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Abstract
Correlation coefficients are effect size measures that are widely used in psychology and related
disciplines for quantifying the degree of relationship of two variables, where different correlation
coefficients are used to describe different types of relationships for different types of data. We develop
methods for constructing a sufficiently narrow confidence interval for 3 different population correlation
coefficients with a specified upper bound on the confidence interval width (e.g., .10 units) at a specified
level of confidence (e.g., 95%). In particular, we develop methods for Pearson’s r, Kendall’s tau, and
Spearman’s rho. Our methods solve an important problem because existing methods of study design for
correlation coefficients generally require the use of supposed but typically unknowable population values
as input parameters. We develop sequential estimation procedures and prove their desirable properties in
order to obtain sufficiently narrow confidence interval for population correlation coefficients without
using supposed values of population parameters, doing so in a distribution-free environment. In sequen-
tial estimation procedures, supposed values of population parameters for purposes of sample size
planning are not needed, but instead stopping rules are developed and once satisfied, they provide a
rule-based stop to the sampling of additional units. In particular, data in sequential estimation procedures
are collected in stages, whereby at each stage the estimated population values are updated and the
stopping rule evaluated. Correspondingly, the final sample size required to obtain a sufficiently narrow
confidence interval is not known a priori, but is based on the outcome of the study. Additionally, we
extend our methods to the squared multiple correlation coefficient under the assumption of multivariate
normality. We demonstrate the effectiveness of our sequential procedure using a Monte Carlo simulation
study. We provide freely available R code to implement the methods in the MBESS package.

Translational Abstract
We develop methods for constructing sufficiently narrow confidence intervals for population correlation
coefficients with a specified upper bound on the confidence interval width (e.g., .10 units) at a specified
level of confidence (e.g., 95%). This is an important contribution because wide confidence intervals
convey that there is much uncertainty associated with the estimate. Narrow confidence intervals,
however, convey that at some level of confidence a population parameter value is contained within a
narrow range. Traditional methods for planning sample size, such as from a power analysis or accuracy
in parameter estimation perspective required population parameters or supposed values as input, where
often these values are unknown. Using the sequential methods that we develop, the most difficult part of
planning sample size for narrow confidence intervals has been eliminated. We demonstrate the effec-
tiveness of our sequential procedure using a Monte Carlo simulation study. Additionally, we provide a
freely available R code to implement the methods in the MBESS package.

Keywords: correlation coefficient, sample size planning, accuracy in parameter estimation (AIPE),
sequential analysis, research design

Correlation coefficients provide scale-free measures of the mag-
nitude, direction, and strength of the linear relationship between
two variables and lies in the interval [�1, 1]. The Pearson’s

product-moment correlation coefficient is often used to assess the
degree of linear relationship when two variables are quantitative.
However, other correlation coefficients exist when variables are
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ordinal, such as the Kendall’s tau or Spearman’s rho rank corre-
lation coefficients. In this article, we develop sequential methods
for obtaining accurate estimates of selected population correlation
coefficients. We begin with the Pearson’s product-moment corre-
lation due to its popularity in psychology and related fields before
generalizing to Kendall’s tau and Spearman’s rho, all without
distributional assumptions. Additionally, we extend the methods to
the squared multiple correlation coefficient in the multiple regres-
sion framework under the assumption of multivariate normality.
Our work builds on Kelley, Darku, and Chattopadhyay (2018), but
is distinct in important ways, as we will discuss.

Using Pearson’s product-moment correlation coefficient as an
example, suppose {(X1, Y1), . . . , (Xn, Yn)} is a random sample
from a bivariate distribution of arbitrary form, F, with covariance
�XY and with the marginal distributions of X and Y having popu-
lation variances �X

2 and �Y
2, respectively. Throughout the article we

assume that observations are drawn from a homogeneous popula-
tion. The population Pearson’s product-moment correlation coef-
ficient of X and Y is given by

� �
�XY

��X
2�Y

2
. (1)

In psychology and related disciplines, the Pearson’s product-
moment correlation coefficient is often a primary outcome variable
of interest. For this reason, many authors have heavily invested in
methodological work for estimation of and inference for the pop-
ulation Pearson’s product-moment correlation coefficient in an
effort to better describe quantitative relationships, plan studies that
will estimate the correlation coefficient, and perform inferential
procedures for the Pearson’s product-moment correlation coeffi-
cient. For example, Wolf and Cornell (1986) and Bonett and
Wright (2000) emphasized the importance of estimating the pop-
ulation correlation coefficient with a narrow confidence interval,
specifically under the assumption of a bivariate normal distribu-
tion. Under the same distribution assumptions, Moinester and
Gottfried (2014) provided a review of several methods for con-
structing a narrow confidence interval for the population correla-
tion coefficient. Holding constant the population of interest, the
effect size of interest, any bias of the estimator, and the confidence
interval coverage, a narrower confidence interval for the parameter
is preferred to a wider confidence interval because it illustrates
more precision of the estimated value of the parameter of interest.
Holding constant or decreasing any bias, one way of increasing
precision, and thereby improving accuracy, is to increase the
sample size (e.g., Kelley & Maxwell, 2003; Maxwell, Kelley, &
Rausch, 2008).

The existing approaches of planning sample size for obtaining a
narrow confidence interval for the population correlation coeffi-
cient are based on supposed values of one or more population
parameters in the context of bivariate normal distributions (e.g.,
Bonett & Wright, 2000; Corty & Corty, 2011; Moinester & Got-
tfried, 2014). A framework of sample size planning known as
accuracy in parameter estimation (AIPE), which has been devel-
oped for constructing sufficiently narrow confidence intervals for
a variety of population effect sizes, has traditionally been based on
supposed population parameter values (e.g., Kelley, 2007c, 2008;
Kelley & Lai, 2011; Kelley & Maxwell, 2003; Kelley & Rausch,
2006; Lai & Kelley, 2011a, 2011b; Pornprasertmanit & Schneider,

2014; Terry & Kelley, 2012). However, a potential problem is the
requirement of one or more supposed values of the population
parameters, which will generally be unknown.1 In general, appli-
cations of AIPE and power analysis also depend on supposed
population values. When using supposed population values, that is,
treating a supposed value as if it were the true population value, the
obtained sample size estimates can differ dramatically from what
the theoretically optimal sample size value would be if the popu-
lation parameters were known. In such situations, even small
differences in the supposed and actual value of a parameter can
lead to large differences in the planned versus (actually) required
sample size.

Although, Fisher’s (1915) z-transform method can be used to
find the confidence interval for the population correlation coeffi-
cient, it is based on the assumption of bivariate normality. How-
ever, in our method for the Pearson product–moment correlation
coefficient, we work in a distribution-free scenario, as our confi-
dence interval procedure is built upon the asymptotic distribution
of sample correlation coefficient proposed by Lee (1990). Unlike
Bonett and Wright (2000), Corty and Corty (2011), and Moinester
and Gottfried (2014), our approach is more flexible because (a) it
does not require the assumption of the bivariate normal distribu-
tion of the two variables and (b) supposed values of the population
parameters are not needed to plan the sample size. These two
points are critical.

We use a sequential approach to find a narrow confidence
interval for the population Pearson’s product-moment correlation
coefficient, which we call sequential AIPE. This approach is
similar to the “fixed-width confidence interval” method, in which
the width of the confidence interval is prespecified. Sequential
AIPE differs from the fixed-width confidence interval approach
because sequential AIPE aims to find the minimum value of the
sample size such that the confidence interval is sufficiently narrow
by prespecifying the upper bound on the confidence interval width
(e.g., Mukhopadhyay & Chattopadhyay, 2012; Mukhopadhyay &
De Silva, 2009; Sproule, 1985). In particular, the fixed-width
confidence interval procedure deals with construction of a confi-
dence interval for a population parameter that has a width which is
exactly equal to the prespecified value of the confidence interval
width. By contrast, in sequential AIPE, the aim is to obtain a
sufficiently narrow confidence interval for a population parameter
such that the confidence interval is not wider than the prespecified
width.

Under the distribution-free scenario, the exact sampling distri-
bution of the sample correlation coefficient cannot be obtained.
This is because, in the distribution-free environment, no underly-
ing distribution is assumed, such as a bivariate normal. Unlike
Fisher’s method, our method is developed under the distribution-
free scenario, where we use the asymptotic distribution of the
sample correlation coefficient developed by Lee (1990) to obtain a

1 In the context of statistical power, an alternative approach that does not
require the specification of the population parameter(s) is to specify the
minimally important effect size of interest, which bases statistical power on
the minimum parameter value of interest that would be practically of
interest or theoretically interesting. O’Brien and Castelloe (2007) discuss
that this approach has potential problems, because for important outcomes
in which any non-zero effect is important, the planned sample sizes can be
extremely large.
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sufficiently narrow confidence interval for the population Pearson
product–moment correlation coefficient, �, using the smallest pos-
sible sample size.

We first discuss the (traditional) AIPE for the Pearson product–
moment correlation coefficient and propose a sequential estima-
tion procedure, which extends the ideas of Kelley et al. (2018). We
then extend the methods used for the Pearson product–moment
correlation coefficient to Kendall’s tau rank correlation coefficient
and Spearman’s rank correlation coefficient. The methods of Kel-
ley et al. (2018) were for a generalized effect size consisting of the
ratio of linear functions. Thus, the methods that we develop here
are for three types of correlation coefficients, which represents a
fundamentally different type of effect size than that given in
Kelley et al. (2018). Nevertheless, in both cases, our methods use
a sequential procedure for constructing a sufficiently narrow con-
fidence interval (i.e., no larger than the specified width) with a
specified level of confidence without requiring supposed popula-
tion values. Importantly, we make all of these developments in a
distribution-free environment. The distribution-free environment
is important because there is often no assurance that the underlying
distribution of the data for which the correlation coefficient will be
calculated would be known (e.g., bivariate normal, bivariate
gamma). Using R code via the MBESS package (Kelley, 2007b,
2017), we provide an example that demonstrates how the method
can be used in practice for the Pearson’s product-moment corre-
lation coefficient. Finally, we provide an extension of the sequen-
tial procedure in order to obtain a sufficiently narrow confidence
interval for the squared multiple correlation coefficient, yet here
we assume multivariate normality rather than working in a
distribution-free environment (due to the current limitations in the
distribution-free literature for confidence intervals for the popula-
tion squared multiple correlation coefficient). For all of the differ-
ent correlation coefficients discussed, we provide the results of
Monte Carlo simulations that illustrate the characteristics of the
procedures in a variety of scenarios.

Accuracy in Parameter Estimation of Pearson’s
Product Moment Correlation Coefficient

Pearson’s product-moment correlation coefficient continues to
serve an important role in psychology and related disciplines. The
sample correlation coefficient based on n observations is given by

rn �
SXYn

�SXn
2 SYn

2
. (2)

where SXYn
is the sample covariance, and SXn

2 and SYn
2 are respec-

tively the sample variances corresponding to X and Y. The expres-
sions of SXYn, SXn

2 , and SYn
2 are given in Equations 64–67 in

Appendix A. Using Lee (1990), the asymptotic variance of rn is
�2/n, where

�2 �
�2

4 ��40

�X
4 �

�04

�Y
4 �

2�22

�X
2�Y

2 �
4�22

�XY
2 �

4�31

�XY�X
2 �

4�13

�XY�Y
2 � (3)

and �ij � E[(X � �X)i(Y � �Y)j] is the (i, j)th joint central moment
of X and Y. Then the approximate (1 � �)100% confidence
interval for � is given by

�rn � z	 ⁄ 2
�

�n
, rn � z	 ⁄ 2

�

�n
�, (4)

where z�/2 is the (1 � �/2)th quantile of the standard normal
distribution. The width of the confidence interval defined in Equa-
tion 4 is given by

wn � 2z	 ⁄ 2
�

�n
. (5)

In AIPE problems, the sample size required to achieve the
sufficient accuracy is solved by specifying the upper bound on the
width of the confidence interval, 	. So, for a given 	, we have

2z	 ⁄ 2
�

�n

 �, (6)

which implies that the necessary sample size to construct (1 �
�)100% confidence interval for � will be

n � >
4z	 ⁄ 2

2 �2

�2 ?� n�, (7)

where >x? is the ceiling function which is the smallest integer
greater than or equal to x (e.g., >49.2? � 50). Here, n	 is the
theoretically optimal sample size required to make the (1 �
�)100% confidence interval for � sufficiently narrow provided that
the asymptotic variance, �2, is known. The optimal sample size,
n	, is unknown generally as in reality �2 is unknown. We note that
the supposed values of �2 cannot be used to estimate n	 as this may
not guarantee that the condition in Equation 7 is satisfied. We use
a sequential procedure, which does not need a supposed population
parameter value to preplan the sample size required that will
satisfy the condition given in Equation 7. Here, we use a consistent
estimator of �2 in our sequential procedure to estimate the optimal
sample size. The consistent estimator of �2 is given by

�̂n
2 � max�Vn

2, n�	,  � 0, (8)

where Vn
2 is given in Appendix A. We note that the estimator Vn

2 is
a moment-based estimator of �2 (in Equation 70). There is a
positive chance, even though negligible, that Vn

2 may come out to
be negative in some situations. In order to avoid that scenario, if it
arises, we use the term n�
. Any choice of 
 will not affect the
consistency property of �̂n

2; hereafter we use 
 � 3 throughout the
article. Thus, if the population parameter were known, the theo-
retically optimal sample size would be obtainable, yielding a
fixed-n approach for sample size planning. However, in applica-
tion, intervals are either wider or narrower due to sampling vari-
ability of estimates from the study instead of using the known
population value upon which n	 is based. We solve this limitation
in the next section with sequential AIPE.

Accuracy in Parameter Estimation Via a Sequential
Optimization Procedure

In sequential methodologies, the sample size is not fixed in
advance as it is in fixed sample-size procedures. Here we propose
a sequential procedure to construct a (1 � �)100% confidence
interval for the Pearson’s product-moment correlation coefficient �
within a distribution-free environment. For details about the gen-
eral theory of sequential estimation procedures, we refer interested
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readers to Chattopadhyay and Kelley (2017, 2016), Chattopadhyay
and Mukhopadhyay (2013), De and Chattopadhyay (2017), Ghosh
and Sen (1991), and Sen (1981). Recall that the optimal sample
size n	 is unknown due to �2 being unknown. We use the consis-
tent estimator of �2, namely �̂n

2, which is based on n observations
of both X and Y. We now develop an algorithm to find an estimate
of the theoretically optimal sample size via the purely sequential
estimation procedure.

Stage I

Observations are collected on (paired) variables X and Y for a
randomly selected sample of size m, the pilot sample size. We
recommend using the pilot sample size, m, following Mukhopad-
hyay (1980), as

m � max
4, >
2z	 ⁄ 2

� ?�. (9)

Based on this pilot sample of size m, we estimate �2 by com-
puting �̂m

2 . If m � >4z	 ⁄ 2
2 ⁄�2��̂m

2 � m�1?, then proceed to the next
step. Otherwise, if m � >4z	 ⁄ 2

2 ⁄�2��̂m
2 � m�1?, stop sampling and

set the final sample size equal to m.

Stage II

Obtain an additional m=(�1) observations, where m=(�1) is the
number of paired observations that are added to the sample in
every stage after the pilot stage. Thus, for adding a single pair to
the collected data, m= � 1. However, if five additional pairs are
taken at each stage, then m= � 5. Thus, after collecting the pilot
sample and the sampling at the next stage, there are (m � m=)
observations on both X and Y. After updating the estimate of �2 by
computing �̂m�m�

2 , a check is performed to determine whether
m � m� � >4z	 ⁄ 2

2 ⁄�2��̂m�m�
2 � �m � m��1?. If m � m� �

>4z	 ⁄ 2
2 ⁄�2��̂m�m�

2 � �m � m��1? then go to the next step. Other-
wise, if m � m� � >4z	 ⁄ 2

2 ⁄�2��̂m�m�
2 � �m � m��1? then stop

further sampling and report that the final sample size is (m � m=).
This process of collecting one (or more) observation(s) in each

stage after the first stage continues until there are N observations
such that N � >�4z	 ⁄ 2

2 ⁄�2��̂N
2 � N�1?. At this stage, we stop

further sampling and report that the final sample size is N.
Based on the algorithm just outlined, a sampling stopping rule

can be defined as follows:

N is the smallest integer n(� m) such that n �
4z	 ⁄ 2

2

�2 ��̂n
2 � n�1,

(10)

where the term n�1 is a correction term ensuring that the sampling
process does not stop too early for the optimal sample size because
of the use of the approximate expression. The inclusion of the
correction term retains the convergence property of �̂n

2 � n�1, thus
�̂n

2 � n�1 converges to �2 for a large sample size. For details of the
correction term, refer to Chattopadhyay and De (2016), Chattopad-
hyay and Kelley (2017, 2016) and Sen and Ghosh (1981).

Following the sequential procedure, the (1 � �)100% confi-
dence interval for the population Pearson’s product-moment cor-
relation coefficient, �, is given by

�rN �
z	 ⁄ 2�̂N

�N
, rN �

z	 ⁄ 2�̂N

�N
�. (11)

The width of the (1 � �)100% confidence interval in Equation
11 will be less than or equal to 	, in accord with our method’s
specifications. Lemma 1 in Appendix B proves that the estimated
sample size from sequential procedure, N, is finite. Also, Theorem
1 in Appendix B proves that the confidence interval achieves the
specified coverage probability 1 � � asymptotically using N
which is the estimate of the smallest possible sample size (n	).
Here the smallest possible sample size indicates that the sample
size required to obtain a sufficiently narrow (1 � �)100% confi-
dence interval is n	. Because n	 is unknown, using the sequential
procedure developed here we can find a consistent estimator, N, of
n	 (proved in Lemma 2). Additionally, Theorem 1 proves that the
confidence interval for � given in Equation 11 always achieves a
sufficiently narrow width (less than or equal 	).

Example

For illustrative purposes, we provide an example inspired by a
study on the relation between personality states and work experi-
ences (see Judge, Simon, Hurst, & Kelley, 2014). Personality is
generally theorized to have a trait level and a state level, where the
trait is a relatively stable characteristic of an individual but where
the state varies around the trait level. Of interest in Judge, Simon,
Hurst, and Kelley (2014) is the connection of workplace experi-
ences and personality states. Judge et al. (2014) used a 12-item
measure of citizenship behavior (both interpersonal and organiza-
tional) at work from Lee and Allen (2002) on a 1 (strongly
disagree today) to 5 (strongly agree today) scale and a 13-item
measure of neuroticism from Goldberg (1992) on a 1 (strongly
disagree today) to 5 (strongly agree today) scale, among others.
Because the day-to-day relationship between workplace experi-
ences and personality was of interest, the questions were framed in
terms of today instead of in general. The mean of the items was
taken for a measure of the construct for each day.

In an effort to better understand, using a context similar to that
of Judge et al. (2014), we seek to study the strength of the (linear)
relationship between citizenship behaviors at work in the morning
(before any meetings) and neuroticism at work in the evening
(before leaving for the day). Our goal is to obtain an approximate
95% confidence interval for the population correlation coefficient
such that the observed correlation is an accurate measure of the
population value, where the desired confidence interval width is no
larger than 0.10 units. Thus, the value of � (Type I error rate) is
0.05 and the value of 	 (desired confidence interval width) is 0.10.

Using the values 	(� 0.10) and �(� 0.05), we obtain a pilot
sample size m using the pilot sample size formula given in Equa-
tion 9. Thus, m � max{4,>2 � 1.96/0.10?} � 40. Using the
MBESS R package, the sq.aipe.cc() function can be used to
obtain the pilot sample as follows:

require(MBESS)
sq.aipe.cc(alpha = .05, omega = 0.1, pilot =

TRUE)

where we set R code in typewriter font in order to distinguish the
code from regular text. The pilot sample size, m � 40, implies that
observations on the variables of interest (work stress measure as X
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and neuroticism as Y) should be taken from 40 randomly selected
individuals.

Here we consider hypothetical data that might be collected from
the above noted neuroticism and citizenship scales. We show the
R code to enter the data, with “. . .” representing data that would
be in the full code but is not included in this article:

Neuroticism <- c(1.54, 1.00, . . . , 3.08,
1.00)

Citizenship <- c(2.75, 3.08, . . . , 3.83,
3.50)

Given Neuroticism and Citizenship objects as defined,
we can now use the sq.aipe.cc() function, which provides
the outputs: (a) current sample size, (b) estimated correlation
coefficient, and (c) whether the stopping rule is met or not. If the
stopping rule is met, the function additionally provides (d) the
confidence interval. The sq.aipe.cc() function is used as:

sq.aipe.cc(alpha = .05, omega = 0.1, var.1 =
Neuroticism, var.2 = Citizenship)

and the output that we get is as follows:

[1] “The stopping rule has not yet been met;
sample size is not large enough”

$ Current.n
[1] 40
Current.cc
[1] −0.1081764
$‘Is.Satisfied?’
[1] FALSE

As can be seen, at this point, the output returns FALSE with
regard to the question “Is the stopping rule met?,” indicating that
the stopping rule defined in Equation 10 was not satisfied. For
now, suppose that m=� 10, which means that 10 observations will
be added, and then check whether the stopping rule is satisfied.2

Thus, an updated dataset is obtained by augmenting the first
dataset with the additional 10 observations:

Neuroticism <- c(1.54, 1.00, . . . , 3.08,
1.00, . . . , 2.00, 1.15)

Citizenship <- c(2.75, 3.08, . . . , 3.83,
3.50, . . . , 4.00, 2.67)
Using the new data, we apply the function sq.aipe.cc()

again:

sq.aipe.cc(alpha = .05, omega = 0.1, var.1 =
Neuroticism, var.2 = Citizenship)

and the output that we get is as follows:

[1] “The stopping rule has not yet been met;
sample size is not large enough”

$ Current.n
[1] 50
$ Current.cc
[1] −0.1518521
$‘Is.Satisfied?’
[1] FALSE

This process continues until the stopping rule is satisfied. A
sample size of 1,490 leads to a correlation of �0.117 but the
stopping rule is not yet satisfied. However, with a sample size of
1,500 the stopping rule is satisfied, and the code is such that when
the sq.aipe.cc() is used on the data of size 1,500,

sq.aipe.cc(alpha = .05, omega = 0.1, var.1 =
Neuroticism, var.2 = Citizenship)

The output that we get is as follows:

[1] “The stopping rule has been met”
$ Current.n
[1] 1500
$ Current.cc
[1] −0.1170824
$‘Is.Satisfied?’
[1] TRUE
$‘Confidence Interval’
[1] “-0.16694, −0.06722”

Notice from above that the confidence interval width is 0.09972,
which satisfies the originally specified goal (the smallest sample size
in which the width is no larger than 0.10 units). Importantly, we did
not make distribution assumptions in the construction of the confi-
dence interval. Arguably even more importantly, in order to satisfy
our accurate estimate, as specified in terms of confidence interval
width, we did not have to prespecify any supposed values of popu-
lation parameters.

Characteristics of the Final Sample Size for Pearson’s
Product Moment Correlation: A Simulation Study

Recall that our procedure is asymptotically correct but its effec-
tiveness in smaller sample size situations is not fully known, which is
due to the fact that the methods of confidence interval construction are
themselves asymptotically correct. Correspondingly, we now demon-
strate the properties of our method using a Monte Carlo simulation for
constructing (1 � �)100% confidence intervals for population corre-
lation coefficients from a variety of different bivariate distributions.
To implement the sequential AIPE procedure we developed, we
specify an example maximum confidence interval width of 	 � 0.1
and a confidence coefficient of 90%. We compute the pilot sample
size by using the formula given in the algorithm m � 33 (� max
{4,>2z0.1/2/0.1?}). The estimate of the asymptotic variance of the
Pearson’s product-moment correlation coefficient is calculated using
the pilot sample, and we check if the stopping rule in Equation 10 is
satisfied. If the stopping rule is satisfied, the sampling stops. Other-
wise, an additional sample of size m= � 1 is generated from the
specified bivariate distribution and the updated asymptotic variance
recalculated. This continues until the stopping rule in Equation 10 is
satisfied. The simulation results are based on two different distribu-
tions: bivariate normal and bivariate gamma distributions. For bivari-
ate normal and the bivariate gamma distribution from Theorem 2 of
Nadarajah and Gupta (2006), the simulation study was done for
population Pearson’s product-moment correlation coefficients � �
{0.1, 0.3, 0.5}, 	 � {0.1, 0.2} and � � {0.1, 0.05}. The values of �
were chosen to reflect small (0.10), medium (0.30), and large (0.50)
effect sizes for correlations (Cohen, 1988, section 3.2). We note that
these correlation sizes (along with 0.2 and 0.4, which were not

2 We use m= � 10. However, depending on the situation, m= could be 1
or any larger positive integer. In some situations, for example, it may be
easy to collect groups of 10 or 20 or 30 observations at a time (e.g., in a
behavioral laboratory) and thus for ease m= might be thought best to be
large. However, in other situations, such as when collecting data from
Amazon Mechanical Turk, where the data arrives one-by-one, using m= �
1 might be a reasonable choice when the process is largely automated.
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thought to be needed) were used in Kelley and Maxwell (2003) for a
more general regression model. In all simulation conditions, 5,000
replications were used.

Tables 1 and 2 show the mean final sample size N̄ (estimates E[N]),
coverage probability p, and average confidence interval width w� N

(estimates E[wn]). The values se(N̄), se(p), and se�w� N represent the
standard errors of N̄, p, and w� N respectively. None of the confidence
interval widths, wN, obtained from the final sample sizes, N, exceeded
the maximum specified width, 	. Tables 1 and 2 show that, in most
cases (except for smaller sample sizes), the ratio of the mean final
sample size to the theoretical sample sizes is satisfactory, if not highly
so. However, in some situations, the ratio of the mean final sample
size to the theoretical sample sizes is not on target (e.g., 85%
empirical coverage in the situation of a 90% confidence interval).
These situations, however, occur only when the empirical confidence
interval coverage differs markedly from the nominal coverage. We
will discuss this limitation below, which is due to the under estimation
of �2 by its estimator �̂n

2 and not the sequential AIPE procedure itself.
Tables 1 and 2 show that, in most situations, our sequential

procedure works well. However, there are some situations where
(a) the ratio of the mean final sample size to the theoretical sample
size (i.e., N̄/n	) is considerably less than 1.0, such as in Table 1 in
the last row. There, the ratio of the mean final sample size to the
theoretical sample size is 0.82. In particular, the mean final sample
size was 164 but the theoretical sample size was 200. However,
also note that the confidence interval coverage, nominally set to
90%, was shown to be only 76.86%. Consideration of this issue led
to a separate simulation study to investigate the source of the
problem, which is discussed in Appendix D. A summary of the
discussion in Appendix D is that the undercoverage issue is not
due to the sequential AIPE procedure, but rather the confidence
interval method that we used with the sequential AIPE procedure.
As the sequential AIPE procedure itself is not wedded to the
confidence interval approaches used, other methods can be devel-
oped and the sequential AIPE procedure applied.

Alternative Confidence Intervals for Pearson’s
Product Moment Correlation Coefficient

Our sequential procedure developed in the article so far can be
extended to other forms of confidence intervals for the population
Pearson’s product-moment correlation coefficient, such as those
proposed by Corty and Corty (2011) and Moinester and Gottfried
(2014). We discuss how our methods apply to the methods rec-
ommended by these authors. We are agnostic to which method
should be used, but rather want to show how our methods work for
both situations.

Confidence Interval by Corty and Corty (2011)

Corty and Corty (2011) used Fisher’s z-transform and thereby
proposed a way to estimate the sample size for a given choice of
sample correlation coefficient, confidence level, and 	.

Moinester and Gottfried (2014) noted that the optimal sample
size required to achieve a 95% confidence interval for the Pear-
son’s product-moment correlation coefficient, proposed by Corty
and Corty (2011), with width no larger than 	, is

nCC � 15.37
(0.5 � ln(B))2 � 3, (12)

where

B �
(1 � | � |�� ⁄ 2)(1 � | � |�� ⁄ 2)
(1 � | � |�� ⁄ 2)(1 � | � |�� ⁄ 2)

, (13)

and |� | is the absolute value of the population correlation coeffi-
cient. The supposed value of the population Pearson’s product-
moment correlation coefficient, whose confidence interval we
would like to construct, can differ markedly from the true popu-
lation value. As discussed, our sequential procedure does not
require inserting supposed population values a priori. Our sequen-
tial stopping rule which helps find the estimate of the optimal
sample size is as follows:

NCC is the smallest integer n(�mCC) such that

Table 1
Summary of Final Sample Size for 90% Confidence Interval for �

	 Distribution � N̄ se(N̄) n	 N̄/n	 p sp w� N se�w� N

.1 N2(0, 0, 1, 1, .1) .1 1056.0 .9581 1,061 .9957 .8944 .0043 .0999 9.33 � 10�7

N2(0, 0, 1, 1, .3) .3 891.2 .9900 897 .9935 .8902 .0044 .0999 1.21 � 10�6

N2(0, 0, 1, 1, .5) .5 601.0 .9920 609 .9869 .8868 .0045 .0997 2.04 � 10�6

Ga2(5, 5, 50, 10) .1 1124.0 1.5480 1,138 .9876 .8984 .0043 .0999 1.66 � 10�6

Ga2(5, 5, 16.67, 10) .3 1049.0 1.6510 1,066 .9840 .8982 .0043 .0999 1.97 � 10�6

Ga2(5, 5, 10, 10) .5 774.4 1.6730 797 .9717 .8862 .0045 .0995 7.236 � 10�5

.2 N2(0, 0, 1, 1, .1) .1 260.3 .5085 266 .9784 .8762 .0047 .1985 1.48 � 10�4

N2(0, 0, 1, 1, .3) .3 216.4 .6056 225 .9617 .8666 .0048 .1963 2.86 � 10�4

N2(0, 0, 1, 1, .5) .5 138.0 .6628 153 .9022 .8124 .0055 .1873 5.60 � 10�4

Ga2(5, 5, 50, 10) .1 272.0 .7694 285 .9545 .8784 .0046 .1978 2.071 � 10�4

Ga2(5, 5, 16.67, 10) .3 245.9 .9045 267 .9209 .8546 .0050 .1947 3.69 � 10�4

Ga2(5, 5, 10, 10) .5 164.0 1.0100 200 .8198 .7686 .0060 .1806 7.25 � 10�4

Note. � is the population correlation coefficient; N̄ is the mean final sample size; p is the estimated coverage probability; 	 is the upper bound of the length
of the confidence interval for �; se(N̄) is the standard deviation of the mean final sample size (i.e., standard error of the final sample size); n	 is the
theoretical sample size if the procedure is used with the population parameters; se(p) is the standard error of p; w� N is the average length of confidence
intervals for � based on N observations; se�w� N is the standard error of w�; tabled values are based on 5,000 replications of a Monte Carlo simulation study
from distributions: bivariate normal (N2) distribution with parameters �1, �2, �1

2, �2
2, and �, respectively, and bivariate gamma (Ga2) with parameters a1,

a2, c, and �, respectively, based on Theorem 2 of Nadarajah and Gupta (2006).
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n � 61.48��ln�(1 � |rn |�� ⁄ 2)(1 � |rn |�� ⁄ 2)
(1 � |rn |�� ⁄ 2)(1 � |rn |�� ⁄ 2)���2

� 1
n�� 3.

(14)

After the stopping rule is satisfied, the 95% confidence interval
for the population Pearson’s product-moment correlation coeffi-
cient, �, can be constructed by applying the confidence interval
formula as in Corty and Corty (2011). We suggest the pilot sample
size, mCC, as

mCC � max
4, >
1

2�3 �
16z	 ⁄ 2

2

(lnb)2 ���3 �
16z	 ⁄ 2

2

(lnb)2 �2

� (8z	 ⁄ 2)
2�?�,

(15)

where

b �
�2 � �

2 �1 � �
2 

�1 � �
2 �1 � 2�

4 
(16)

for r � 1 � �
2 and � � 0.5.

The derivation of the pilot sample size given in Equation 15 is
shown in Appendix C. The optimal sample size, nCC, can be
estimated by adopting the sequential stopping rule defined in
Equation 14. Note that, in practice, nCC is usually unknown be-
cause � will usually be unknown. Thus, when one uses supposed
values of parameters a final sample size is known, but the value is
almost certainly not the correct value given uncertainty in � a
priori.

Confidence Interval for � With Moinester and
Gottfried’s (2014) Method

In Method 4 of Moinester and Gottfried (2014), the 95% con-
fidence interval for the population correlation coefficient, when
observations are assumed to be from a bivariate-normal distribu-
tion, is

�rn � 1.96�1 � rn
2

n � 1 , rn � 1.96�1 � rn
2

n � 1
�. (17)

The optimal sample size required to achieve a 95% confidence
interval for correlation coefficient (�) with width no larger than 	 is

nMG �
3.84(1 � �2)2

(� ⁄ 2)2 � 1. (18)

Our sequential stopping rule, which does not take into account
the supposed value of the population correlation coefficient, is as
follows:

NMG is the smallest integer n(� mMG) such that

n � 15 . 36
�2 ((1 � rn

2)2 � 1 ⁄ n) � 1. (19)

Following the sample of size NMG collected using the sequential
stopping rule of Equation 19, the 95% confidence interval for � is

�rNMG
� 1.96�1 � rNMG

2

NMG � 1, rNMG
� 1.96�1 � rNMG

2

NMG � 1
�. (20)

We suggest the pilot sample size of

mMG � max
4, >1 � �1 � �4z	 ⁄ 2 ⁄ �2

2 ?�. (21)

The derivation of the pilot sample size given in Equation 21 is
shown in Appendix C. The optimal sample size, mMG, can be
estimated by following the sequential stopping rule defined in
Equation 19.

Simulation Study

We now compare the characteristics of the stopping rule
defined in Equation 10 with the stopping rules defined in
Equations 14 and 19 using a Monte Carlo simulation study for
constructing (1 � �)100% confidence intervals for population
correlation coefficients from bivariate distributions. For bivari-

Table 2
Summary of Final Sample Size for 95% Confidence Interval for �

	 Distribution � N̄ se(N̄) n	 N̄/n	 p se(p) w� N se�w� N

.1 N2(0, 0, 1, 1, .1) .1 1502.0 1.1200 1,507 .9969 .9442 .0032 .0999 6.44 � 10�7

N2(0, 0, 1, 1, .3) .3 1267.2 1.1890 1,273 .9956 .9460 .0032 .0999 8.13 � 10�7

N2(0, 0, 1, 1, .5) .5 857.0 1.1920 865 .9908 .9464 .0032 .0998 7.91 � 10�6

Ga2(5, 5, 50, 10) .1 1600.0 1.8780 1,615 .9910 .9498 .0031 .0999 1.23 � 10�7

Ga2(5, 5, 16.67, 10) .3 1497.0 1.9960 1,513 .9840 .9490 .0031 .0999 1.24 � 10�6

Ga2(5, 5, 10, 10) .5 1109.0 1.9540 1,132 .9794 .9430 .0033 .0998 3.90 � 10�5

.2 N2(0, 0, 1, 1, .1) .1 372.2 .5746 377 .9872 .9396 .0034 .1992 8.16 � 10�5

N2(0, 0, 1, 1, .3) .3 312.5 .6112 319 .9796 .9332 .0035 .1989 9.71 � 10�5

N2(0, 0, 1, 1, .5) .5 204.0 .7435 217 .9400 .9012 .0042 .1938 3.83 � 10�4

Ga2(5, 5, 50, 10) .1 391.1 .8966 404 .9681 .9412 .0033 .1989 1.15 � 10�4

Ga2(5, 5, 16.67, 10) .3 360.1 1.0160 379 .9501 .9252 .0037 .1977 2.30 � 10�4

Ga2(5, 5, 10, 10) .5 251.6 1.164 283 .8889 .8766 .0047 .1901 5.3 � 10�4

Note. � is the population correlation coefficient; N̄ is the mean final sample size; p is the estimated coverage probability; 	 is the upper bound of the length
of the confidence interval for �; se(N̄) is the standard deviation of the mean final sample size (i.e., standard error of the final sample size); n	 is the
theoretical sample size if the procedure is used with the population parameters; se(p) is the standard error of p; w� N is the average length of confidence
intervals for � based on N observations; se�w� N is the standard error of w�; tabled values are based on 5,000 replications of a Monte Carlo simulation study
from distributions: bivariate normal (N2) distribution with parameters �1, �2, �1

2, �2
2, and �, respectively, and bivariate gamma (Ga2) with parameters a1,

a2, c, and �, respectively, based on Theorem 2 of Nadarajah and Gupta (2006).
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ate normal and the bivariate gamma distribution from Theorem
2 of Nadarajah and Gupta (2006), the simulation study was
done for Pearson’s product-moment correlation coefficients
� � {0.1, 0.3, 0.5} and 	 � {0.1, 0.2}. In all cases, 5,000
replications were used. Tables 3, 4, 5, and 6 shows the estimates
of mean final sample size, coverage probability, and average
confidence interval width and also the corresponding standard
errors.

Comparing the characteristics of the stopping rule defined in
Equation 10 with the stopping rules defined in Equations 14 and
19, we observe that the behavior of the coverage probability as
well as ratio of average sample size estimate and the optimal
sample size are similar in all three procedures.

Sequential AIPE for Kendall’s Tau and
Spearman’s Rho

We now discuss the sequential approach related to the accuracy
in parameter estimation problem for estimating Kendall’s rank
correlation coefficient, popularly known as Kendall’s tau and
denoted here by �, and Spearman’s rank correlation coefficient,
popularly known as Spearman’s rho, and denoted here by �s.

AIPE for Kendall’s �

Kendall’s � is a statistic which can be used to measure the
ordinal association between two variables. Suppose (X, Y) denote
a pair of random observations with a joint distribution function F.

Table 3
Summary of Final Sample Size for 90% Confidence Interval for � Using Corty and Corty (2011)

	 Distribution � N̄CC se�N̄CC nCC N̄CC ⁄nCC pCC se(pCC) w� NCC
se�w� NCC



.1 N2(0, 0, 1, 1, .1) .1 1060.0 .1942 1,062 .9979 .8980 .0043 .1000 2.75 � 10�7

N2(0, 0, 1, 1, .3) .3 893.6 .5208 897 .9962 .8986 .0043 .1000 7.71 � 10�7

N2(0, 0, 1, 1, .5) .5 604.4 .7567 609 .9924 .8868 .0045 .1001 1.32 � 10�5

Ga2(5, 5, 50, 10) .1 1060.0 .1966 1,062 .9982 .8906 .0044 .1000 3.03 � 10�7

Ga2(5, 5, 16.67, 10) .3 894.5 .5549 897 .9972 .8728 .0047 .1000 1.19 � 10�6

Ga2(5, 5, 10, 10) .5 604.5 .8638 609 .9925 .8464 .0051 .1001 1.52 � 10�5

.2 N2(0, 0, 1, 1, .1) .1 264.6 .1173 267 .9909 .8892 .0044 .1999 1.16 � 10�5

N2(0, 0, 1, 1, .3) .3 222.1 .2994 225 .9872 .8916 .0044 .2002 3.7 � 10�5

N2(0, 0, 1, 1, .5) .5 146.1 .4565 153 .9551 .8692 .0048 .2021 1.14 � 10�4

Ga2(5, 5, 50, 10) .1 264.1 .1665 267 .9892 .8842 .0045 .1999 3.10 � 10�5

Ga2(5, 5, 16.67, 10) .3 221.8 .3441 225 .9859 .8606 .0049 .2002 5.22 � 10�5

Ga2(5, 5, 10, 10) .5 143.1 .5639 153 .9351 .7942 .0057 .2027 1.54 � 10�4

Note. � is the population correlation coefficient; N̄CC is the mean final sample size; pCC is the estimated coverage probability; 	 is the upper bound of
the length of the confidence interval for �; se�N̄CC is the standard deviation of the mean final sample size (i.e., standard error of the final sample size);
nCC is the theoretical sample size if the procedure is used with the population parameters; se(pCC) is the standard error of pCC; w� NCC

is the average length
of confidence intervals for � based on NCC observations; se�w� NCC

 is the standard error of w� NCC
; tabled values are based on 5,000 replications of a Monte

Carlo simulation study from distributions: bivariate normal (N2) distribution with parameters �1, �2, �1
2, �2

2, and �, respectively, and bivariate gamma (Ga2)
with parameters a1, a2, c, and �, respectively, based on Theorem 2 of Nadarajah and Gupta (2006).

Table 4
Summary of Final Sample Size for 95% Confidence Interval for � Using Corty and Corty (2011)

	 Distribution � N̄CC se�N̄CC nCC N̄CC ⁄nCC pCC se(pCC) w� NCC
se�w� NCC



.1 N2(0, 0, 1, 1, .1) .1 1,504.0 .2268 1,507 .9983 .9474 .0032 .1000 1.915 � 10�7

N2(0, 0, 1, 1, .3) .3 1,269.0 .6185 1,273 .9971 .9462 .0032 .1000 5.64 � 10�7

N2(0, 0, 1, 1, .5) .5 857.6 .8464 863 .9938 .9452 .0032 .1001 1.43 � 10�6

Ga2(5, 5, 50, 10) .1 1,505.0 .2318 1,507 .9985 .9400 .0034 .1000 2.10 � 10�7

Ga2(5, 5, 16.67, 10) .3 1,270.0 .6581 1,273 .9975 .9354 .0035 .1000 8.25 � 10�7

Ga2(5, 5, 10, 10) .5 859.1 .9800 863 .9955 .9090 .0041 .1001 9.37 � 10�6

.2 N2(0, 0, 1, 1, .1) .1 375.2 .1206 377 .9952 .9478 .0031 .1999 1.69 � 10�6

N2(0, 0, 1, 1, .3) .3 315.6 .3343 318 .9925 .9444 .0032 .2002 2.81 � 10�5

N2(0, 0, 1, 1, .5) .5 210.1 .4924 215 .9774 .9400 .0034 .2017 7.54 � 10�5

Ga2(5, 5, 50, 10) .1 375.1 .1250 377 .9950 .9418 .0033 .1999 1.93 � 10�6

Ga2(5, 5, 16.67, 10) .3 315.7 .3694 318 .9926 .9248 .0037 .2002 2.60 � 10�5

Ga2(5, 5, 10, 10) .5 208.2 .5970 215 .9686 .8866 .0045 .2019 9.94 � 10�5

Note. � is the population correlation coefficient; N̄CC is the mean final sample size; pCC is the estimated coverage probability; 	 is the upper bound of
the length of the confidence interval for �; se�N̄CC is the standard deviation of the mean final sample size (i.e., standard error of the final sample size);
nCC is the theoretical sample size if the procedure is used with the population parameters; se(pCC) is the standard error of pCC; w� NCC

average length of
confidence intervals for � based on NCC observations; se�w� NCC

 is the standard error of w� NCC
; tabled values are based on 5,000 replications of a Monte Carlo

simulation study from distributions: bivariate normal (N2) distribution with parameters �1, �2, �1
2, �2

2, and �, respectively, and bivariate gamma (Ga2) with
parameters a1, a2, c, and �, respectively, based on Theorem 2 of Nadarajah and Gupta (2006).
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If (X1, Y1) and (X2, Y2) are random bivariate observations from F,
then Kendall’s tau which measures the association between vari-
ables X and Y can be defined as

� � E�sgn(X1 � X2)sgn(Y1 � Y2)� (22)

where

sgn(x) �
�1, when x � 0,
0 when x � 0,

�1 when x � 0.

An estimator of Kendall’s � is given by

r�,n � 2
n(n � 1) �

1
i�j
n
sgn(Xi � Xj)sgn(Yi � Yj), (23)

which is a U-statistic (see Lee, 1990). Hoeffding (1948) as well as
Daniels and Kendall (1947) have shown that the asymptotic dis-
tribution of �, defined in Equation 22, is given by

�n(r�,n � �) ¡
D

N(0, ��
2), (24)

where the expression of the asymptotic variance, ��
2, is given by

��
2 � 4Var{E[sgn(X1 � X2)sgn(Y1 � Y2) |X1, Y1]}

� 4Var{1 � 2F1(X1) � 2F2(Y1) � 4F(X1, Y1)},
(25)

provided F1 and F2 are the marginal distributions of X and Y,
respectively. Proceeding along the same lines as in Equations 4–7,
we can find that the sample size required to achieve the sufficient

accuracy with prespecified upper bound (	) on the width of the
confidence interval for � will be

n � >
4z	 ⁄ 2

2 ��
2

�2 ?� nKT, (26)

where ��
2 is defined as in Equation 25. In reality, ��

2 is unknown, so
we use a consistent estimator, which is given by

�̂n,KT
2 � 16

n � 1�i�1

n

(Wi � w� )2, (27)

where

Wi � 2
n�

k�1

n

1�Rx,k 
 Rx,i, Ry,k 
 Ry,i	 �
Rx,i

n � 1 �
Ry,i

n � 1, (28)

W̄ � 1
n�i�1

n

Wi (29)

with 1{A} denoting the indicator function of Set A, and Rx,i and
Ry,i are respectively ranks of Xi among all X’s and Yi among all Y’s
(e.g., Genest & Favre, 2007; Kojadinovic & Yan, 2010). Because
��

2 is unknown in reality, in order to compute the required sample
size, nKT, we use the sequential procedure outlined previously, but
here applied to Kendall’s tau. Our sequential stopping rule which
helps find the estimate of the optimal sample size is as follows:

Table 5
Summary of Final Sample Size for 90% Confidence Interval for � Using Moinester and Gottfried (2014)

	 Distribution � N̄MG se�N̄MG nMG N̄MG ⁄nMG pMG se(pMG) w� NMG
se�w� NMG



.1 N2(0, 0, 1, 1, .1) .1 1,060.0 .1936 1,062 .9978 .8944 .0043 .1000 2.74 � 10�7

N2(0, 0, 1, 1, .3) .3 893.9 .5182 898 .9955 .8990 .0043 .0999 7.62 � 10�7

N2(0, 0, 1, 1, .5) .5 606.1 .7103 610 .9935 .8932 .0044 .0999 1.90 � 10�6

.2 N2(0, 0, 1, 1, .1) .1 264.5 .1032 267 .9907 .8868 .0045 .1998 2.37 � 10�6

N2(0, 0, 1, 1, .3) .3 222.7 .2779 226 .9853 .8848 .0045 .1995 8.62 � 10�6

N2(0, 0, 1, 1, .5) .5 149.1 .4043 154 .9681 .8642 .0048 .1989 2.21 � 10�5

Note. � is the population correlation coefficient; N̄MG is the mean final sample size; pMG is the estimated coverage probability; 	 is the upper bound of
the length of the confidence interval for �; se�N̄MG is the standard deviation of the mean final sample size (i.e., standard error of the final sample size);
nMG is the theoretical sample size if the procedure is used with the population parameters; se(pMG) is the standard error of pMG; w� NMG

average length of
confidence intervals for � based on NMG observations; se�w� NMG

 is the standard error of w� NMG
; tabled values are based on 5,000 replications of a Monte Carlo

simulation study from bivariate normal distribution (N2) with parameters: means, variances, and correlation.

Table 6
Summary of Final Sample Size for 95% Confidence Interval for � Using Moinester and Gottfried (2014)

	 Distribution � N̄MG se�N̄MG nMG N̄MG ⁄nMG pMG se(pMG) w� NMG
se�w� NMG



.1 N2(0, 0, 1, 1, .1) .1 1505.0 .2233 1,508 .9982 .9498 .0032 .1000 1.94 � 10�7

N2(0, 0, 1, 1, .3) .3 1270.0 .6142 1,274 .9970 .9452 .0032 .1000 5.13 � 10�7

N2(0, 0, 1, 1, .5) .5 860.5 .8382 866 .9937 .9454 .0032 .0999 1.33 � 10�6

.2 N2(0, 0, 1, 1, .1) .1 375.8 .1204 378 .9942 .9440 .0033 .1998 1.65 � 10�6

N2(0, 0, 1, 1, .3) .3 317.1 .3343 320 .9908 .9452 .0032 .1997 4.26 � 10�6

N2(0, 0, 1, 1, .5) .5 213.9 .4407 218 .9812 .9376 .0034 .1992 2.66 � 10�5

Note. � is the population correlation coefficient; N̄MG is the mean final sample size; pMG is the estimated coverage probability; 	 is the upper bound of
the length of the confidence interval for �; se�N̄MG is the standard deviation of the mean final sample size (i.e., standard error of the final sample size);
nMG is the theoretical sample size if the procedure is used with the population parameters; se(pMG) is the standard error of pMG; w� NMG

average length of
confidence intervals for � based on NMG observations; se�w� NMG

 is the standard error of w� NMG
; tabled values are based on 5,000 replications of a Monte Carlo

simulation study from bivariate normal distribution (N2) with parameters �1, �2, �1
2, �2

2, and �, respectively.
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NKT is the smallest integer n(� mKT) such that
4z	⁄2

2

�2 ��̂n,KT
2 � n�1

(30)

where mKT is the pilot sample, the same as that given in Equation 9.
We now find the characteristics of the stopping rule defined in

Equation 30 using Monte Carlo simulation for constructing (1 �
�)100% confidence intervals for population correlation coeffi-
cients from bivariate distributions — bivariate normal and the
bivariate gamma distribution from Theorem 2 of Nadarajah and
Gupta (2006). The simulation study was done for correlation
coefficient � corresponding to � � {0.1, 0.3, 0.5} and 	 � {0.1,
0.2}. In all cases, 5,000 replications were used. Tables 7 and 8
show the estimates of mean final sample size, coverage probabil-
ity, and average confidence interval width and also the correspond-
ing standard errors for 90% and 95% confidence interval coverage,
respectively.

The width of the confidence interval given by the sequential
procedure with stopping rule defined in Equation 30 did not
exceed the maximum specified width 	. Further, the coverage
probability estimates are close to the corresponding confidence
level. Also, the ratio of average sample size estimate and the
optimal sample size is close to 1.

AIPE for Spearman’s �

Let (X, Y) be a random bivariate observation with common
distribution function F with marginals F1(x) and F2(y), respec-
tively, for X and Y. The popular nonparametric correlation measure
proposed by Spearman (1904), which is equivalent to the Pearson
correlation for the ranks of observations, is defined as

�s � Corr(F1(X)F2(Y)) � 12E�F1(X)F2(Y)� � 3. (31)

For more details, we refer to Borkowf (1999), Croux and Dehon
(2010), Genest and Favre (2007), and Kojadinovic and Yan

(2010). A consistent estimator for Spearman’s �, �s based on
observations (X1, Y1), (X2, Y2), . . . , (Xn, Yn), is given by

rs,n �
�i�1

n (Rx,i � R�x)(Ry,i � R�y)

��i�1
n (Rx,i � R�x)

2�i�1
n (Ry,i � R�y)

2
(32)

� 12
n(n � 1)(n � 1)�i�1

n

Rx,iRy,i � 3n � 1
n � 1 (33)

�1 �
6�i�1

n (Rx,i � Ry,i)
2

n3 � n
, (34)

where R�x and R�y are the average of the ranks for X and Y,
respectively. Using Borkowf (2002) and Hoeffding (1948), the
asymptotic distribution of rs,n is

�n(rs,n � �s) ¡
D

N�0, ��s

2 , (35)

where

��s

2 � 144��9�1
2 � �3 � 2�4 � 2�5 � 2�6, (36)

and

�1 � E�F1(X1)F2(Y1)� (37)

�3 � E�S1(X1)
2S2(Y1)

2� (38)

�4 � E�S(X1, Y2)S1(X2)S2(Y1)� (39)

�5 � E�S(max�X1, X2	)S2(Y1)S2(Y2)� (40)

�6 � E�S1(X1)S1(X2)S(max�Y1, Y2	)� (41)

Si(x) � 1 � Fi(x), i � �1, 2	 (42)

S(x, y) � 1 � F1(x) � F2(y) � F(x, y). (43)

Proceeding along the same lines as given in Equations 4–7, we
can find that the sample size required to achieve the sufficient

Table 7
Summary of Final Sample Size for 90% Confidence Interval for Kendall’s � Using Asymptotic Distribution

	 Distribution � � N̄KT se�N̄KT nKT N̄KT ⁄nKT pKT se(pKT) w� NKT
se�w� NKT



.1 N2(0, 0, 1, 1, .1) .1 .0638 478.4 .0597 477 1.003 .8946 .0043 .0997 4.815 � 10�7

N2(0, 0, 1, 1, .3) .3 .1940 443.0 .1669 442 1.002 .8888 .0044 .0997 8.224 � 10�7

N2(0, 0, 1, 1, .5) .5 .3333 371.1 .2575 369 1.006 .8876 .0045 .0995 1.562 � 10�6

Ga2(5, 5, 50, 10) .1 .0638 478.4 .0626 477 1.003 .8984 .0043 .0997 4.901 � 10�7

Ga2(5, 5, 16.67, 10) .3 .1940 443.1 .1783 442 1.002 .8952 .0043 .0996 1.022 � 10�6

Ga2(5, 5, 10, 10) .5 .333 370.9 .2881 369 1.005 .8930 .0044 .0995 2.2 � 10�6

.2 N2(0, 0, 1, 1, .1) .1 .0638 120.9 .0354 120 1.008 .8824 .0046 .1977 3.834 � 10�6

N2(0, 0, 1, 1, .3) .3 .1904 112.2 .0846 111 1.011 .8840 .0045 .1972 7.805 � 10�6

N2(0, 0, 1, 1, .5) .5 .3333 94.46 .1250 93 1.016 .8862 .0045 .1960 1.615 � 10�5

Ga2(5, 5, 50, 10) .1 .0638 120.9 .0364 120 1.008 .8858 .0045 .1977 4.113 � 10�6

Ga2(5, 5, 16.67, 10) .3 .1940 112.0 .0915 111 1.009 .8866 .0045 .1972 1.037 � 10�5

Ga2(5, 5, 10, 10) .5 .3333 94.16 .1457 93 1.012 .8756 .0047 .1958 2.273 � 10�5

Note. � is the population Pearson’s correlation coefficient; � is the population Kendall’s � (computed using bootstrap method for bivariate Gamma
distribution); N̄KT is the mean final sample size; pKT is the estimated coverage probability; 	 is the upper bound of the length of the confidence interval
for �; se�N̄KT is the standard deviation of the mean final sample size (i.e., standard error of the final sample size); nKT is the theoretical sample size if the
procedure is used with the population parameters; se(pKT) is the standard error of pKT; w� NKT

average length of confidence intervals for � based on N
observations; tabled values are based on 5,000 replications of a Monte Carlo simulation study from distributions: Bivariate Normal (N2) with parameters
�1, �2, �1

2, �2
2, and � respectively, and bivariate gamma (Ga2) with parameters a1, a2, c, and �, respectively, based on Theorem 2 of Nadarajah and Gupta

(2006).
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accuracy with prespecified upper bound (	) on the width of the
confidence interval for �s will be

n � >4z	 ⁄ 2
2 ��s

2

�2 ?� nSR, (44)

where ��s

2 is defined as in Equation 36. In practice, ��s

2 is usually
unknown and we use a consistent estimator proposed by Genest
and Favre (2007), which is given by

�̂n,SR
2 � 144(�9An � Bn � 2Cn � 2Dn � 2En) (45)

where

An � 1
n�i�1

n Rx,i

n � 1
Ry,i

n � 1 (46)

Bn � 1
n�i�1

n � Rx,i

n � 12� Ry,i

n � 12
(47)

Cn � 1
n3�

i�1

n

�
j�1

n

�
k�1

n Rx,i

n � 1
Ry,i

n � 11�Rx,k 
 Rx,i, Rx,k 
 Rx,j	 � 1
4 � An

(48)

Dn � 1
n2�

i�1

n

�
j�1

n Ry,i

n � 1
Ry,j

n � 1max� Rx,i

n � 1,
Rx,j

n � 1	 (49)

En � 1
n2�

i�1

n

�
j�1

n Rx,i

n � 1
Rx,j

n � 1max� Ry,i

n � 1,
Ry,j

n � 1	. (50)

On the other hand, Kojadinovic and Yan (2010) also proposed
a very simple but also consistent estimator of �2 as

Vn
2 � 144

n � 1�i�1

n

(Zi � Z�)2, (51)

where

Zi �
Rx,i

n � 1
Ry,i

n � 1 � 1
n�

k�1

n

1�Rx,i 
 Rx,k	
Ry,k

n � 1 � 1
n�

k�1

n

1�Ry,i


 Ry,k	
Rx,k

n � 1, (52)

and Z� � 1
n�i�1

n

Zi. (53)

Because ��s

2 is unknown in reality, in order to compute the
required sample size, nSR, we use sequential procedure. Our se-
quential stopping rule which helps find the estimate of the optimal
sample size is as follows:

NSR is the smallest integer n(� mSR) such that
4z	⁄2

2

�2 ��̂n,SR
2 � n�1,

(54)

where mSR is the pilot sample which is same as the pilot sample
size as defined in Equation 9.

We now find the characteristics of the stopping rule defined in
Equation 54 using Monte Carlo simulation for constructing (1 �
�)100% confidence intervals for population correlation coeffi-
cients from bivariate distributions — bivariate normal and the
bivariate gamma distribution from Theorem 2 of Nadarajah and
Gupta (2006). The simulation study was done for correlation
coefficient � corresponding to � � {0.1, 0.3, 0.5} and 	 � {0.1,
0.2}. In all cases, 5,000 replications were used. Tables 9 and 10
show the estimates of mean final sample size, coverage probabil-
ity, average confidence interval width, and standard error for 90%
and 95% confidence intervals, respectively.

The width of the confidence interval given by the sequential
procedure with stopping rule defined in Equation 54 did not
exceed the maximum specified width 	. The coverage probability
estimates are close to the corresponding confidence level. Also, the
ratio of average sample size estimate and the optimal sample size
is close to 1.

Table 8
Summary of Final Sample Size for 95% Confidence Interval for Kendall’s � Using Asymptotic Distribution

	 Distribution � � N̄KT se�N̄KT nKT N̄KT ⁄nKT pKT se(pKT) w� NKT
se�w� NKT



.1 N2(0, 0, 1, 1, .1) .1 .0638 678.4 .0698 677 1.002 .9506 .0031 .0998 3.429 � 10�7

N2(0, 0, 1, 1, .3) .3 .1940 628.2 .1984 627 1.002 .9408 .0033 .0998 5.691 � 10�7

N2(0, 0, 1, 1, .5) .5 .3333 526.0 .3058 524 1.004 .9444 .0032 .0996 1.084 � 10�6

Ga2(5, 5, 50, 10) .1 .6380 678.4 .0741 677 1.002 .9490 .0031 .0998 3.41 � 10�7

Ga2(5, 5, 16.67, 10) .3 .1940 628.2 .2084 627 1.002 .9512 .0030 .0998 7.487 � 10�7

Ga2(5, 5, 10, 10) .5 .3333 526.1 .3452 524 1.004 .9394 .0034 .0996 1.539 � 10�6

.2 N2(0, 0, 1, 1, .1) .1 .0638 170.9 .0371 170 1.005 .9440 .0033 .1984 3.028 � 10�6

N2(0, 0, 1, 1, .3) .3 .1940 158.2 .1004 157 1.010 .9378 .0034 .1980 5.218 � 10�6

N2(0, 0, 1, 1, .5) .5 .3333 133.2 .1514 131 1.017 .9318 .0036 .1972 1.045 � 10�5

Ga2(5, 5, 50, 10) .1 .638 170.8 .0425 170 1.005 .9428 .0033 .1984 3.335 � 10�6

Ga2(5, 5, 16.67, 10) .3 .194 158.3 .1121 157 1.009 .9364 .0035 .198 6.536 � 10�6

Ga2(5, 5, 10, 10) .5 .333 133.1 .1725 131 1.016 .9332 .0035 .1971 1.47 � 10�5

Note. � is the population Pearson’s correlation coefficient; � is the population Kendall’s � (computed using bootstrap method for bivariate Gamma
distribution); N̄KT is the mean final sample size; pKT is the estimated coverage probability; 	 is the upper bound of the length of the confidence interval
for �; se�N̄KT is the standard deviation of the mean final sample size (i.e., standard error of the final sample size); nKT is the theoretical sample size if the
procedure is used with the population parameters; se(pKT) is the standard error of pKT; w� NKT

average length of confidence intervals for � based on N
observations; tabled values are based on 5,000 replications of a Monte Carlo simulation study from distributions: bivariate normal (N2) with parameters
�1, �2, �1

2, �2
2, and �, respectively, and bivariate gamma (Ga2) with parameters a1, a2, c, and � based on Theorem 2 of Nadarajah and Gupta (2006).
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One can proceed along the same lines as in this article (in
Appendix B) and in Kelley et al. (2018) to prove that the respective
coverage probabilities for the confidence interval for Kendall’s �
(�) and Spearman’s � (�s) are approximately close to the confi-
dence level, and also the width of the confidence interval is less
than 	.

An Extension: Squared Multiple Correlation
Coefficient

The sequential procedure that is proposed for correlation coef-
ficients in the previous sections is now extended for finding a
sufficiently narrow confidence interval for the population squared

multiple correlation coefficient. In this section, we develop the
sequential AIPE procedure for the squared multiple correlation
coefficient under multivariate normal assumption only. We first
formulate the corresponding AIPE problem. Although the previous
parts of the article were distribution-free, here we assume multi-
variate normality because there is not, to our knowledge, a suffi-
cient analytic method for forming a confidence interval for the
population squared multiple correlation coefficient that is
distribution-free.

Suppose, for the ith(i � 1, 2, . . . , n) individual out of n
individuals, Yi is the score corresponding to the response variable
and Xij is the observed score corresponding to the jth (j � 1,2, . . . ,
k) predictor variable. Let Y denote the random vector of responses

Table 9
Summary of Final Sample Size for 90% Confidence Interval for Spearman’s Rho, �s

	 Distribution � �s N̄SR se�N̄SR nSR N̄SR ⁄nSR pSR se(pSR) w� NSR
se�w� NSR



.1 N2(0, 0, 1, 1, .1) .1 .0955 1,065 .4098 1,066 .9988 .8998 .0042 .0999 4.07 � 10�7

N2(0, 0, 1, 1, .3) .3 .2876 931.3 .6019 933 .9982 .8964 .0043 .0999 5.599 � 10�7

N2(0, 0, 1, 1, .5) .5 .4826 679.3 .8218 683 .9946 .8876 .0045 .0998 1.063 � 10�6

Ga2(5, 5, 50, 10) .1 .0915 1,069 .4031 1,116 .9579 .9002 .0042 .0999 3.943 � 10�7

Ga2(5, 5, 16.67, 10) .3 .2821 948.9 .6067 957 .9916 .9004 .0042 .0999 5.432 � 10�7

Ga2(5, 5, 10, 10) .5 .4765 714.2 .8437 695 1.0280 .8998 .0042 .0998 9.701 � 10�7

.2 N2(0, 0, 1, 1, .1) .1 .0955 265.4 .2140 267 .9940 .8898 .0044 .1993 3.409 � 10�6

N2(0, 0, 1, 1, .3) .3 .2876 231.5 .3236 234 .9895 .8890 .0044 .1990 1.78 � 10�5

N2(0, 0, 1, 1, .5) .5 .4826 166.5 .4690 171 .9735 .8598 .0049 .1977 5.669 � 10�5

Ga2(5, 5, 50, 10) .1 .0915 266.2 .2102 279 .9542 .8924 .0044 .1993 3.444 � 10�6

Ga2(5, 5, 16.67, 10) .3 .2821 235.5 .3279 240 .9913 .8894 .0044 .1990 1.256 � 10�5

Ga2(5, 5, 10, 10) .5 .4765 174.9 .4832 174 1.0050 .8618 .0049 .1980 4.947 � 10�5

Note. � is the population Pearson’s correlation coefficient; �s is the population Spearman’s rho (computed using bootstrap method for bivariate Gamma
distribution); N̄SR is the mean final sample size; pSR is the estimated coverage probability; 	 is the upper bound of the length of the confidence interval for
�s; se�N̄SR is the standard deviation of the mean final sample size (i.e., standard error of the final sample size); nSR is the theoretical sample size if the
procedure is used with the population parameters (computed using bootstrap method for bivariate Ga distribution); se(pSR) is the standard error of pSR; w� NSR
average length of confidence intervals for �s based on N observations; tabled values are based on 5,000 replications of a Monte Carlo simulation study from
distributions: bivariate normal (N2) distribution with parameters �1, �2, �1

2, �2
2, and �, respectively, and bivariate gamma (Ga2) with parameters a1, a2, c,

and �, respectively, based on Theorem 2 of Nadarajah and Gupta (2006).

Table 10
Summary of Final Sample Size for 95% Confidence Interval for Spearman’s Rho, �s

	 Distribution � �s N̄SR se�N̄SR nSR N̄SR ⁄nSR pSR se(pSR) w� NSR
se�w� NSR



.1 N2(0, 0, 1, 1, .1) .1 .0955 1,512 .4830 1,513 .9994 .9524 .0030 .0999 2.78 � 10�7

N2(0, 0, 1, 1, .3) .3 .2876 1,323 .7309 1,325 .9986 .9526 .0030 .0999 3.87 � 10�7

N2(0, 0, 1, 1, .5) .5 .4826 966.2 .9759 970 .9961 .9410 .0033 .0999 7.03 � 10�7

Ga2(5, 5, 50, 10) .1 .0915 1,518 .4826 1,584 .9583 .9530 .0030 .0999 2.77 � 10�7

Ga2(5, 5, 16.67, 10) .3 .2821 1,348 .7112 1,358 .9927 .9526 .0030 .0999 3.74 � 10�7

Ga2(5, 5, 10, 10) .5 .4765 1,015 .9828 986 1.0290 .9508 .0031 .0999 6.472 � 10�7

.2 N2(0, 0, 1, 1, .1) .1 .0955 377.4 .2461 379 .9958 .9362 .0035 .1995 2.371 � 10�6

N2(0, 0, 1, 1, .3) .3 .2876 329.7 .3701 332 .9931 .9394 .0034 .1993 3.428 � 10�6

N2(0, 0, 1, 1, .5) .5 .4826 238.8 .5289 243 .9829 .9300 .0036 .1986 3.026 � 10�5

Ga2(5, 5, 50, 10) .1 .0915 378.7 .2450 396 .9562 .9478 .0031 .1995 2.352 � 10�6

Ga2(5, 5, 16.67, 10) .3 .2821 336.1 .3653 340 .9887 .9410 .0033 .1994 3.349 � 10�6

Ga2(5, 5, 10, 10) .5 .4765 250.9 .5369 247 1.0160 .9340 .0035 .1987 3.231 � 10�5

Note. � is the population Pearson’s correlation coefficient; �s is the population Spearman’s rho (computed using bootstrap method for bivariate Gamma
distribution); N̄SR is the mean final sample size; pSR is the estimated coverage probability; 	 is the upper bound of the length of the confidence interval for
�s; se�N̄SR is the standard deviation of the mean final sample size (i.e., standard error of the final sample size); nSR is the theoretical sample size if the
procedure is used with the population parameters (computed using bootstrap method for bivariate Ga distribution); se(pSR) is the standard error of pSR; w� NSR
average length of confidence intervals for �s based on N observations; tabled values are based on 5,000 replications of a Monte Carlo simulation study from
distributions: bivariate normal (N2) distribution with parameters �1, �2, �1

2, �2
2, and �, respectively, and bivariate gamma (Ga2) with parameters a1, a2, c,

and �, respectively, based on Theorem 2 of Nadarajah and Gupta (2006).
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and X denote the corresponding random design matrix. The uni-
variate linear regression model in matrix form is

Y � �01 � X� � �, (55)

where 1 is the vector where all elements are 1, � is the vector of
regression parameters, and � is the random error vector. The
population squared multiple correlation coefficient is given by

P2 �
�YX�XX

�1�XY

�Y
2 (56)

where �XX
�1 is the inverse of the k � k population covariance matrix

of the k predictors, �XY is the k dimensional column vector of
covariances of the k predictors with the response Y, �YX is the k
dimensional row vector of covariances of the k predictors with the
response Y (�XY= � �YX), and �Y

2 is the population variance of the
response Y.

A well-known consistent estimator of the population squared
multiple correlation coefficient, also known as R-squared (R2) or
multiple R-squared, is given by

R2 �
sYXSXX

�1sXY

sY
2 (57)

where SXX
�1 is the inverse of the k � k sample covariance matrix of

the k predictors, sXY is the k dimensional column vector of sample

covariances of the k predictors with the response Y, sYX is the k
dimensional row vector of sample covariances of the k predictors
with the response Y (sXY� � sYX), and sY

2 is the sample variance of
the response Y.

The approximate (1 � �)100% confidence interval for the
population squared multiple correlation coefficient as given in
Bonett and Wright (2011) is

1 � exp�ln(1 � R2) � z	 ⁄ 2
2P

�n � k � 2, (58)

where z�/2 is the 100(1��/2)th percentile of the standard normal
distribution. The approximate (1 � �)100% Wald-type confidence
interval for the population squared multiple correlation coefficient
using the asymptotic variance developed by Olkin and Finn (1995)
is given by

R2 � z	 ⁄ 2
2P(1 � P2)

�n
. (59)

In AIPE for the population squared multiple correlation coeffi-
cient, in order to have a sufficiently narrow confidence interval, an
upper bound (	) of the confidence interval width is prespecified.
Using the width constraint, we can find the optimal sample size for
the confidence interval given in Equation 58 as

Table 11
Summary of Final Sample Size for 90% Confidence Interval for P2 Using Bonett and Wright (2011)

k 	 P2 N̄BW se�N̄BW nBW N̄BW ⁄nBW pBW se(pBW) w� NBW

2 .05 .10 1,308.44 5.4457 1,407 .9299 .8344 .0053 .0489
.30 2,529.40 3.0025 2,551 .9915 .8866 .0045 .0499
.50 2,149.81 2.6762 2,171 .9902 .8916 .0044 .0499
.70 1,071.65 2.3025 1,098 .9760 .8886 .0044 .0496
.90 140.63 .8780 164 .8575 .7894 .0058 .0481

.10 .10 297.69 2.0105 355 .8386 .7404 .0062 .0959
.30 623.99 1.3225 642 .9719 .8768 .0046 .0992
.50 533.22 1.1170 547 .9748 .8858 .0045 .0992
.70 262.79 .9621 280 .9385 .8554 .0050 .0982
.90 34.84 .3222 47 .7412 .7688 .0060 .0908

5 .05 .10 1,414.03 2.8253 1,410 1.0029 .8948 .0043 .0498
.30 2,525.96 3.5884 2,554 .9890 .8916 .0044 .0498
.50 2,130.43 3.9169 2,174 .9800 .8846 .0045 .0497
.70 1,056.26 2.8159 1,101 .9594 .8722 .0047 .0494
.90 129.40 .9586 167 .7748 .7196 .0064 .0473

.10 .10 364.23 1.3204 358 1.0174 .8802 .0046 .0989
.30 630.03 1.2387 645 .9768 .8816 .0046 .0992
.50 524.81 1.4068 550 .9542 .8716 .0047 .0987
.70 252.39 1.1333 283 .8918 .8216 .0054 .0970
.90 30.90 .3098 50 .6179 .6668 .0067 .0871

10 .05 .10 1,444.09 3.0292 1,415 1.0206 .8938 .0044 .0497
.30 2,503.95 5.1902 2,559 .9785 .8908 .0044 .0496
.50 2,101.63 5.2572 2,179 .9645 .8720 .0047 .0493
.70 1,033.60 3.5467 1,106 .9345 .8510 .0050 .0489
.90 113.23 1.0222 172 .6583 .6032 .0069 .0455

.10 .10 391.00 1.3881 363 1.0771 .8580 .0049 .0981
.30 621.40 1.8054 650 .9560 .8506 .0050 .0982
.50 509.91 1.8875 555 .9188 .8298 .0053 .0973
.70 234.17 1.3801 288 .8131 .7476 .0061 .0950
.90 27.13 .2533 55 .4932 .5132 .0071 .0817

Note. P2 is the population multiple correlation; N̄BW is the mean final sample size; pBW is the estimated coverage probability; 	 is the upper bound of the
length of the confidence interval for P2; se�N̄BW is the standard deviation of the mean final sample size (i.e., standard error of the final sample size); nBW

is the theoretical sample size if the procedure is used with known population value of P2; se(pBW) is the standard error of pBW; w� BW average length of
confidence intervals for P2 based on NBW observations; tabled values are based on 5,000 replications of a Monte Carlo simulation study from multivariate
normal distribution (Nk) with parameters: mean vector � and variance covariance matrix �.
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n � 2 � k � 4P2z	 ⁄ 2
2 
ln�1

2� �
(1 � P2)

�� �2

(1 � P2)2 � 4����2

� nBW, (60)

and the optimal sample size for the confidence interval given in
Equation 59 as

n �
16z	 ⁄ 2

2

�2 (P2(1 � P2)2) � nOF. (61)

The derivation of the optimal sample sizes is given in Appendix
C. Thus, nBW is the optimal sample size which is required to get a
sufficiently narrow confidence interval, of the form given in Equa-
tion 58, of the multiple correlation coefficient P2. nOF is the
optimal sample size which is required to obtain a sufficiently
narrow confidence interval of the form given in Equation 59 of the
multiple correlation coefficient P2. Note also that Kelley (2008)
provided an AIPE procedure for the population squared multiple
correlation coefficient using noncentral distributions (e.g., Kelley,
2007a). The method in this article differs from Kelley (2008) in
that it is based on Olkin and Finn (1995) method instead of Steiger
& Fouladi (1992, 1997).

Because P2 is unknown, both nBW and nOF are also unknown.
Thus, in order to obtain a sufficiently narrow confidence inter-

val for P2, we need to estimate nBW and nOF. This can be done
using sequential procedure similar to what was described ear-
lier.

The stopping rule related to the sequential procedure for esti-
mating nbw is given by:

NBW is the smallest integer n(�mBW) such that

n � 2 � k � 4R2z	 ⁄ 2
2 
ln�1

2� �
(1 � R2)

�� �2

(1 � R2)2 � 4����2

.

(62)

We propose the corresponding pilot sample size to be mBW �
k � 2. Now, the stopping rule related to the sequential procedure
for estimating nOF is given by:

NOF is the smallest integer n(�mOF) such that

n �
16z	 ⁄ 2

2

�2 ��R2 � 1
n�1 � �R2 � 1

n2�, (63)

where mOF � max{k, 4z�/2/	} is the corresponding pilot sample
size. We note that, in Equation 63, we use R2 � 1/n which is a
consistent estimator of P2. The expression of the pilot sample sizes
mBW and mOF is derived in Appendix C.

Table 12
Summary of Final Sample Size for 95% Confidence Interval for P2 Using Bonett and Wright (2011)

k 	 P2 N̄BW se�N̄BW nBW N̄BW ⁄nBW pBW se(pBW) w� NBW

2 .05 .10 1,893.25 6.6567 1,996 .9485 .8966 .0043 .0492
.30 3,596.31 3.8162 3,620 .9935 .9388 .0034 .0499
.50 3,063.19 2.8966 3,080 .9945 .9448 .0032 .0499
.70 1,537.45 2.3780 1,557 .9874 .9410 .0033 .0498
.90 212.23 .9910 230 .9228 .8940 .0044 .0490

.10 .10 435.52 2.5998 503 .8659 .8132 .0055 .0968
.30 892.21 1.5674 910 .9805 .9374 .0034 .0995
.50 760.73 1.3081 775 .9816 .9386 .0034 .0995
.70 380.06 1.0911 395 .9622 .9254 .0037 .0989
.90 50.55 .4177 64 .7899 .8432 .0051 .0936

5 .05 .10 2,005.04 3.3728 1,999 1.0030 .9432 .0033 .0498
.30 3,600.12 3.8252 3,623 .9937 .9486 .0031 .0499
.50 3,055.20 3.5829 3,083 .9910 .9432 .0033 .0499
.70 1,520.37 3.2019 1,560 .9746 .9322 .0036 .0496
.90 198.56 1.1441 233 .8522 .8384 .0052 .0482

.10 .10 513.15 1.5693 506 1.0141 .9334 .0035 .0993
.30 897.13 1.5073 913 .9826 .9342 .0035 .0993
.50 754.62 1.6021 778 .9699 .9284 .0036 .0991
.70 369.88 1.2873 398 .9294 .9074 .0041 .0982
.90 45.27 .4144 67 .6757 .7616 .0060 .0910

10 .05 .10 2,034.40 3.6812 2,004 1.0152 .9446 .0032 .0498
.30 3,588.62 5.2427 3,628 .9891 .9446 .0032 .0498
.50 3,028.29 5.4085 3,088 .9807 .9402 .0034 .0497
.70 1,499.93 4.0235 1,565 .9584 .9228 .0038 .0493
.90 182.09 1.2902 238 .7651 .7526 .0061 .0473

.10 .10 541.94 1.5947 511 1.0606 .9308 .0036 .0990
.30 893.74 1.9830 918 .9736 .9236 .0038 .0990
.50 744.97 2.0460 783 .9514 .9100 .0040 .0985
.70 354.90 1.6083 403 .8806 .8572 .0049 .0969
.90 39.85 .3800 72 .5534 .6460 .0068 .0879

Note. P2 is the population multiple correlation; N̄BW is the mean final sample size; pBW is the estimated coverage probability; 	 is the upper bound of the
length of the confidence interval for P2; se�N̄BW is the standard deviation of the mean final sample size (i.e., standard error of the final sample size); nBW

is the theoretical sample size if the procedure is used with known population value of P2; se(pBW) is the standard error of pBW; w� BW average length of
confidence intervals for P2 based on NBW observations; tabled values are based on 5,000 replications of a Monte Carlo simulation study from multivariate
normal distribution with parameters: mean vector � and variance covariance matrix �.
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Simulation Results

We now find the characteristics of the stopping rules defined in
Equations 62 and 63 using Monte Carlo simulation for construct-
ing (1 � �)100% confidence intervals for population squared
multiple correlation coefficient from multivariate normal distribu-
tions with mean parameter vector and dispersion matrix respec-
tively given by

� � (0, . . . , 0)� � 0(k�1) � 1

and

�(k�1) � (k�1) � �1 �

 I �
where  � �1, 2, . . . , k� � �YX with i � �P2 ⁄k for i � 1, . . . ,
k, and I is a k � k identity matrix (i.e., cov(X) � I). The simulation
study was done for population squared multiple correlation under
several scenarios with replication size 5,000. Tables 11, 12, 13,
and 14 show the estimates of mean final sample size, coverage
probability, and also the corresponding standard errors and the
average confidence interval width. The simulation results show
that the width of the confidence interval given by the sequential
procedure with stopping rules defined in Equations 62–63 did not

exceed the maximum specified width 	. Except for smaller opti-
mal sample sizes, the coverage probability estimates are close to
the corresponding confidence level and also, the ratio of average
sample size estimate and the optimal sample size is close to 1.
Also, we note that for relatively smaller sample sizes, the sequen-
tial procedure under both Olkin and Finn (1995) and Bonett and
Wright (2011) confidence intervals produce estimated sample
sizes and coverage probabilities that are comparatively lower than
their respective targets. Overall, the results for the sequential
procedure corresponding to the confidence interval given by Olkin
and Finn (1995) performed better than the procedure given by
Bonett and Wright (2011) in terms of required optimal sample size.
Because of the analytic complexities associated with noncentral
distributions, we did not develop the sequential procedures for the
noncentral confidence interval approaches. However, in principle,
the sequential AIPE procedure should generalize to such situa-
tions.

Discussion

A variety of correlation coefficients exist and are used in a wide
variety of context in psychology and related fields. Estimating the
population value of correlation coefficient is of great importance.

Table 13
Summary of Final Sample Size for 90% Confidence Interval for P2 Using Olkin and Finn (1995)

k 	 P2 N̄OF se�N̄OF nOF N̄OF ⁄nOF pOF se(pOF) w� NOF

2 .05 .10 1,406.47 2.4778 1,403 1.0025 .8902 .0044 .0497
.30 2,548.32 .2678 2,546 1.0009 .8986 .0043 .0499
.50 2,165.16 .9286 2,165 1.0001 .9024 .0042 .0499
.70 1,091.74 1.2002 1,091 1.0007 .9026 .0042 .0498
.90 174.44 .4987 156 1.1182 .8898 .0044 .0461

.10 .10 347.98 1.3031 351 .9914 .8460 .0051 .0962
.30 638.92 .1593 637 1.0030 .8930 .0044 .0995
.50 543.16 .4694 542 1.0021 .8962 .0043 .0993
.70 275.69 .6141 273 1.0099 .8830 .0045 .0981
.90 68.66 .0963 39 1.7605 .8678 .0048 .0733

5 .05 .10 1,427.36 2.3615 1,403 1.0174 .8900 .0044 .0497
.30 2,549.42 .2636 2,546 1.0013 .8938 .0044 .0499
.50 2,161.49 .9365 2,165 .9984 .8998 .0042 .0499
.70 1,087.11 1.2317 1,091 .9964 .8908 .0044 .0498
.90 170.13 .4898 156 1.0906 .8684 .0048 .0458

.10 .10 375.77 1.0788 351 1.0706 .8888 .0044 .0976
.30 640.31 .1399 637 1.0052 .8932 .0044 .0995
.50 539.22 .4790 542 .9949 .8854 .0045 .0993
.70 268.82 .6312 273 .9847 .8604 .0049 .0980
.90 67.94 .0812 39 1.7420 .8406 .0052 .0710

10 .05 .10 1,458.75 2.2223 1,403 1.0397 .8964 .0043 .0497
.30 2,550.97 .2510 2,546 1.0020 .9016 .0042 .0499
.50 2,157.60 .9383 2,165 .9966 .8962 .0043 .0499
.70 1,080.75 1.2345 1,091 .9906 .8898 .0044 .0498
.90 163.12 .4639 156 1.0456 .8106 .0055 .0452

.10 .10 403.12 .9458 351 1.1485 .8736 .0047 .0981
.30 641.16 .1292 637 1.0065 .8820 .0046 .0995
.50 534.97 .4924 542 .9870 .8736 .0047 .0993
.70 261.45 .6568 273 .9577 .8236 .0054 .0979
.90 67.00 .0584 39 1.7179 .7294 .0063 .0661

Note. P2 is the population multiple correlation coefficient; N̄OF is the mean final sample size; pOF is the estimated coverage probability; 	 is the upper
bound of the length of the confidence interval for P2; se�N̄OF is the standard deviation of the mean final sample size (i.e., standard error of the final sample
size); nOF is the theoretical sample size if the procedure is used with known population value of P2; se(pOF) is the standard error of pOF; w� NOF

average length
of confidence intervals for P2 based on NOF observations; tabled values are based on 5,000 replications of a Monte Carlo simulation study from multivariate
normal distribution with parameters: mean vector � and variance covariance matrix �.
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The necessity of using a (1 � �)100% confidence interval that
brackets a wide range of values in order to include the true value,
with the specified level of confidence, represents an important
problem. Correspondingly, a method to obtain a sufficiently nar-
row (1 � �)100% confidence interval for the population correla-
tion coefficient with a confidence interval width no larger than
desired is very advantageous in many research contexts. However,
until now, all such approaches required the specification of un-
known population values and bivariate normality for Pearson
product–moment correlation coefficient, Spearman’s rho, and
Kendall’s tau. Our approach overcomes both of these limitations
for these three important correlation coefficients. We discuss a
distribution-free confidence interval approach for the population
correlation coefficients, namely Pearson’s product-moment corre-
lation coefficient, Kendall � rank correlation coefficient, and
Spearman’s � rank correlation coefficient. We then use
distribution-free framework to develop a sequential approach to
accuracy in parameter estimation of the correlation coefficients.

It is known that, holding constant the population value and
confidence coefficient, a narrower confidence interval provides
more information about the parameter than a wider confidence
interval. Given a value of the upper bound of the confidence
interval (	), an approximate (1 � �)100% confidence interval for

the population correlation coefficient can be constructed by using
an a priori sample size planning approach, which requires a sup-
posed value of the population parameter. Using supposed popula-
tion values based on theory, an estimate from one or more other
studies, or a conjecture based on a rule of thumb can lead to sample
size estimates that grossly differ from what the theoretically opti-
mal sample size would be if the population parameters were
known and assumptions were satisfied. We overcome such a
limitation by proposing a sequential procedure which can be used
to construct an approximate (1 � �)100% confidence interval for
the population correlation coefficients within a prespecified width
(	) without assuming any distribution of the data. Unlike a priori
sample size planning approaches, our sequential procedure does
not require knowledge of population parameters in order to obtain
a sufficiently narrow confidence interval.

We discuss a sequential approach to construct a sufficiently
narrow confidence interval for the population correlation coeffi-
cients of interest assuming homogeneity of the data distribution.
Some studies (e.g., Stanley, Wilson, & Milfont, 2017; van Erp,
Verhagen, Grasman, & Wagenmakers, 2017) have shown that
heterogeneity of the data distribution is possible, due to which the
population effect size may change (e.g., parameter drift). However,
incorporating heterogeneity or parameter drift is beyond the scope

Table 14
Summary of Final Sample Size for 95% Confidence Interval for P2 Using Olkin and Finn (1995)

k 	 P2 N̄OF se�N̄OF nOF N̄OF ⁄nOF pOF se(pOF) w� NOF

2 .05 .10 1,997.80 2.9059 1,992 1.0029 .9404 .0033 .0498
.30 3,616.98 .3207 3,615 1.0005 .9432 .0033 .0500
.50 3,074.28 1.1125 3,074 1.0001 .9498 .0031 .0499
.70 1,550.08 1.4774 1,549 1.0007 .9412 .0033 .0498
.90 237.06 .6750 222 1.0679 .9270 .0037 .0473

.10 .10 495.01 1.5851 498 .9940 .9152 .0039 .0976
.30 906.47 .1733 904 1.0027 .9474 .0032 .0996
.50 769.43 .5548 769 1.0006 .9522 .0030 .0995
.70 389.45 .7446 388 1.0037 .9328 .0035 .0987
.90 84.17 .1493 56 1.5030 .9222 .0038 .0790

5 .05 .10 2,016.71 2.8057 1,992 1.0124 .9492 .0031 .0498
.30 3,618.07 .3129 3,615 1.0008 .9504 .0031 .0500
.50 3,070.70 1.1156 3,074 .9989 .9502 .0031 .0499
.70 1,544.58 1.4603 1,549 .9971 .9492 .0031 .0498
.90 230.38 .6648 222 1.0377 .9108 .0040 .0471

.10 .10 522.35 1.3550 498 1.0489 .9442 .0032 .0983
.30 907.40 .1615 904 1.0038 .9442 .0032 .0996
.50 766.17 .5611 769 .9963 .9450 .0032 .0995
.70 383.90 .7328 388 .9894 .9320 .0036 .0986
.90 82.94 .1290 56 1.4810 .8988 .0043 .0769

10 .05 .10 2,047.95 2.6772 1,992 1.0281 .9508 .0031 .0498
.30 3,619.31 .3047 3,615 1.0012 .9522 .0030 .0500
.50 3066.39 1.0971 3,074 .9975 .9538 .0030 .0499
.70 1,540.85 1.4559 1,549 .9947 .9466 .0032 .0498
.90 223.07 .6671 222 1.0048 .8720 .0047 .0469

.10 .10 552.43 1.1856 498 1.1093 .9406 .0033 .0986
.30 908.41 .1527 904 1.0049 .9384 .0034 .0996
.50 762.34 .5808 769 .9913 .9360 .0035 .0995
.70 376.14 .7833 388 .9694 .9038 .0042 .0986
.90 81.28 .0972 56 1.4513 .8304 .0053 .0728

Note. P2 is the population multiple correlation coefficient; N̄OF is the mean final sample size; pOF is the estimated coverage probability; 	 is the upper
bound of the length of the confidence interval for P2; se�N̄OF is the standard deviation of the mean final sample size (i.e., standard error of the final sample
size); nOF is the theoretical sample size if the procedure is used with known population value of P2; se(pOF) is the standard error of pOF; w� NOF

average length
of confidence intervals for P2 based on NOF observations; tabled values are based on 5,000 replications of a Monte Carlo simulation study from multivariate
normal distribution with parameters: mean vector � and variance covariance matrix �.
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of the article. To the extent that heterogeneity or parameter drift
exists over the time frame in which data are collected, it would be
a limitation. Additionally, the methods we use for confidence
interval construction do not work well in all situations, particularly
for small sample sizes combined with non-normal data. Neverthe-
less, without assuming any particular distribution, the methods
we use for Pearson’s, Spearman’s, and Kendall’s correlations are
distribution-free and, provided sample size is not too small for the
particular situation, will work well as sample size gets larger. See
Chattopadhyay and Kelley (2016) for a discussion of distribution
free limitation, particularly Footnote 9.

We also develop sequential AIPE for obtaining a sufficiently
narrow confidence interval for population squared multiple corre-
lation coefficient. Without assuming the population value (P2), the
method provide a procedure to obtain the smallest possible size to
obtain a (1 � �)100% confidence interval with a desirable width
using either Bonett and Wright (2011) or Olkin and Finn (1995).
Another limitation in this regard is that our sequential methods for
the squared multiple correlation coefficient require multivariate
normality, as there is not a well developed distribution-free con-
fidence interval method for the squared multiple correlation coef-
ficient. Besides this, the procedure works well as sample size
increases but not for small sample sizes.

As a general overview of our procedure, we first obtain a pilot
sample size. After collecting the pilot data, we then use a sequen-
tial sampling procedure where, at each stage, we check whether a
stopping rule has been satisfied. If not, additional observation(s)
from one or more individuals, depending on the selected sample
size at each stage, on both variables are collected and the check is
performed again. This process continues until the stopping rule is
satisfied. Our method ensures that the length of the confidence
interval for correlation coefficient is less than the desired width
and also attains the coverage probability asymptotically while
using the smallest possible sample size. Based on the limitation of
existing sample size procedures with regard to distribution as-
sumption and assumed knowledge of population parameters, our
sequential procedure has the potential to be widely used in psy-
chology and related disciplines. To help researchers, we have
provided freely available R functions via the MBESS package.
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Appendix A

A Consistent Estimator for the Asymptotic Variance of the Pearson’s Product Moment Correlation Coefficient

Using A. J. Lee (1990), the estimator of the covariance of X and
Y, denoted �XY, is given in U-statistics form as

SXYn � U1n � �n2 �
�1

�
1
i�j
n

1
2(Xi � Xj)(Yi � Yj), (64)

where we use a subscript n to denote the current sample size used
in the estimation. The expression of the sample covariance SXY n in
Equation 64 is similar to

SXYn � (n � 1)�1�
i�1

n

(Xi � X̄n)(Yi � Ȳn). (65)

The unbiased estimators of the variance parameters �X
2 and �Y

2

are, respectively,

SXn
2 � U2n � �n2 �

�1

�
1
i�j
n

1
2(Xi � Xj)

2 (66)

and

SYn
2 � U3n � �n2 �

�1

�
1
i�j
n

1
2(Yi � Yj)

2. (67)

The expression of the sample variances SXn
2 and SYn

2 in Equations
66–67 is similar to

SXn
2 � (n � 1)�1�

i�1

n

(Xi � X� n)
2 (68)

and

SYn
2 � (n � 1)�1�

i�1

n

(Yi � Ȳn)
2, (69)

respectively. For technical details regarding the equivalence, we
refer the reader to A. J. Lee (1990) and Mukhopadhyay and
Chattopadhyay (2013, 2014). The U-statistics form of the expres-
sions of sample covariance and sample variances are required for
proving Theorem 1 in Appendix B.

Consistent Estimator of 	2

We note that SXYn, SXn
2 , and SYn

2 defined in Equations 64–67 are
U-statistics or unbiased statistics and are consistent estimators of

�XY, �X
2, and �Y

2, respectively. For details regarding U-statistics and
their properties, we refer to Hoeffding (1948, 1961) and Lee
(1990).

Using Lee (1990), a consistent estimator of �2 is �̂n
2 � max

�Vn
2, n�3	, where Vn

2 is

Vn
2 �

rn
2

4 ��̂40n

SXn
4 �

�̂04n

SYn
4 �

2�̂22n

SXn
2 SYn

2 �
4�̂22n

SXYn
2 �

4�̂31n

SXYnSXn
2 �

4�̂13n

SXYnSYn
2 �.

(70)

�̂40n and �̂04n are the respective unbiased estimators of the fourth
central moment of X (�40) and Y (�04) which are given respec-
tively as:

�̂40n � n2

(n � 1)(n � 2)(n � 3)�i�1

n

(Xi � X� n)
4

� 2n � 3
(n � 1)(n � 2)(n � 3)�i�1

n

Xi
4

� 8n � 12
(n � 1)(n � 2)(n � 3)X� n�

i�1

n

Xi
3

� 6n � 9
n(n � 1)(n � 2)(n � 3)��i�1

n

Xi
2�2

(71)

and

�̂04n � n2

(n � 1)(n � 2)(n � 3)�i�1

n

(Yi � Ȳn)
4

� 2n � 3
(n � 1)(n � 2)(n � 3)�i�1

n

Yi
4

� 8n � 12
(n � 1)(n � 2)(n � 3)Ȳn�

i�1

n

Yi
3

� 6n � 9
n(n � 1)(n � 2)(n � 3)��i�1

n

Yi
2�2

.

(72)

According to Cook (1951) and R. A. Fisher (1930), the remain-
ing estimators can be defined as

�̂13n � k13 � 3k02k11

�̂22n � k22 � k20k02 � 2k11
2

�̂31n � k31 � 3k20k11

(73)

where

(Appendices continue)
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Wpq � �
i

Xi
pYi

q

k02 � 1
n � 1�W02 � 1

nW01
2  � SYn

2

k11 � 1
n � 1�W11 � 1

nW10W01 � SXYn

k13 � n
(n � 1)(n � 2)(n � 3)�(n � 1)W13 � n � 1

n W03W10 � 3(n � 1)
n W11W02

�3(n � 1)
n W12W01 � 6

nW11W01
2 � 6

nW02W01W10 � 6
n2W10W01

3 	
k20 � 1

n � 1�W20 � 1
nW10

2  � SXn
2

k22 � n
(n � 1)(n � 2)(n � 3)�(n � 1)W22 � 2(n � 1)

n W21W01 � n � 1
n W12W10

�n � 1
n W20W02 � 2(n � 1)

n W11
2 � 8

nW11W01W10 � 2
nW02W10

2 � 2
nW20W01

2 � 6
n2W10

2 W01
2 	

k31 � n
(n � 1)(n � 2)(n � 3)�(n � 1)W31 � n � 1

n W30W01 � 3(n � 1)
n W11W20

�3(n � 1)
n W21W10 � 6

nW11W10
2 � 6

nW20W10W01 � 6
n2W01W10

3 	

(74)

Appendix B

Lemmas and Theorems for Stopping Rules

Lemmas and Theorems

Lemma 1

Under the assumption that E��̂n
2� exists, for any 	 � 0, the

stopping rule N is finite, that is, P(N  �) � 1.

Proof

Using Lemma A1 of Chattopadhyay and De (2016), we can
prove the lemma.

Lemma 2

If the parent distribution(s) is(are) such that E��̂n
2� exists, then the

stopping rule in Equation 10 yields

N
n�

¡
P

1 as �¡ 0, (75)

where ¡
P

indicates convergence in probability.

Proof

To prove the lemma, we proceed along the lines of Chattopad-
hyay and Kelley (2017; see also De & Chattopadhyay, 2017). The
definition of stopping rule N in Equation 10 yields

�2z	 ⁄ 2

� 2
�̂N

2 
 N 
 mI(N � m) � �2z	 ⁄ 2

� 2
��̂N�1

2 � (N � 1)�1.

(76)

Because N ¡ � asymptotically as 	 2 0 and �̂n ¡ � in
probability as n ¡ �, by Theorem 2.1 of Gut (2009), �̂N

2
¡ �2 in

probability. Hence, dividing all sides of Equation 76 by n	 and
letting 	 2 0, we prove N/n	 ¡ 1 asymptotically as 	 2 0.

Theorem 1

Suppose the parent distribution F is such that E[Uin
2 ]  � for i �

1, 2, 3, then the stopping rule in Equation 10 yields:

Part 1: P�rN �
z	⁄2�̂N

�N
� � � rN �

z	⁄2�̂N

�N
�¡ 1 � 	 as �¡ 0,

Part 2:
2z	⁄2�̂N

�N

 �.

(77)

Proof

Part 1: We now proceed along the lines of De and Chattopad-
hyay (2017). Let Un � [U1n, U2n, U3n]= and � � [�XY, �X

2, �Y
2]=,

then from A. J. Lee (1990), we know that

Yn � �n[Un � �] ¡
L

N3(0, �), (78)

where

� � �
�22 � �XY

2 �31 � �XY�X
2 �13 � �XY�Y

2

�31 � �XY�X
2 �40 � �X

4 �22 � �X
2�Y

2

�13 � �XY�Y
2 �22 � �X

2�Y
2 �04 � �Y

4 �.

(Appendices continue)
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We define D= � [a1, a2, a3] and note that D�YN �

D�Yn�
� �D�YN � D�Yn�

. To prove that YN ¡
L

N3�0, �, we

have to show that D��YN � Yn�
 ¡

P
0 as 	 ¡ 0. We write

D�(YN � Yn�
) � �

i�1

3

ai�N(UiN � Uin�
) � (�N ⁄ n� � 1)D�Yn�

.

(79)

Let n1 � (1 � 
)n	 and n2 � (1 � 
)n	 for 
 � (0, 1). For a
Fixed ε � 0,

P
��
i�1

3

ai�N�UiN � Uin� � � ε�

P
��

i�1

3

ai�N�UiN � Uin� � � ε, |N � n� | � n��
�P� |N � n� | � n�	


�
i�1

3

P� max
n1�n�n2

�n |Uin � Uin�
| � ε

3 |ai | 	
�P� |N � n� | � n�	.

(80)

Because N ⁄n� ¡
P

1 and Uin, i � 1, 2, 3 are U-statistics which
satisfy Anscombe’s uniformly continuous in probability condition
(see Anscombe, 1952), then we conclude that �i�1

3 ai�N�UiN �

Uin�
 ¡

P
0. Also, ��N ⁄n� � 1D�Yn�

¡
P

0 as 	 ¡ 0 and

D�Yn�
¡
L

N�0, D��D. Hence, we conclude from Equation 79 that

D��YN � Yn�
 ¡

P
0, that is, YN ¡

L
N3�0, �. Now, we define

g�u1, u2, u3 �
u1

�u2u3
for u2, u3 � 0 and rewrite rn � g(Un) using

Taylor’s expansion about �:

g(Un) � g(�) �
U1N � �XY

�X�Y
�

�XY

2�X
3�Y

(U2N � �X
2)

�
�XY

2�X�Y
3 (U3N � �Y

2) � RN, (81)

where

RN � 1
2(UN � �)��D2g(a)	(UN � �) (82)

and D2g(a) is the Hessian matrix of g(Un) evaluated at
a � (1 � 
)� � 
Un for 
 � (0, 1). Thus,

�N(rN � �) � �N�
2� 2

�XY
(U1N � �XY) � 1

�X
2 (U2N � �X

2)

� 1
�Y

2 (U3,N � �3
2)�� �NRN

� D� YN � �NRN (83)

where � � g(
) and D� � �
2� 2

�XY
, � 1

�X
2 , � 1

�Y
2 �.

According to Lee (1990) and Anscombe’s CLT (see Anscombe,
1952), �N�U1N � �XY, �N�U2N � �X

2, and �N�U3N � �Y
2

converge to normal distributions and (U1N � �XY), (U2N � �X
2),

and (U3N � �Y
2) converge to 0 almost surely. This implies

�NRN ¡
P

0 as N ¡ �. Hence, �N�rN � � ¡
L

N�0, �2 as 	 ¡ 0,
where

�2 � D��D � �2

4 ��40

�X
4 �

�04

�Y
4 �

2�22

�X
2�Y

2 �
4�22

�XY
2 �

4�31

�XY�X
2 �

4�13

�XY�Y
2 �

and �ij � E[(X1 � �X)i(Y1 � �Y)j].
Part 2: We can prove by using Kelley et al. (2018) directly.

(Appendices continue)
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Appendix C

Derivation of Optimal and Pilot Sample Sizes

Derivation of Optimal Sample Size for Squared
Multiple Correlation Coefficient

For the situation in which the population squared multiple
correlation coefficient is known, derivation of the optimal sample
size is given as

exp�ln(1 � R2) �
2Pz	 ⁄ 2

�n � k � 2
�� exp�ln(1 � R2) �

2Pz	 ⁄ 2

�n � k � 2
�
 �

(1 � R2)�exp� 2Pz	 ⁄ 2

�n � k � 2
�� exp� �2Pz	 ⁄ 2

�n � k � 2
��
 �

exp� 2Pz	 ⁄ 2

�n � k � 2
�� exp� �2Pz	 ⁄ 2

�n � k � 2
�
 �

(1 � R2)

exp� 4Pz	 ⁄ 2

�n � k � 2
�� �

(1 � R2)
exp� 2Pz	 ⁄ 2

�n � k � 2
�� 1 
 0

1
2� �

(1 � R2)
�� �2

(1 � R2)2 � 4�� exp� 2Pz	 ⁄ 2

�n � k � 2
�.

(84)

One may note that exp� 2Pz	 ⁄ 2

�n�k�2
� � 0. Thus, using Equation

84, we have

2Pz	 ⁄ 2

�n � k � 2

 ln�1

2� �
(1 � R2)

�� �2

(1 � R2)2 � 4��
�n � k � 2 � 2Pz	 ⁄ 2
ln�1

2� �
(1 � R2)

�� �2

(1 � R2)2 � 4����1

(85)

n � 2 � k � 4P2z	 ⁄ 2
2 
ln�1

2� �
(1 � R2)

�� �2

(1 � R2)2 � 4����2

.

(86)

Derivation of Pilot Sample Sizes

Derivation of pilot sample size mCC for r � 1 � �
2 and � � 0.5,

B �
�1 � |r |��

2 �1 � |r |��
2 

�1 � |r |��
2 �1 � |r |��

2 
�

�2 � �
2 �1 � �

2 
�1 � �

2 �1 � 2�
4 

� b

)lnB � lnb ) 1
lnB � 1

lnb .

(87)

From the stopping rule in Equation 14 and using Equation 87, we have

n � 16z	 ⁄ 2
2 � 1

(lnB)2 � 1
n � 3 � 16z	 ⁄ 2

2 � 1
(lnb)2 � 1

n � 3

n2 � �16z	 ⁄ 2
2

(lnb)2 � 3�n � 16z	 ⁄ 2
2

n2 � �16z	 ⁄ 2
2

(lnb)2 � 3�n � 16z	 ⁄ 2
2 � 0.

(88)

Using quadratic formula and n � 0, we have

n � 1
2�3 �

16z	 ⁄ 2
2

(lnb)2 ���3 �
16z	 ⁄ 2

2

(lnb)2 �2

� (8z	 ⁄ 2)
2� (89)

Thus, the pilot sample size mCC is

mCC � max
4, >1
2�3 �

16z	 ⁄ 2
2

(lnb)2 ���3 �
16z	 ⁄ 2

2

(lnb)2 �2

� (8z	 ⁄ 2)
2�?�.

(90)

Derivation of pilot sample size mMG. from the stopping rule
defined in Equation 19, we have

n �
4z	 ⁄ 2

2

�2 �(1 � r2)2 � 1
n� � 1 �

4z	 ⁄ 2
2

n�2 � 1

n2 � n �
4z	 ⁄ 2

2

�2 � 0.
(91)

Solving for n � 0, we have

n �
1 � �1 � (4z	 ⁄ 2 ⁄ �)2

2 . (92)

The pilot sample size mMG is therefore defined as

mMG � max
4, >1 � �1 � (4z	 ⁄ 2 ⁄ �)2

2 ?�. (93)

Derivation of pilot sample size mBW using the stopping rule in
Equation 62,

n � 2 � k � 4R2z	 ⁄ 2
2 
ln�1

2� �
(1 � R2)

�� �2

(1 � R2)2 � 4����2

) n � 2 � k. (94)

The pilot sample size mBW is therefore defined as

mBW � k � 2. (95)

Derivation of pilot sample size mOF. Using the stopping rule in
Equation 63, we have

n �
16z	 ⁄ 2

2

�2 �R2(1 � R2)2 � 1
n �

16z	 ⁄ 2
2

n�2 ) n2 �
16z	 ⁄ 2

2

�2

) n �
4z	 ⁄ 2

�
. (96)

The pilot sample size mOF is therefore defined as

mOF � max�k,
4z	 ⁄ 2

� 	. (97)

(Appendices continue)
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Appendix D

Investigating Undercoverage for Some Simulation Conditions

We conducted another Monte Carlo simulation study using a
fixed-n approach at the mean sample sizes obtained in Tables 1
and 2. The fixed-n approach using the mean final sample size from
Tables 1 and 2 allow us to assess the extent to which the coverage
issue is due to (a) our sequential AIPE procedure or (b) the
distribution-free methods of confidence interval methods which de-
pends on the estimation of the asymptotic variance. In particular, if the
coverage probability from the fixed-n approach yielded good confi-
dence interval coverage, then the under-coverage issue from Tables 1
and 2 can be attributed to the sequential AIPE procedure. However, if
using a fixed-n approach with Equation 70 as an estimator of the
asymptotic variance in Equation 3 yields the same under-coverage
issues from Tables 1 and 2, then the under-coverage issue can be
attributed to the confidence interval methods themselves.

Our results assessing the under-coverage issue are shown in
Appendix E, which is based on 5,000 replications per condition.

We believe that the shortcoming in the confidence interval
coverage is due to the bias of the estimator for each of the ratio of
parameters given in Equation 3. Even though the individual pa-
rameters are estimated using unbiased estimators, the ratio of
unbiased estimators cannot be said to be unbiased. Therefore, in
order to get better results, a robust consistent estimator for the ratio
of parameters may be used, but this is an active area of research
and we are limited by what already exists in the literature. For
example, the biased estimator of the kurtosis that is used in this
article, along with five other estimators, was studied by An and
Ahmed (2008).

Appendix E shows the average estimates of the terms in
Equation 3 with their respective standard errors for different
bivariate distributions and different sample sizes. Our results,
based on 5,000 replications, show that most of the terms in

Equation 3 are underestimated, especially for smaller sample
sizes, with �22/�XY

2 being overestimated at times. This is shown
in Columns 6, 8, 10, 14, and 16 underestimating their respective
theoretical values in Columns 5, 7, 9, 13, and 15. We also
noticed that the average of the ratio of �̂22n and SXYn

2 , �̂22n ⁄ SXYn
2� ,

has a high standard error compared to the other terms in Vn
2 (see

Equation 70). These are as a results of very few outliers
occurring when the estimated sample covariance SXYn (for es-
pecially � � 0.1) is very small (i.e. close to zero). However, the
few huge values of �̂22n ⁄ SXYn

2 do not affect the estimate of Vn
2

because if sample covariance SXYn is close to zero, then so is
sample correlation r. In other words, the inflation of �̂22n ⁄ SXYn

2

is neutralized by the multiplicative factor r2 as it can be seen in
Equation 70.

This cumulatively results in the underestimation of �2 (as shown
in the last column). With �2 being underestimated, the sequential
procedure can terminate prematurely and thus result in underesti-
mation of the minimum required sample size n. If the minimum
required sample size is not achieved for the procedure to estimate
the asymptotic variance appropriately, the confidence interval ob-
tained cannot guarantee the desired coverage probability even
though its length will not exceed the desired upper bound 	. We
can say that the proposed sequential procedure works well under
bivariate normal distribution but not under the selected bivariate
gamma distribution. Thus, the performance of our procedure,
under the bivariate gamma distribution and/or small sample sizes,
is being negatively affected by the performance of the estimator of
�2. To increase the performance, efficiency, and robustness of the
proposed sequential procedure, future studies can be conducted
and aimed at improving the estimator of �2.

(Appendices continue)

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

514 KELLEY, BILSON DARKU, AND CHATTOPADHYAY



A
pp

en
di

x
E

Si
m

ul
at

io
n

R
es

ul
ts

fo
r

In
ve

st
ig

at
in

g
th

e
P

er
fo

rm
an

ce
of

th
e

E
st

im
at

or
s

of
th

e
T

er
m

s
In

vo
lv

ed
in

	2

G
am

m
a

n
�

r� n

�
40

�
X4

�̂
40

n

S X
n

4

�

�
04

�
Y4

�̂
04

n

S Y
n

4

�

�
22

�
X2
�

Y2

�̂
22

n

S X
n

2
S Y

n
2

�

�
22

�
X

Y
2

�̂
22

n

S X
Y

n
2

�

�
31

�
X

Y
�

X2

�̂
31

n

S X
Y

nS
X

n
2

�

�
13

�
X

Y
�

Y2

�̂
13

n

S X
Y

nS
Y

n
2

�

�2

V
n2
�

D
is

tr
ib

ut
io

n
se

�r�
n

se
��̂

40
n

S X
n

4

�

�
se
��̂

04
n

S Y
n

4

�

�
se
��̂

22
n

S X
n

2
S Y

n
2

�

�
se
��̂

22
n

S X
Y

n
2

�

�
se
��̂

31
n

S X
Y

nS
X

n
2

�

�
se
��̂

13
n

S X
Y

nS
Y

n
2

�

�
se

�V
n2
�



(5
,

5,
50

,
10

)
11

24
.1

.1
00

00
(.

00
04

2)
4.

2
4.

17
16

6
(.

00
80

6)
4.

2
4.

16
68

5
(.

00
81

4)
1.

10
82

5
1.

11
04

6
(.

00
19

7)
11

0.
82

35
3

20
7.

66
42

2
(1

9.
73

14
2)

4.
2

4.
11

84
9

(.
03

20
2)

4.
2

4.
10

06
31

51
3

(.
03

40
3)

1.
05

08
1.

04
73

8
(.

00
15

3)
(5

,
5,

16
.6

7,
10

)
10

49
.3

.3
00

48
(.

00
04

4)
4.

2
4.

17
43

1
(.

00
87

8)
4.

2
4.

15
28

9
(.

00
83

3)
1.

48
45

5
1.

48
16

5
(.

00
35

7)
16

.4
94

75
16

.6
82

71
(.

04
74

5)
4.

2
4.

16
42

8
(.

01
33

5)
4.

2
4.

14
34

75
49

3
(.

01
29

1)
.9

84
3

.9
76

03
(.

00
16

3)
(5

,
5,

10
,

10
)

77
4

.5
.4

99
07

(.
00

04
4)

4.
2

4.
14

77
3

(.
00

94
9)

4.
2

4.
15

19
9

(.
00

95
7)

2.
05

45
5

2.
03

40
0

(.
00

58
3)

8.
21

81
8

8.
17

09
3

(.
02

10
6)

4.
2

4.
13

84
0

(.
01

19
1)

4.
2

4.
14

58
18

73
8

(.
01

20
4)

.7
36

4
.7

28
02

(.
00

15
5)

(5
,

5,
50

,
10

)
27

2
.1

.0
99

86
(.

00
08

9)
4.

2
4.

08
58

9
(.

01
52

1)
4.

2
4.

06
45

4
(.

01
48

7)
1.

10
82

5
1.

10
89

4
(.

00
38

0)
11

0.
82

35
3

26
49

79
.1

40
38

(2
27

24
7.

63
18

9)
4.

2
3.

44
24

3
(1

.2
64

90
)

4.
2

2.
58

62
75

29
(1

.9
53

99
)

1.
05

08
1.

02
83

7
(.

00
27

9)
(5

,
5,

16
.6

7,
10

)
24

6
.3

.3
00

06
(.

00
08

9)
4.

2
4.

04
04

2
(.

01
47

9)
4.

2
4.

03
52

1
(.

01
56

5)
1.

48
45

5
1.

46
36

6
(.

00
66

8)
16

.4
94

75
18

.0
03

56
(.

25
17

3)
4.

2
4.

00
94

5
(.

02
38

4)
4.

2
3.

98
24

41
51

(.
02

43
7)

.9
84

3
.9

51
34

(.
00

29
6)

(5
,

5,
10

,
10

)
16

4
.5

.4
98

59
(.

00
09

4)
4.

2
3.

99
10

7
(.

01
74

2)
4.

2
4.

01
27

8
(.

01
72

9)
2.

05
45

5
2.

00
86

5
(.

01
07

9)
8.

21
81

8
8.

15
21

3
(.

03
86

5)
4.

2
4.

02
03

6
(.

02
13

6)
4.

2
4.

03
35

06
79

3
(.

02
14

6)
.7

36
4

.7
00

87
(.

00
28

9)
(5

,
5,

50
,

10
)

16
00

.1
.0

99
44

(.
00

03
6)

4.
2

4.
18

42
4

(.
00

69
4)

4.
2

4.
18

65
2

(.
00

71
4)

1.
10

82
5

1.
10

86
2

(.
00

16
7)

11
0.

82
35

3
16

0.
16

64
9

(1
3.

94
71

6)
4.

2
4.

17
05

1
(.

02
46

9)
4.

2
4.

16
44

55
36

3
(.

02
53

7)
1.

05
08

1.
04

72
0

(.
00

13
1)

(5
,

5,
16

.6
7,

10
)

14
97

.3
.3

00
20

(.
00

03
7)

4.
2

4.
17

05
6

(.
00

71
3)

4.
2

4.
18

35
6

(.
00

74
2)

1.
48

45
5

1.
47

90
6

(.
00

29
8)

16
.4

94
75

16
.5

99
95

(.
03

93
2)

4.
2

4.
15

59
0

(.
01

08
6)

4.
2

4.
16

21
68

87
3

(.
01

13
7)

.9
84

3
.9

77
11

(.
00

13
8)

(5
,

5,
10

,
10

)
11

09
.5

.4
99

05
(.

00
03

6)
4.

2
4.

17
95

6
(.

00
82

3)
4.

2
4.

15
99

0
(.

00
80

6)
2.

05
45

5
2.

04
56

5
(.

00
49

4)
8.

21
81

8
8.

21
48

2
(.

01
77

0)
4.

2
4.

17
57

6
(.

01
02

9)
4.

2
4.

16
58

10
68

3
(.

01
01

3)
.7

36
4

.7
33

15
(.

00
13

2)
(5

,
5,

50
,

10
)

39
1

.1
.0

99
79

(.
00

07
4)

4.
2

4.
10

11
7

(.
01

27
5)

4.
2

4.
12

94
7

(.
01

30
0)

1.
10

82
5

1.
10

86
3

(.
00

32
5)

11
0.

82
35

3
10

71
92

1.
82

56
4

(9
98

63
4.

17
01

1)
4.

2
3.

28
20

2
(.

86
01

7)
4.

2
2.

27
48

85
33

8
(2

.4
66

82
)

1.
05

08
1.

03
46

2
(.

00
24

5)
(5

,
5,

16
.6

7,
10

)
36

0
.3

.3
00

16
(.

00
07

4)
4.

2
4.

11
35

0
(.

01
38

7)
4.

2
4.

09
60

0
(.

01
30

9)
1.

48
45

5
1.

48
91

3
(.

00
63

7)
16

.4
94

75
17

.4
30

61
(.

09
18

1)
4.

2
4.

11
31

7
(.

02
20

8)
4.

2
4.

11
41

07
16

3
(.

02
13

9)
.9

84
3

.9
67

67
(.

00
27

3)
(5

,
5,

10
,

10
)

25
2

.5
.4

98
85

(.
00

07
7)

4.
2

4.
05

96
1

(.
01

54
4)

4.
2

4.
06

88
9

(.
01

49
7)

2.
05

45
5

2.
01

38
1

(.
00

91
8)

8.
21

81
8

8.
12

19
7

(.
03

22
8)

4.
2

4.
06

26
9

(.
01

88
4)

4.
2

4.
06

11
68

91
5

(.
01

82
8)

.7
36

4
.7

11
60

93
9

(.
00

24
2)

N
ot

e.
n

is
th

e
sa

m
pl

e
si

ze
us

ed
in

th
e

si
m

ul
at

io
n

(a
nd

th
e

va
lu

es
w

er
e

ta
ke

n
fr

om
N̄

co
lu

m
n

of
T

ab
le

s
1

an
d

2)
;

�
is

th
e

po
pu

la
tio

n
co

rr
el

at
io

n
co

ef
fi

ci
en

t;
r� n

an
d

se
�r�

n
ar

e
th

e
av

er
ag

e
co

rr
el

at
io

n

co
ef

fi
ci

en
t

an
d

its
st

an
da

rd
er

ro
r

re
sp

ec
tiv

el
y;

�2
is

po
pu

la
tio

n
as

ym
pt

ot
ic

va
ri

an
ce

sh
ow

n
in

E
qu

at
io

n
3;

�̂
40

n

S X
n

4

�
is

th
e

m
ea

n
es

tim
at

e
of

th
e

po
pu

la
tio

n
va

lu
e

�
40

�
X4

an
d

its
st

an
da

rd
er

ro
r

is

se
��̂

40
n

S X
n

4

�
� ;�̂

04
n

S Y
n

4

�
is

th
e

m
ea

n
es

ti
m

at
e

of
th

e
po

pu
la

ti
on

va
lu

e
�

04

�
Y4

an
d

it
s

st
an

da
rd

er
ro

r
is

se
��̂

04
n

S Y
n

4

�
� ;�̂

22
n

S X
n

2
S Y

n
2

�
is

th
e

m
ea

n
es

ti
m

at
e

of
th

e
po

pu
la

ti
on

va
lu

e
�

22

�
X2
�

Y2
an

d
it

s
st

an
da

rd
er

ro
r

is

se
��̂

22
n

S X
n

2
S Y

n
2

�
� ;�̂

22
n

S X
Y

n
2

�
is

th
e

m
ea

n
es

ti
m

at
e

of
th

e
po

pu
la

ti
on

va
lu

e
�

22

�
X

Y
2

an
d

it
s

st
an

da
rd

er
ro

r
is

se
��̂

22
n

S X
Y

n
2

�
� ;�̂

31
n

S X
Y

nS
X

n
2

�
is

th
e

m
ea

n
es

ti
m

at
e

of
th

e
po

pu
la

ti
on

va
lu

e
�

31

�
X

Y
�

X2
an

d
it

s
st

an
da

rd
er

ro
r

is
se
��̂

31
n

S X
Y

nS
X

n
2

�
� ;�̂

13
n

S X
Y

nS
Y

n
2

�
is

th
e

m
ea

n
es

ti
m

at
e

of
th

e
po

pu
la

ti
on

va
lu

e
�

13

�
X

Y
�

Y2
an

d
it

s
st

an
da

rd
er

ro
r

is
se
��̂

13
n

S X
Y

nS
Y

n
2

�
� ;V n2
�

is
th

e
av

er
ag

e
es

ti
m

at
e

of
�2

an
d

it
s

st
an

da
rd

er
ro

r
is

se
�V

n2
�

.

R
ec

ei
ve

d
M

ar
ch

24
,

20
17

R
ev

is
io

n
re

ce
iv

ed
O

ct
ob

er
30

,
20

18
A

cc
ep

te
d

N
ov

em
be

r
10

,
20

18
�

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

515SEQUENTIAL AIPE FOR THE POPULATION CORRELATIONS


	Sequential Accuracy in Parameter Estimation for Population Correlation Coefficients
	Accuracy in Parameter Estimation of Pearson’s Product Moment Correlation Coefficient
	Accuracy in Parameter Estimation Via a Sequential Optimization Procedure
	Stage I
	Stage II

	Example
	Characteristics of the Final Sample Size for Pearson’s Product Moment Correlation: A Simu ...
	Alternative Confidence Intervals for Pearson’s Product Moment Correlation Coefficient
	Confidence Interval by Corty and Corty (2011)
	Confidence Interval for ρ With Moinester and Gottfried’s (2014) Method
	Simulation Study

	Sequential AIPE for Kendall’s Tau and Spearman’s Rho
	AIPE for Kendall’s τ
	AIPE for Spearman’s ρ

	An Extension: Squared Multiple Correlation Coefficient
	Simulation Results

	Discussion
	References
	Appendix A A Consistent Estimator for the Asymptotic Variance of the Pearson’s Product Mo ...
	Consistent Estimator of ξ2

	Appendix B Lemmas and Theorems for Stopping Rules
	Lemmas and Theorems

	Appendix C Derivation of Optimal and Pilot Sample Sizes
	Derivation of Optimal Sample Size for Squared Multiple Correlation Coefficient
	Derivation of Pilot Sample Sizes

	Appendix D Investigating Undercoverage for Some Simulation Conditions
	Appendix E Simulation Results for Investigating the Performance of the Estimators of the Terms I ...


