

N (10, 16) .4 713.5 715 .9979 .8916 .0397
(.04) (.0164) (.0044)

LN (1, .1980) .2 182.3 159 1.1470 .8650 .0350
(.04) (.0080) (.0048)

LN (1, .2936) .3 397.6 429 .9268 .868 .0388
(.04) (.0245) (.0048)

LN (1, .3853) .4 852.5 971 .8780 .8598 .0397
(.04) (.0592) (.0049)

Ga (25, .6) .2 173.0 141 1.2270 .8794 .0347
(.04) (.0054) (.0046)

Ga (11.11, .6) .3 335.2 332 1.0100 .8780 .0386
(.04) (.0129) (.0046)

Ga (6.25, .6) .4 610.0 628 .9713 .8810 .0396
(.04) (.0239) (.0046)

Note. 	 is the population coefficient of variation; N� is the mean final
sample size; p is the estimated coverage probability; � is the upper bound
of the length of the confidence interval for �; s(N� ) is the standard deviation
of the mean final sample size (i.e., standard error of the final sample size);
n� is the theoretical sample size if the procedure is used with the population
parameters; s(p) is the standard error of p; w� N average length of confidence
intervals for � based on N observations; tabled values are based on 5,000
replications of a Monte Carlo simulation study from distributions Normal
(N) with parameters mean and variance, lognormal (LN) with parameters
log-mean and log-sd, and Gamma (Ga) with parameters shape and scale.

Table 4
Summary of Final Sample Size for 95% Confidence Interval for 	

Distribution
	 N�

n� N� /n�

p
w� N(�) (sN� ) (sp)

N (10, 4) .2 241.2 208 1.1600 .9422 .0363
(.04) (.0063) (.0033)

N (10, 9) .3 519.1 510 1.0180 .9408 .0392
(.04) (.0126) (.0033)

N (10, 16) .4 1014 1015 .9992 .9458 .0398
(.04) (.0195) (.0032)

LN (1, .1980) .2 247.4 225 1.100 .9234 .0362
(.04) (.0105) (.0038)

LN (1, .2936) .3 570.3 608 .9381 .9244 .0392
(.04) (.0322) (.0037)

LN (1, .3853) .4 1243 1378 .9022 .9210 .0398
(.04) (.0770) (.0038)

Ga (25, .6) .2 233 200 1.1650 .9342 .0359
(.04) (.0071) (.0035)

Ga (11.11, .6) .3 472.5 472 1.0010 .9356 .0390
(.04) (.0163) (.0035)

Ga (6.25, .6) .4 871.3 892 .9768 .9402 .0397
(.04) (.0301) (.0034)

Note. 	 is the population coefficient of variation; N� is the mean final
sample size; p is the estimated coverage probability; � is the upper bound
of the length of the confidence interval for �; s(N� ) is the standard deviation
of the mean final sample size (i.e., standard error of the final sample size);
n� is the theoretical sample size if the procedure is used with the population
parameters; s(p) is the standard error of p; w� N average length of confidence
intervals for � based on N observations; tabled values are based on 5,000
replications of a Monte Carlo simulation study from distributions Normal
(N) with parameters mean and variance, lognormal (LN) with parameters
log-mean and log-sd, and Gamma (Ga) with parameters shape and scale.
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�2 �
�22

�X
4 �

2�XY�31

�X
6 �

�XY
2 �40

�X
8 . (37)

A consistent estimator for �2, similar to that given in Equation
85 from Appendix B, can be used to construct 100�1 � ��%
confidence interval for the regression parameter 
1 without con-
sidering any normality assumption of the errors. Theorem 7 shows
that the 100�1 � ��% confidence interval for regression parameter

1 is given by

�b1N �
z� ⁄ 2�̂N

�N
, b1N �

z� ⁄ 2�̂N

�N
� (38)

and achieves the specified coverage probability of 1 � , asymp-
totically. Additionally, Theorem 7 proves that the confidence
interval for 
1 given in Equation 38 achieves a sufficiently narrow
width (less than �) using the sequentially estimated sample size,
which is an estimate of the theoretically optimal sample size.

An Extension: Unbalanced Design

There are situations in which the sample sizes per group may be
different. Under such designs, we can also use the sequential
procedure. As an example, we consider a single-factor between-
subjects unbalanced design related to Example 6. For the kth
group, suppose Xk1, . . . , Xknk

are independent and identically dis-
tributed random variables with unknown means �k and unknown
variances �k

2. Thus, in total, there are n � �k�1
K nk observations

from K groups. Then, the population contrast related to the corre-
sponding scenario is given by

� � �
k�1

K

ck�k, (39)

where c1, . . . , cK are known coefficients and �k�1
K ck � 1. An

estimator of the contrast � is �̂n � �k�1
K ckX� knk

, where
X� 1n1

, . . . , X� KnK
are the group means with n � �k�1

K nk. Now,

Var��̂n� � �
k�1

K ck
2�k

2

nk
. (40)

Thus, the 100�1 � ��% confidence interval for � is given by

��̂n � z� ⁄ 2��
k�1

K ck
2�k

2

nk
, �̂n � z� ⁄ 2��

k�1

K ck
2�k

2

nk
�. (41)

The length of the confidence interval given in Equation 41 is

wn � 2z� ⁄ 2��
k�1

K ck
2�k

2

nk
. (42)

Here, we need to find the minimum total sample size with the
restriction

2z� ⁄ 2��
k�1

K ck
2�k

2

nk
� � )�

k�1

K ck
2�k

2

nk
� �2

4z� ⁄ 2
2 . (43)

Using Lagrange multiplier method, we define a function

gnk,� � �
k�1

K

nk � ���
k�1

K ck
2�k

2

nk
� �2

4z� ⁄ 2
2 �. (44)

We note that Lagrange multiplier method is a method which
can be used to find local minima or local maxima of a function
under equality constraints (for e.g., Vapnyarskii, 2001). By
partial differentiation of gnk,� with respect to nk and �, we have
for i � 1, . . . , K

�
�nk

gnk,� � 0) 1 � �
ck

2�k
2

nk
� 0) nk � ��ck�k (45)

and

�
��

gnk,� � 0)�
k�1

K ck
2�k

2

nk
� �2

4z� ⁄ 2
2 )�

k�1

K ck
2�k

2

��ck�k

� �2

4z� ⁄ 2
2

)�� �
4z� ⁄ 2

2 �k�1
K ck�k

�2 .

(46)

Using Equations 45 and 46, the optimum sample size for the kth
group is given by

nk� � �4ck�kz� ⁄ 2
2

�2 ��
k�1

K

ck�k. (47)

Thus nk� (k � 1, 2, . . . , K) is the optimum sample size that is
required from the kth group so as to have a confidence interval of
width less than �. But for k � 1, 2, . . . , K, nk� are unknown. So,
as before, in order to estimate the optimum sample size for all K
groups, we use a sequential method.

Concluding Remarks

In psychology and related disciplines, estimating effect sizes
and so is quantifying their uncertainty is important. Correspond-
ingly, wide confidence intervals are undesirable and illustrate the
uncertainty with which the population value has been estimated, as
some specified level of confidence. Intervals that illustrate a wide
range for the population value of the parameter of interest have
been termed “embarrassingly large” (Cohen, 1994, p. 1102), with
Cohen speculating that the reason researchers seldom, at the time,
reported confidence intervals was due to their (embarrassingly
large) widths. The AIPE approach to sample size sought to solve
embarrassingly large widths by explicitly planning sample size for
sufficiently narrow intervals. Although these methods are useful,
they have their own shortcoming, namely that traditional applica-
tions of AIPE tend to require knowledge or speculation of param-
eters and distribution in order to plan the necessary sample size.
Further, traditional applications of AIPE require assumptions
about the type of distribution from which the scores were sampled
(e.g., normal). This article solves this problem of requiring popu-
lation parameters and known distributional forms in order to
implement the AIPE approach to sample size planning and it does
so for a general class of effect size. Importantly, we have worked
in a distribution-free environment, where we have not made un-
tenable assumptions about the distribution of the scores from
which the observations are sampled. We believe that our approach
advances the fields of effect size and sample size planning to
improve the state of research design and analysis in psychology
and related disciplines. The accuracy in parameter estimation for
effect sizes of interest is a an important issue (e.g., see Maxwell,
Kelley, & Rausch, 2008, for a review) and now the approach can

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

235SEQUENTIAL AIPE FOR A GENERAL CLASS OF EFFECT SIZE



be implemented easily without assumptions of known population
values and known distributional forms.

For any given population, the variance of the effect size esti-
mator decreases as sample size increases, holding everything else
constant. This, in turn, decreases the width of the corresponding
confidence interval for the effect size parameter as well as the
coverage probability, the probability that the confidence interval
will contain the true effect size parameter value. An optimal
sample size is desired which can be used to construct a 100�1 �
��% confidence interval for the effect size parameter, such that the
confidence interval will be as narrow as specified (i.e., the width
of the confidence interval will be less than � and the coverage
probability of the interval is approximately 1 � ). A fixed sample
size procedure cannot achieve both the coverage probability and
the width less than � simultaneously. We have shown in this
article how to solve this problem for the general effect size
parameter under a distribution-free environment.

Our method, unlike fixed sample size procedures, is not based
on the assumption on the distribution of the data and the popula-
tion parameters required to estimate the theoretically optimal sam-
ple size (i.e., the sample size if all parameters were known). In this
article, we have developed a sequential procedure which provides
an estimate of the theoretically true optimal sample size required to
construct a 100�1 � ��% confidence interval for the effect size
parameter such that the confidence interval will be narrow—that is
the width of the confidence interval will be less than � and the
coverage probability of the interval will be approximately 1 � 
without assuming any specific distribution for the data. The lack of
any assumption on the distribution of the data is a key part of the
contribution, as in many situations there is no reason to believe that
the distribution of the scores is gamma, lognormal, normal, or
some other mathematical distribution.

The sequential procedure we developed in this article ensures
that the width of the confidence interval for the general effect size
will be less than the prespecified upper bound, �, and also the
coverage probability is approximately 1 � , assuming throughout
that the observations are independent and identically distributed
but with no assumption of the distribution of the data. Addition-
ally, the ratio of the average final sample size and the theoretically
optimal sample size is approximately 1, as we showed with theo-
rems as well as demonstrating empirically via the Monte Carlo
demonstrations.

The traditional AIPE procedure, unlike a sequential AIPE pro-
cedure, requires the knowledge or speculation of parameters in
order to plan the necessary sample size. After getting the complete
data, with sample size as given by the traditional AIPE procedure,
the required confidence interval for the effect size is computed. In
the sequential AIPE, the analysis of the data is carried out in
stages, as it comes, and then finally the confidence interval for the
effect size is computed. Unlike traditional AIPE, in the sequential
AIPE the data collection always stops after the width of the
confidence interval is smaller than �. The traditional AIPE pro-
cedure can be used when the population parameters necessary to
compute the required sample size are fully known, however this is
not practically possible. In fact, Sen and Ghosh (1981) argued that
sequential procedures are economical in terms of sample size.

There are several limitations of our method because the method
does not directly consider (a) the problem of continuous availabil-
ity of participants or observations after each stage; (b) potential

difficulty in specification of m=; (c) difficulty in specification of �
and confidence coefficient (1 � ); (d) no knowledge of the final
sample size at the beginning of the study; and (e) the problem of
unbounded confidence intervals (e.g., single-sided confidence in-
tervals which have a limit of positive or negative infinity).

The first limitation is the problem of assuming that the partic-
ipants or observations can be readily available as and when re-
quired. In some situations, after applying stopping rules for the
observations collected up to a certain stage, we may need to wait
until another opportunity to obtain another m= observations. How-
ever, a similar kind of situation may also arise when using a
traditional AIPE method as well.

The second limitation is that we need to prespecify the values of
the choice of m=, which represents the number of observations that
will be added in each stage after the pilot sampling stage or first
stage. In some situations it is as easy to collect more than one
observation as it is collecting a single observation at every stage.
So, as per convenience, the value of m= should be accordingly
decided based on economic considerations. For example, Chat-
topadhyay and Kelley (2017) discussed the choice of m= using an
application of sequential procedure that considered both cost and
accuracy for estimating standardized mean difference of the read-
ing scores while studying the impact of same language subtitling
(SLS) on reading ability. Suppose the data collection on the
reading ability of the students is performed during in-school visits
by a surveyor. On any working day at the school, suppose the
surveyor is allowed only 2 hr for interviewing students and every
day, a certain amount of money is provided to the surveyor for
travel cost and an hourly wage, say $60 for 2 hr of work and travel.
Because there will be two groups, the choice of m= could be 1, but
could be any other value, such as 5 or 10. As the surveyor may just
as easily collect m= � 10 as m= � 1, we generally recommend a
larger value of m=, all other things being equal. Nevertheless, there
is no uniform method which can help take a decision on m= that
will fit all scenarios.

In a conceptually similar situations, but yet in a different con-
text, consider the way in which a computer adaptive test (CAT), in
which the final number of items is usually unknown, additional
items are presented to an examinee until the desired accuracy in
the estimation of examinee’s ability is achieved. Obtaining one
more samplings (in CAT, presenting an additional item), that is
taking m=� 1 is better than taking m=� 10, that is giving 10 more
additional items at a time after pilot stage may ultimately result in
oversampling. This is because after a certain stage, suppose only
two more additional items are actually required, but due to per-
specification of m=� 10 we have to present eight more items. This
will require participants taking more items than are actually re-
quired.

The third limitation is that of specifying the value of �, as there
is not uniformly appropriate value. This limitation, however, also
exists in traditional AIPE method. This is similar to some extent to
the question of “what is the appropriate value of statistical power?”
The answer has rules of thumb (e.g., 80% power, power � 1 � ,
power � 1 � 2, etc.), but no universal agreement on what should
be used. We see this limitation as a type of paradox of choice (e.g.,
Schwawrtz, 2004), in that � can be specified as any (positive)
value, which the smaller � the more accurate an estimate. Never-
theless, by requiring a specific value of �, researchers may decide
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that because there is no obvious value, they do not implement the
procedure.

The fourth limitation of the sequential AIPE procedure is that of
not knowing the final sample size at the start of the study. Since,
our sequential procedure is a data-driven procedure, it may lead to
a sample size that is so large that it is unreasonable to obtain with
the available resources. Nevertheless, the problem of not knowing
the true final sample size at the beginning of the study can be
palliated by using a sensitivity analysis with parameters and sup-
posed distributions in the sequential framework. This will provide
a lot of information about the sensitivity of the final sample size in
a variety of scenarios.

The fifth limitation of the sequential AIPE procedure is due to
the ratio form. If the numerator of an estimate is nonzero but the
denominator is near zero, the ratio can be extremely large in an
absolute sense. However, this is not just the problem in our case
but is true for effect sizes (estimates) that are (a) functions of ratios
and (b) not bounded. Bounded ratios, such as the correlation
coefficient, will not suffer from this potential issue. A similar
situation in the context of mediation is discussed in (Preacher &
Kelley, 2011; see also Fieller, 1954).

The procedure we developed for the sequential accuracy in
parameter estimation problem of general effect size is applied to
several effect sizes such as coefficient of variation, standardized
mean difference, and regression coefficient among others. The
basic theory of sequential methods is based on the idea of “learn-
as-you-go” with the stopping rule instructing a research to con-
tinue sampling or stopping. Based on the limitations of fixed
sample size planning procedures with regard to assumed data
distribution and assumed knowledge of population parameters, use
of sequential procedures in psychology and related fields can be
beneficial. Recent methodological advances for sequential meth-
ods, for example, consider the standard error and study cost for the
coefficient of variation (Chattopadhyay & Kelley, 2016) and for
the standardized mean difference (Chattopadhyay & Kelley,
2017). This is the first article, however, to make developments for
AIPE in the context of sequential methods and to do so for a
general class of effect size measures.
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Appendix A

Mathematical Proof of the Method

U-Statistics, Hoeffding’s Decomposition, and
Asymptotic Variance

U-statistics are a class of statistics introduced by Hoeffding
(1948), which can be used to construct an unbiased estimator of
some parameter associated with any known or unknown distribu-
tion function. The U-statistic associated with some parameter �(r)

can be defined as

Hn
(r) � �nr �

�1

�
(n,r)

h(r)(Xi1
, . . . , Xir

), (48)

where the summation is over all possible combinations of indices
(i1, . . . , ir) such that 1 � i1 � i2 � . . . � ir � n, and r � n and h(r)(.)
is a symmetric kernel of degree r such that E�h�r��Xi1

, . . . , Xir
�� � �. The

degree, r, is the smallest number of random variables required
to estimate the parameter, �(r), unbiasedly. Examples of U-
statistics can be found in Chattopadhyay and Kelley (2016, 2017).

Next, proceeding similarly as Lee (1990), for c � 1, . . . , r, we
define

hc(x1, . . . , xc) � E[h(X1, . . . , Xr) | (x1, . . . , xc)] � �(r). (49)

Next, we define

�1(x1) � h1(x1), (50)

�2(x1, x2) � h2(x1, x2) � �1(x1) � �1(x2), (51)

and

�r(x1, . . . , xr) � hr(x1, . . . , xr) � �
c�1

r

�c(xc) � �
1�i1i2�r

�2(xi1
, xi2

)

� . . . � �
1�i1. . .ir�1�r

�r�1(x1, . . . , xir�1
).

(52)

Then, the U-statistic, using Hoeffding’s decomposition, can be
defined as

Hn
(r) � �(r) � r

n�
c�1

r1

�1(Xc) � Mn, (53)

where Mn is the remainder term composed of �2, . . . , �r�1, such
that Mn � Op(n�1) if E�h�r��Xi1

, . . . , Xir
��2  �. Using Lee (1990),

the variance of Hn
(r) is r2

n �2 � O�n�2�, where �2 � E[�1
2(X1)]. Thus,

the asymptotic variance of Hn
(r) is

Var�Hn
(r)� � r2

n �2. (54)

The asymptotic variance expression of a U-statistic given in
Equation 54 is used to find the asymptotic variance of Tn, the
estimator of the effect size, �, in the next subsection.

Central Limit Theorem for Tn

Our procedure depends on the central limit theorem for the
effect size parameter �, defined in Equation 1, due to the
distribution-free scenario we have used. As noted earlier, T1n and
T2n are linear combinations of U-statistics. We note that T1n �
��k�1

K l1kUkn� and T2n � ��k�1
K l2kVkn�, where Ukn values are

U-statistics with kernel h1k of degree r1k for estimating the �1k and
Vkn values are U-statistics with kernel h2k of degree r2k for esti-
mating �2k.

Theorem 1. Suppose the parent distribution(s) is(are) such
that E[Ukn

2 ] � � and E[Vkn
2 ]) � � for k � 1, . . . , K. Then, the

Central Limit Theorem corresponding to Tn is

�n(Tn � � ) ¡
L

N(0, �2), (55)

where �2 is the asymptotic variance given by �2 � D��D, and

D� � �g1
′ ��1�

g2��2�
,

�g1��1�g2
′ ��2�

g2
2��2�

 is a vector and

� � � �1
2 �12

�12 �2
2 .

Here, �1
2 and �2

2 are, respectively, the asymptotic variances of
�n�T1n � �1� and �n�T2n � �2� and the asymptotic covariance of
�n�T1n � �1� and �n�T2n � �2� is �12.

Before we prove the main theorem, let us first prove the fol-
lowing lemma.

Lemma 1. Asymptotic variances of �n�T1n � �1� and �n
�T2n � �2� are �1

2 and �2
2 and the asymptotic covariance of �n

�T1n � �1� and �n�T2n � �2� is �12.
Proof. Using the Hoeffding’s decomposition as in Equation

53, we can write Ukn and Vkn as

Ukn �
r1k

n �
c�1

r1k

�1k(Xkc) � Op(n
�1) (56)

and

Vkn �
r2k

n �
c�1

r2k

�2k(Xkc) � Op(n
�1), (57)

with �1k(Xkc) and �2k(Xkc) being equal to, respectfully,

�1k(Xkc) � EF[h1k(Xk1, . . . , Xkr1k
) | Xkc � xkc] � �1k (58)

and

�2k(Xkc) � EF[h2k(Xk1, . . . , Xkr2k
) | Xkc � xkc] � �2k. (59)

(Appendices continue)
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Suppose that �1k
2 � E[�11

2 (Xkc)] and �2k
2 � E[�21

2 (Xkc)] and �1k2k �
Cov[�1k

2 (Xkc), �2k
2 (Xkc)]. Using Equation 54, the asymptotic variance

of Ukn is r1k
2 �1k

2 /n for k � 1, 2, . . . , K and the asymptotic variance of
Vkn is r2k

2 �2k
2 /n for k � 1, 2, . . . , K. Then, we have

E��
k�1

K

l1kUkn� �
k�1

K

l1k�1k, (60)

and

E��
k�1

K

l2kVkn� �
k�1

K

l2k�2k, (61)

with

Var��
k�1

K

l1kUkn� �
k�1

K

l1k
2 r1k

2 �1k
2 ⁄ n � �1

2 ⁄ n, (62)

and

Var��
k�1

K

l2kVkn� �
k�1

K

l2k
2 r2k

2 �2k
2 ⁄ n � �2

2 ⁄ n. (63)

The asymptotic covariance of T1n and T2n is

Cov��
k�1

K

l1kUkn, �
k�1

K

l2kVkn� �
k�1

K

�
k�1

K

l1kl2kCov�Ukn, Vkn�

� �
k�1

K

�
k�1

K

l1kl2kr1kr2k�1k2k ⁄ n � �12 ⁄ n.

(64)

□
Now, let us prove Theorem 1.
Proof. Using Lee (1990), Yn � ��n�T1n � �1�,�n�T2n �

�2��� ¡
L

N2�0, ��, where

� � � �1
2 �12

�12 �2
2 .

Now, define the ratio R�u, v� �
g1�u�
g2�v�

, if g2(v) � 0. Using

Taylor’s expansion, we can write

�n(Tn � � ) � �n(R(T1n, T2n) � R(�1, �2)) � D� Yn � �n � Yn�2,

(65)

where D� � �g1
′ ��1�

g2��2�
,

�g1��1�g2
′ ��2�

g2
2��2�

, and �n ¡ 0 if �(T1n, T2n)= �

(�1, �2)=�2 ¡ 0. Hence, �n�Yn�2 ¡
P

0 as n ¡ �. Thus, the central
limit theorem for the effect size of the type defined in Equation 4
shows that as n ¡ �,

�n(Tn � �) ¡
d

N(0, �2), (66)

where �2 is the asymptotic variance given by �2 � D��D and ¡
d

indicates convergence in distribution (e.g., Lehmann & Romano,
2005, p. 425). □

Lemma 2. Under the assumption that E��̂n
2� exists, for any

� � 0, the stopping time N is finite, that is, P(N � �) � 1.
Proof. We proceed along the lines of De and Chattopadhyay

(2015). Note that �̂n
2 is a strongly consistent estimator of �2.

Therefore, for any fixed � � 0,

P(N � � ) � lim
n¡�

P(N � n) � lim
n¡�

P�n  �2
z� ⁄ 2

� �2
��̂n

2 � n�1�� � 0.

(67)

The last equality is obtained since �̂n
2
¡ � almost surely as n ¡

�. Thus, P(N � �) � 1. □

Lemma 3. If the parent distribution(s) is(are) such that
E��̂n

2� exists, then the stopping rule in (22) yields

N
n�

¡
P

1 as N¡ �, (68)

where ¡
P

indicates convergence in probability (e.g., Lehmann &
Romano, 2005, p. 431).

Proof. The definition of stopping rule n in Equation 22 yields

�2
z� ⁄ 2

� �2
�̂N

2 � N � mI(N � m) � �2
z� ⁄ 2

� �2
��̂N�1

2 � (N � 1)�1�.

(69)

Because N ¡ � asymptotically as � 2 0 and �̂n ¡ � in
probability as n ¡ �, by Theorem 2.1 of Gut (2009), �̂N

2
¡ �2 in

probability. Hence, dividing all sides of Equation 69 by n� and
letting � 2 0, we prove N/n� ¡ 1 asymptotically as � 2 0. □

Main Theorem

Theorem 2. If the parent distribution(s) is(are) such that
E��̂n

2� exists, then the stopping rule in Equation 22 yields:

Part 1: P�TN �
z� ⁄ 2�̂N

�N
 �  TN �

z� ⁄ 2�̂N

�N
�¡ 1 � � as N¡ � .

Part 2:
2z� ⁄ 2�̂N

�N
� �. (70)

Proof. Here we proceed along the lines of Chattopadhyay and
De (2016).

Part 1: We define n1 � (1 � �)n� and n2 � (1 � �)n� for 0 �
� � 1. From Lee (1990),

Yn � [�n(T1n � �1), �n(T2n � �2)]� ¡
L

N2(0, �),

(Appendices continue)
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where

� � � �1
2 �12

�12 �2
2.

So we need to show that YN ¡
L

N2�0, ��. Let D= � [a0, a1].
Then D�YN � D�Yn�

� �D�YN � D�Yn�
�. It is therefore sufficient

to show that �D�YN � D�Yn�
� ¡

P
0 as N ¡ �. Note that

(D�YN � D�Yn�
) � a0�N(T1N � T1n�

) � a1�N(T2N � T2n�
)

� �� N
n�

� 1�D�Yn�
. (71)

For a fixed ε � 0,

P
�a0�N(T1N � T1n�
) � a1�N(T2N � T2n�

)�� ��
� P
�a0�N(T1N � T1n�

) � a1�N(T2N � T2n�
)�

� ε, �N � n��  �n�} � P
�N � n�� � �n��

� P
 max
n1nn2

�n�T1n � T1n�� � �
2|a0|�

� P
 max
n1nn2

�n�T2n � T2n�� � �
2|a1|� �P
�N � n�� � �n��

� P� max
n1nn2

�n��
k�1

K

l1kUkn � �
k�1

K

l1kUkn�
�� �

2|a0|
�

� P� max
n1nn2

�n��
k�1

K

l2kVkn � �
k�1

K

l2kVkn�
�� �

2|a1|
�

� P
�N � n�� � �n��

� �
k�1

K

P
 max
n1nn2

�n�Ukn � Ukn�� � �
2�a0�Kl1k�

� �
k�1

K

P
 max
n1nn2

�n�Vkn � Vkn�� � �
2�a1�Kl2k�

� P
�N � n�� � �n��.

(72)

Using Lemma 3, we have N ⁄n� ¡
P

1, and Ukn and Vkn, k � 1, . . . ,
K are U-statistics which satisfy Anscombe’s uniformly continuous
in probability condition. We therefore conclude that for all ε � 0,
?� � 0, N0 � 0 such that

P
�a0�N(T1N � T1n�
) � a1�N(T2N � T2n�

)�� ��  � , ∀ N � N0.

This implies that a0�N�T1N � T1n�
� � a1�N�T2N � T2n�

� ¡
P

0 as

N ¡ �. Now, D�Yn�
¡
L

N2�0, �� and using Lemma 3, we have

N ⁄n� ¡
P

1 and, then ��N ⁄n� � 1�D�Yn�
¡
P

0 as N ¡ �. Therefore,

from Equation 71, we know that �D�YN � D�Yn�
� ¡

P
0, that is,

YN ¡
L

N2�0, ��. We define R�u, v� �
g1�u�
g2�v�, if g2(v) � 0. By

Taylor series expansion, we can expand R(T1N, T2N) around
(�1, �2) as

R(T1N, T2N) � R(�1, �2) �
g1

′ (�1)
g2(�2)

(T1N � �1)

�
g1(�1)g2

′ (�2)

g2
2(�2)

(T2N � �2) � hN,

where

hN � 1
2 �g1�(a)

g2(b)(T1N � �1) �
2g1

′ (a)g2
′ (b)

g2
2(b)

(T1N � �1)(T2N � �2)

�g1(a)�g2�(b)g2
2(b) � 2g2

′ (b)g2(b)

g2
4(b) �(T2N � �2)

2�,

a � �1 � p(T1N � �1), b � �2 � p(T2N � �2), and p � (0, 1).

(73)

Thus,

�N�R(T1N, T2N) � R(�1, �2)� � D�YN � �NhN (74)

where D� � �g1
′ ��1�

g2��2�
, �

g1��1�g2
′ ��2�

g2
2��2�

.

From Lee (1990) and Anscombe’s CLT (Anscombe, 1952),
�N�UkN � �1k� and �N�VkN � �2k� converge in distribution to
normal distributions. This implies that �N�T1N � �1� and �N
�T2N � �2� also converge in distribution to normal. Also, both
(T1N � �1) and (T2N � �2) converge to 0 almost surely. Hence,

�NhN ¡
P

0.
Therefore,

�N(TN � �) � �N�R(T1N, T2N)

� R(�1, �2)� ¡
L

N(0, D��D) as N ↑ � .

Part 2: Using stopping rule N in Equation 22 we have, for all N,

�2
z� ⁄ 2

� �2
�̂N

2 � N) 4
z� ⁄ 2

2

N �̂N
2 � �2

) 2z� ⁄ 2
�̂N

�N
� �.

□

(Appendices continue)
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Appendix B

Application

In this appendix we demonstrate how our method applies to
selected effect sizes.

Standardized Mean Difference

Theorem 3

If the parent distribution for both groups is such that the corre-
sponding fourth moments exist, then the stopping rule (22) adapted
for the standardized mean difference yields the asymptotic consis-
tency property, that is:

�n�dn � �� ¡
L

N(0, �2),

where

�2 � 2 �
(�1 � �2)(�13 � �23)

�4 �
(�1 � �2)

2

4�6 ��14 � �24

4 � �4

2 �.

Proof

The asymptotic joint distribution of the sample mean difference

X� 1n � X� 2n and the pooled sample variance spn
2 � �1

2�s1n
2 � s2n

2 � is
given as

�n�(X� 1n � X� 2n) � (�1 � �2)

spn
2 � �2 ¡

L
N2(0, �)

where

� �� 2�2 1
2(�13 � �23)

1
2(�13 � �23)

1
4(�14 � �24 � 2�2).

Applying the delta method, we have the asymptotic distribution
of the sample standardized mean difference dn � �X� 1n �

X� 2n� ⁄spn, an estimator of the population standardized mean differ-
ence � � (�1 � �2)/�, to be

�N(dN � �) ¡
L

N(0, �2),

where

�2 � 2 �
(�1 � �2)(�13 � �23)

�4 �
(�1 � �2)

2

4�6 ��14 � �24

4 � �4

2 �
and �kj is the jth central moment of distribution Fk, for k � 1, 2.

□

An estimator based on U-statistics for the population third
central moment, that is, �k3 � E[Xk � �k]

3 and, for the population
fourth central moment �k4 � E[Xk � �k]

4, is

�̂k3n � n
(n � 1)(n � 2)�i�1

n

(Xki � X� kn)
3, (75)

and

�̂k4n � n2

(n � 1)(n � 2)(n � 3)�i�1

n

(Xki � X� kn)
4

� 2n � 3
(n � 1)(n � 2)(n � 3)�i�1

n

Xki
4 � 8n � 12

(n � 1)(n � 2)(n � 3)X� kn�
i�1

n

Xki
3

� 6n � 9
n(n � 1)(n � 2)(n � 3)��i�1

n

Xki
2 �2

, (76)

respectively.

Theorem 4

If the parent distribution for both groups is such that the corre-
sponding fourth moments exist, then the stopping rule (22) adapted
for the standardized mean difference yields:

Part 1: P�dN �
z� ⁄ 2�̂N

�N
 �  dN �

z� ⁄ 2�̂N

�N
�¡ 1 � � as N ¡ �.

Part 2:
2z� ⁄ 2�̂N

�N
� �. (77)

Proof

This can be proved by using the proof of Theorem 2. □

Coefficient of Variation

Using Heffernan (1997) or Abbasi et al. (2010), an estimator
based on U-statistics for the population third central moment, that
is, �3 � E[X � �]3 and for the population fourth central moment
�4 � E[X � �]4 are, respectively, given by:

�̂3n � n
(n � 1)(n � 2)�i�1

n

(Xi � X� n)
3, (78)

and

�̂4n � n2

(n � 1)(n � 2)(n � 3)�i�1

n

(Xi � X� n)
4

� 2n � 3
(n � 1)(n � 2)(n � 3)�i�1

n

Xi
4 � 8n � 12

(n � 1)(n � 2)(n � 3)X� n�
i�1

n

Xi
3

� 6n � 9
n(n � 1)(n � 2)(n � 3)��i�1

n

Xi
2�2

. (79)

The quantity �̂3n is a U-statistic of Degree 3 and is an unbiased
and consistent estimate of �3, whereas and �̂4n is a U-statistic of
Degree 4 and is an unbiased and consistent estimate of �4.

(Appendices continue)
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Theorem 5

If the parent distribution F is such that the fourth moment exists, then
the stopping rule (22) adapted for the coefficient of variation yields:

Part 1: P�kN �
z� ⁄ 2�̂N

�N
 	  kN �

z� ⁄ 2�̂N

�N
�¡ 1 � � as N¡ �.

Part 2:
2z� ⁄ 2�̂N

�N
� �. (80)

Proof

This can be proved by using the proof of Theorem 2. □

Regression Coefficient: Simple Linear Model

Theorem 6

Suppose that for i, j � 0, 1, 2, 3, 4, �ij � E[(X � �x)
i (Y � �Y)j],

�X, �XY, and �Y all exist. Then, the central limit theorem corre-
sponding to the slope 
1 of the simple linear model is

�n(b1n � 
1) ¡
L

N(0, �2), (81)

where

�2 �
�22

�X
4 �

2�XY�31

�X
6 �

�XY
2 �40

�X
8 .

Proof

For proving a central limit theorem for the slope in a simple
linear model, defined in Equation 35, we first find the asymptotic
joint distribution of the sample covariance sXYn and the sample
variance of X, sXn

2 . This is given by

�n�sXYn � �XY, sXn
2 � �X

2��¡
L

N2(0, �), (82)

where the asymptotic variance of the slope is given by

� � � �22 � �XY
2 �31 � �XY�X

2

�31 � �XY�X
2 �40 � �X

4 . (83)

An application of the delta method will give the central limit
theorem for 
 as in Equation 81. □

A consistent estimator for �2 is given by

�̂n
2 � max
Vn

2, n�3�, (84)

where

Vn
2 �

�̂22n

sXn
4 �

2sXYn�̂31n

sXn
6 �

sXYn
2 �̂40n

sXn
8 . (85)

Theorem 7

If the error distribution is such that E��̂n
2� exists, then the stop-

ping rule (22) adapted for the regression coefficient 
1 yields:

Part 1: P�b1N �
z� ⁄ 2�̂N

�N
 
1  b1N �

z� ⁄ 2�̂N

�N
�¡ 1 � � as N¡ �.

Part 2:
2z� ⁄ 2�̂N

�N
� �. (86)

Proof

This can be proved by using the proof of Theorem 2. □
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