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Abstract
Mediation analysis has become one of the most popular statistical methods in the social sciences. However,
many currently available effect size measures for mediation have limitations that restrict their use to specific
mediation models. In this article, we develop a measure of effect size that addresses these limitations. We
show how modification of a currently existing effect size measure results in a novel effect size measure with
many desirable properties. We also derive an expression for the bias of the sample estimator for the proposed
effect size measure and propose an adjusted version of the estimator. We present a Monte Carlo simulation
study conducted to examine the finite sampling properties of the adjusted and unadjusted estimators, which
shows that the adjusted estimator is effective at recovering the true value it estimates. Finally, we demonstrate
the use of the effect size measure with an empirical example. We provide freely available software so that
researchers can immediately implement the methods we discuss. Our developments here extend the existing
literature on effect sizes and mediation by developing a potentially useful method of communicating the
magnitude of mediation.

Translational Abstract
An effect size is often used to translate a result obtained from a specific study into a metric that is
independent of arbitrary characteristics of the study design (e.g., variable scales), making it easier for
researchers to communicate the importance of their results and compare them with those obtained from
other studies. The purpose of this research is to propose such an effect size for mediation analysis.
Mediation analysis is used to examine the processes through which a predictor has an effect on an
outcome through intervening variables called mediators. The component of an effect transmitted via a
mediator is known as an indirect effect. Although indirect effects are commonly reported, effect size
measures for them have yet to be firmly established. We show that our proposed measure is an attractive
option for several reasons, but most importantly that it (a) has an intuitive interpretation, (b) quantifies
the indirect effect independent of arbitrary design choices, and (c) can be used to draw valid inferences
for sample sizes and effect magnitudes common in applied research. We then demonstrate the application
and interpretation of the effect size using real data, and provide freely available software so researchers
may immediately use the measure in their research.

Keywords: mediation analysis, effect size, indirect effect

Scholars in many fields have long advocated that researchers
move away from null hypothesis significance tests (NHSTs) and p
values as the primary source of support for their hypotheses
(Cohen, 1994; Greenland & Poole, 2013; Keuzenkamp & Magnus,
1995; Morrison & Henkel, 1970; Wilkinson & American Psycho-
logical Association Task Force on Statistical Inference, 1999). A
primary criticism of NHSTs is that p values provide no informa-
tion about the size or importance of effects, only the likelihood of
obtaining an effect as large or larger than that actually obtained

under a given null hypothesis (with appropriate assumptions met).
The push for effect sizes is mandated in the most recent American
Psychological Association (APA) publication manual (APA,
2010), in which it is stated that NHSTs are “a starting point and
that additional reporting elements such as effect sizes, confidence
intervals, and extensive description are needed to convey the most
complete meaning of the results” (p. 33).

Effect size measures have been developed and routinely em-
ployed for quantifying the magnitude of effects for many classic
statistical methods (Cohen, 1988; Kirk, 1996). These effect size
measures include Cohen’s d, correlations, regression coefficients,
and R2, among many others. However, there are some statistical
methods for which consensus has not been reached regarding the
most appropriate effect size measures. One of the most notable
among these methods without consensus, and one of the most
important methods in modern research, is mediation analysis.

Mediation analysis is the study of the potential pathways
through which a predictor (independent) variable has an effect on
an outcome (dependent) variable. These pathways can transmit the
effect to the dependent variable at least partially through interven-
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ing variables called mediators. Because of the potential for this
framework to aid the understanding of processes, mediation anal-
ysis has become one of the most popular statistical methods used
in applied research. Whereas much progress in mediation analysis
has been made regarding statistical inference for mediation effects,
less progress has been made in developing effect size measures for
mediation.

Our purpose in this article is to propose a novel effect size
measure for mediation analysis to address existing deficiencies in
the current state of the art in mediation analysis. The article has six
main parts. In the first section, we review mediation analysis. In
the second section, we review effect size, particularly effect size
measures developed specifically for mediation analysis. In the
third section, we discuss properties of the sample estimator of the
effect size and propose an estimator that adjusts for sample bias.
The fourth section details the methods and results of a Monte Carlo
simulation conducted to examine the finite sampling properties of
the adjusted and unadjusted estimators. The fifth section contains
an empirical example that demonstrates the use of the estimators.
The sixth section is a summary of findings, limitations, and future
directions.

Mediation Analysis

Figure 1 provides an example of a path diagram for a classic
single-level, three-variable mediation model (e.g., Baron & Kenny,
1986; MacKinnon, 2008). The total effect of a predictor X on an
outcome Y in the population is given by the regression equation

Y � dYX � BYXX � eY·X, (1)

where dYX is the intercept, BYX is the linear slope relating X to Y,
and eY·X is the residual error term, where eY·X � N�0, �eY·X

2 � (i
subscripts for random variables are omitted for convenience). How
the presumed effect of X is transmitted to Y via intervening
variables (i.e., mediators) is examined using a system of two
additional linear regressions. The relationship between X and the
mediator M in the population is expressed as

M � dMX � BMXX � eM·X, (2)

where dMX is the intercept, BMX is the linear slope relating X to M,
and eM·X is the error term, where eM·X � N�0, �eM·X

2 �. The equation
relating Y to both X and M in this population mediation model is
expressed as

Y � dY·MX � BYX·MX � BYM·XM � eY·MX, (3)

where dY·MX is the intercept, BYM·X and BYX·M are the slope
coefficients of Y regressed on M controlling for X and X control-
ling for M, respectively, and eY·MX is the error term, where
eY·MX � N�0, �eY·MX

2 �. It is assumed that the errors eM·X and eYM·X

are uncorrelated, meaning there is no unmodeled variable influ-
encing the relationship between M and Y (i.e., no omitted con-
founders or model misspecification). The effect of X on Y inde-
pendent of M, denoted BYX·M, is referred to as the direct effect. The
effect of X on Y transmitted via M is referred to as the indirect
effect, which is calculated as the product of BMX from Equation 2
and BYM·X from Equation 3. These population parameters are
estimated by their respective unbiased sample estimators B̂MX,
B̂YX.M, and B̂YM.X. Much of the progress in the methods literature
for mediation analysis has been concerned with inference regard-
ing the indirect effect, such that several methods are currently
available for obtaining confidence intervals (CIs; e.g., bootstrap
CIs [Bollen & Stine, 1990; MacKinnon, Lockwood, & Williams,
2004; Shrout & Bolger, 2002], Monte Carlo CIs [MacKinnon et
al., 2004], Bayesian credible intervals [Yuan & MacKinnon,
2009], and a method of constructing CIs based on the distribution
of product terms [MacKinnon, Fritz, Williams, & Lockwood,
2007; Tofighi & MacKinnon, 2011]).

It is important to note that although mediation analysis provides
a means for researchers to investigate causal processes, the model
outlined in Equations 1 to 3 cannot prove causality. For example,
Cohen, Cohen, West, and Aiken (2003) outline the fundamental
conditions necessary for making causal inferences including asso-
ciation, temporal precedence of cause before effect, and isolation
of the causal effect from confounding variables. The issue of
confounding of the causal effect in mediation analysis has received
substantial attention in the methodological literature over the last
decade (e.g., Imai, Keele, & Tingley, 2010; Pearl, 2014; Vander-
weele, 2015). This research has advanced our current understand-
ing and application of mediation models, with such noteworthy
contributions as the identification of the necessary assumptions for
the indirect effect to be considered causal, the derivation of the
biases in causal effect estimates if assumptions are violated, and
the development of methods to evaluate estimates for robustness to
these violations. In terms of the mediation model in Figure 1, the
additional assumptions required for the indirect effect to be con-
sidered a causal effect are (a) constant effect, meaning that the
effect of M on Y does not vary across levels of X (i.e., no
interaction of X and M); and (b) sequential ignorability, meaning
the effects of X on M and X on Y, as well as the effect of M on Y,
are not confounded by omitted variables or model misspecifica-
tion. The constant effect assumption may be relaxed by modeling
the interaction of X and M, resulting in indirect effects conditional
on levels of X. Although the sequential ignorability assumption
cannot be so easily relaxed, sensitivity analysis, in which changes
in the magnitude and precision of the proposed causal effect are
examined assuming various associations with hypothetical con-
founders, can provide important evidence to support the claim of
a causal effect.

Effect Size

Broadly speaking, an effect size is defined as the quantification
of some phenomenon of interest to address a specific research

B B

B

Figure 1. Path diagram for a three-variable mediation model.
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question (K. Kelley & Preacher, 2012). Although any sample
statistic can function as a measure of effect size in the proper
context, there are several properties a statistic should have in order
for it to be considered a useful measure of effect size (K. Kelley &
Preacher, 2012; Preacher & Kelley, 2011). First, the statistic
should have an interpretable scale. Whereas some measures of
effect size are useful in their original metrics (e.g., mean differ-
ences on an established measure; Baguley, 2009), it is often useful
to standardize effect size measures. Standardization makes results
more comparable across studies by removing the metric of one or
more variables. Second, it should be possible to construct CIs
based on the statistic’s sampling distribution. Third, the statistic
should be unbiased, consistent, and efficient. Fourth, the population
effect size should be independent of sample size. In addition to these
criteria, Wen and Fan (2015) assert that, with all else held constant, an
effect size measure should be a monotonic function in raw or absolute
value of the effect it quantifies. This collection of properties ensures
the effect size measure is a good estimator of the population value it
estimates, allows for the comparison of results across studies, facili-
tates meta-analyses, and facilitates sample size calculations for future
studies (Wilkinson & American Psychological Association Task
Force on Statistical Inference, 1999).

Standardized mean differences, correlation coefficients, and
proportion of variance measures are appropriate effect size mea-
sures for many questions of interest in traditional research in
psychology and other disciplines (Cohen, 1988). However, there
are some nonstandard regression-based methods, notably media-
tion analysis, for which these measures are not sufficient. In
mediation analysis, the primary statistic of interest is generally the
indirect effect, which, as we discussed, is a product of regression
coefficients. Whereas the individual regression coefficients them-
selves are established measures of effect size, the effect size for the
indirect effect is not captured by those measures. For example,
consider an indirect effect for a three-variable mediation model in
which the effect size of one coefficient is considered “large” by
some disciplinary standard and the effect size of the other is
considered “small.” It is unclear, then, how the effect size of the
indirect effect itself should be quantified—effect size measures of
the component coefficients BMX and BYM·X were designed to quan-
tify linear relationships defined by a single equation. The most
basic representation of mediation, however, involves at least three
variables and two equations. Correspondingly, effect size mea-
sures for simpler models do not adequately capture the more
complex effect in mediation analysis.

Several effect size measures have been proposed to quantify the
size of the indirect effect in the context of mediation analysis, in
which these measures take qualitatively different approaches. The
first effect size measures proposed for indirect effects were ratios,
which compare the indirect effect with the total effect (PM; Alwin
& Hauser, 1975) or compare the indirect effect with the direct
effect (RM; Sobel, 1982). Whereas these measures are easy to
implement and have some intuitive appeal, simulation studies have
identified serious problems and their use is generally not recom-
mended (MacKinnon, Warsi, & Dwyer, 1995; Preacher & Kelley,
2011). Despite these limitations, ratio measures have been the
most commonly reported effect sizes for indirect effects, in large
part due to a lack of viable alternatives. However, there have been
several more recent efforts to address this gap in the literature.

Several methodologists have proposed standardized indirect ef-
fects as effect size measures for mediation analysis (Alwin &
Hauser, 1975; Cheung, 2009; MacKinnon, 2008; Preacher &
Hayes, 2008). For a three-variable mediation model, the indirect
effect can be standardized in two ways: (a) standardization by the
scale of only Y, and (b) standardization by the scales of Y and X.
Standardization by the scale of only Y is sensible if the metric of
X is meaningful but the metric of Y is not. For example, if Y is
continuous but X is an indicator of group membership, partial
standardization would be appropriate because the metric of X (a
unit change in X is a change in group membership) is already
meaningful and comparable across studies. However, partial stan-
dardization would make across-study comparisons difficult if X
were continuous and the scale of X differed across populations. For
these models, complete standardization of the indirect effect by the
scales of both X and Y is sensible. Referred to as the “index of
mediation” by Preacher and Hayes (2008), the completely stan-
dardized indirect effect is invariant to linear transformations of X,
M, or Y, making effects comparable across studies in which the
scales X and Y differ. The completely standardized indirect effect
also has an intuitive interpretation as the expected standard devi-
ation change in Y for a one standard deviation increase in X
through M. Finally, the standardized indirect effect has the good
statistical properties of unbiasedness and consistency (Cheung,
2009). For these reasons, the partially or completely standardized
indirect effect is an attractive effect size measure for many medi-
ation models.

More recently, Kraemer (2014) proposed an effect size measure
for indirect effects in the context of randomized clinical trials
(RCTs). Referred to as MedES, this measure quantifies the indirect
effect as the difference between the overall success rate difference
between treatment and control conditions, and the success rate
difference between treatment and control had the relationship
between the mediator and outcome been severed. Although a
potentially desirable effect size measure in the context of a RCT,
the requirement that the independent variable be binary limits the
applicability of MedES because many studies consider continuous
predictors.

In their review of effect size in mediation analysis, Preacher and
Kelley (2011) proposed two new measures: (a) �2, and (b) �. The
effect size �2 was defined as the ratio of the observed indirect
effect to the maximum possible indirect effect that could have been
observed given the study design conditional on observed statistics.
Wen and Fan (2015) identified two properties of �2 that suggest it
has limitations as a general effect size measure. The first such
limitation is that �2 is not a strictly monotonic function in raw or
absolute value of the indirect effect. This means that with all else
held equal (i.e., sample size, total variances, residual variances,
total effect), an increase in the indirect effect does not necessarily
correspond to an increase in the effect size. Second, although the
maximum BYM·X can be found for a given set of data, the maxi-
mum possible indirect effect is theoretically infinite. Although the
underlying concept of �2 is appealing for an effect size measure,
deficiencies limit its theoretical usefulness. The effect size � was
defined as the ratio of the variance explained in M by X and the
variance explained in Y jointly by M and X to the total variability
of M and Y. This was an extension of an effect size measure (MBM)
proposed by Berry and Mielke (2002) for use in multivariate
multiple regression. Some desirable characteristics of � are that it
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has a meaningful interpretation as a proportion bounded by 0 and
1, it is independent of N, and bootstrap CIs can be estimated.
However, � can return a nonzero effect size when the null hypoth-
esis is true (i.e., BMXBYM·X � 0). This is possible because � was
derived under the assumption that the null hypothesis is true when
X explains no variance in either M or Y, and M explains no
variance in Y. However, an indirect effect of zero can also occur
when X explains variance in M, but M and X explain no variance
in Y (i.e., BYM·X � 0). This suggests that the null hypothesis
assumed for � is not the only null hypothesis under which the
indirect effect is zero. Formulations for these additional null hy-
potheses may need to be incorporated to account for all parameter
combinations that correspond to an indirect effect of zero.

R2 measures in mediation analysis are intended to quantify the
proportion of variance explained in the outcome that can be
attributed to both the predictor and the mediator but to neither
alone (de Heus, 2012; Fairchild, MacKinnon, Taborga, & Taylor,
2009; MacKinnon, 2008). The reason this variance explained
jointly by M and X is a R2 measure for the indirect effect can be
understood by considering the three sources of variance in Y
explained by M and X: (a) variance attributable to M independent
of X, (b) variance attributable to X independent of M, and (c)
variance attributable to X and M jointly. Because a mediation
model represents a decomposition of the total effect of X on Y, any
variance in Y not attributable to X either uniquely or jointly is
irrelevant, which would exclude the first source of variance in Y
listed above as relevant to an R2 measure for the indirect effect. Of
the remaining two sources of variance, the second source is con-
sistent with the definition of the direct effect, or the effect of X on
Y controlling for M, therefore leaving the only source of variance
in Y relevant to a R2 measure for the indirect effect as the variance
attributable to X and M jointly. One such approach for quantifying
this variance was developed by Fairchild and colleagues (2009), in
which the variance in Y jointly explained by M and X is

Rmed
2 � �YM

2 � (RY·MX
2 � �YX

2 ), (4)

where �YM
2 is the squared correlation between M and Y, �YX

2 is the
squared correlation between X and Y, and RY·MX

2 is the squared
multiple correlation of Y with M and X. How Rmed

2 isolates the
variance explained in Y jointly by M and X can be understood by
considering the components of variance in Y explained by M (i.e.,
variance components of �YM

2 ). The quantity �YM
2 consists of two

variance components from the sources previously described: (a)
the desired joint variance explained, and (b) variance in Y ex-
plained by M independent of X. The former joint variance com-
ponent is the difference between the total variance explained, �YM

2 ,
and the latter variance component, which is equivalent to the
difference between the total variance in Y explained by M and X
(RY·MX

2 ) and the total variance in Y explained by X alone (�YX
2 ).1 A

significant limitation of this measure is that, like Preacher and
Kelley’s (2011) residual-based index (i.e., �), it returns nonzero
effect sizes when the indirect effect is zero. In addition, as dem-
onstrated by Preacher and Kelley, Rmed

2 is neither a monotonically
increasing function of the indirect effect in either raw or absolute
value, nor is it bounded by 0 and 1, properties that make interpre-
tation exceedingly difficult. Two additional R2 effect size mea-
sures were proposed by MacKinnon (2008) for the simple three-
variable mediation model in Equations 1 to 3:

R4.6
2 � �MX

2 � �YM·X
2 (5)

and

R4.7
2 �

�MX
2 � �YM·X

2

RY·MX
2 , (6)

where �MX
2 is the squared correlation of M and X, and �YM·X

2 is the
squared partial correlation of Y and M adjusting for X. Equation 6
represents a scaling of Equation 5 by the reciprocal of the total
proportion of variance in Y accounted for by M and X. More
recently, de Heus (2012) proposed a modification of the measure
in Equation 5,

RDH
2 � �MX

2 � �Y(M·X)
2 , (7)

where �Y(M·X)
2 is the squared semipartial correlation of Y and M

adjusting for X. Equation 7 represents a scaling of the partial
correlation coefficient by the proportion of variance in Y accounted
for by X. Because �MX

2 , �YM·X
2 , and �Y(M·X)

2 are bounded by 0 and 1,
the R2 formulations in Equations 5 to 7 are also bounded by 0 and
1. However, like Rmed

2 , the R2 formulations in Equations 5 to 7 are
not monotonically increasing functions of the indirect effect in raw
or absolute value. This is shown in Panels A to C of Figure 2, for
which population effect sizes from Equations 5 to 7 were calcu-
lated, respectively, for 5,000 randomly generated positive definite
correlation matrices using the uniform correlation matrix method
proposed by Botha, Shapiro, and Steiger (1988) (results in Panel D
will be discussed in a later section). Specifically, it can be seen in
Panels A to C that a specific value of an indirect effect has multiple
corresponding values of effect size. Most commonly used effect
size measures (e.g., Cohen’s d, Cohen’s f, R2) are monotonically
increasing functions of the quantity of interest in raw or absolute
value at the population level. The conceptions of effect size in
Equations 5 to 7 are not monotonically increasing functions of the
indirect effect because the indirect effect is theoretically un-
bounded, and the method by which Equations 5 to 7 constrain the
effect size to be bounded by 0 and 1 requires standardized indirect
effects greater than 1 to be scaled �1.

In summary, many existing effect size measures for mediation
analysis have properties that limit their use. This suggests that to
address the limitations of current effect size measures, an effect
size measure for mediation analysis, in addition to having the
properties outlined in Preacher and Kelley (2011) and Wen and
Fan (2015), should return an effect size of zero when the indirect
effect is zero. There is a clear need for an effect size measure for
mediation analysis that satisfies these properties, as, at present, for
one of the most popular models in modern social science and the
call for effect sizes to be used to illustrate the size of effects, an
ideal effect size for mediation models is needed. Our primary aim
was to develop such an effect size measure so that mediation
analysis can follow the recommendation of the APA and others to
report effect sizes in addition to hypothesis tests.

1 Alternatively, how Rmed
2 isolates the variance in Y explained jointly by

M and X can be understood by considering first �YX
2 and �YM

2 . Both consist
of variance in Y explained jointly by M and X, and distributing the
negative sign in Equation 4 shows that these quantities are summed,
meaning the joint variance explained is counted twice. Therefore, subtract-
ing RY·MX

2 from this sum yields the area of joint overlap.
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A Novel Effect Size Measure for Mediation Analysis

The effect size measure we propose is a modification of the Rmed
2

measure from Equation 4. The Rmed
2 approach for obtaining shared

variance is based on a multiple regression framework in which a
single equation represents the relationships among variables. For
the mediation model presented in Figure 1, the proportion of
variance accounted for in Y by X and M jointly according to
Fairchild et al. (2009) is a function of the squared zero-order
correlations �YM

2 and �YX
2 , and the squared multiple correlation

RY·MX
2 . Although this method is appropriate for quantifying vari-

ance explained jointly in the multiple regression context, the model
in Figure 1 makes additional assumptions about the relationships
among variables that cannot be modeled in a single multiple
regression equation. The modification of Rmed

2 that we propose
results in an explained variance effect size measure consistent with
the assumptions of a path analysis framework.

As shown in Equations 1 to 3, a mediation model requires a
system of equations specifying the causal ordering of variables
(i.e., X causes M, X and M cause Y). This causal ordering of
variables imposes the assumptions that Y is dependent on M, and
that M and Y are mutually dependent on X, given that several
additional assumptions hold (temporal precedence of variables,
isolation of effects, association, etc.). As in the structural equation
modeling literature, X here is referred to as an exogenous variable,
and M and Y are endogenous. This assumption implies that the
zero-order correlation between M and Y has two components: (a)
the correlation between M and Y independent of X, and (b) the
correlation due to the mutual dependence of M and Y on X
(Duncan, 1970; Wright, 1960). The conditional correlation is often
referred to as true correlation, and the correlation due to mutual
dependence is referred to as spurious correlation (Blalock, 1962;

Dillon & Goldstein, 1984; Simon, 1954). For X to have an indirect
effect on Y through M, part of the correlation between Y and M
must be true correlation, otherwise M does not cause a change in
Y when controlling for X. It is important to note that this assumes
a correctly specified model with the appropriate assumptions being
met, so the spurious correlation described here is distinct from
spurious correlation induced by the omission of confounding vari-
ables.

To illustrate how spurious correlation is quantified in mediation
analysis, consider again the model in Figure 1. If X has nonzero
effects on both M and Y, the zero-order correlation between Y and
M is due partly to these associations with X. Specifically, the
correlation between Y and M (i.e., via path tracing rules) is de-
composed as

�YM � 	YM·X � 	YX·M	MX, (8)

where �YM·X, �YX·M, and �MX are standardized regression coeffi-
cients. True correlation is quantified by �YM·X, and spurious cor-
relation is quantified by �YX·M�MX. In circumstances in which
there is no indirect effect, it is either the case that the true
correlation component �YM·X is zero, and �YM � �YX·M�MX, or the
spurious correlation component �YX·M�MX is zero (i.e., �MX � 0),
and �YM � �YM·X. Alternatively, when there is no direct effect, the
spurious correlation component �YX·M�MX is zero (i.e., �YX·M � 0,
and �YM � �YM·X). In other words, �YM cannot be used to distin-
guish between scenarios in which indirect effects are present or
absent.

The implications of distinguishing true and spurious correlation
when quantifying the variance explained by the indirect effect can
be seen by considering the behavior of Rmed

2 when indirect effects
are absent (i.e., �MX � 0, �YM·X � 0, or �MX � �YM·X � 0).

Figure 2. Plots of R2 effect sizes measures versus the indirect effect for a three-variable mediation model for
5,000 indirect effects. Effect sizes in Panels A and B refer to Equations 5 and 6 (MacKinnon, 2008); effect size
in Panel C refers to Equation 7 (de Heus, 2012); and effect size in Panel D refers to Equation 14 (
̃).
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Inserting the decomposition of �MY in Equation 8 into Equation 4,
and using the identities �YX � �YX, �MX � �MX, and

RY·MX
2 � 	YX

2 � 	YM·X
2 (1 � 	MX

2 ), (9)

the variance in Y explained jointly by M and X when �MX � 0 is

Rmed
2 � �	YM·X � 	YX·M	MX�2 � �	YX

2 � 	YM·X
2 (1 � 	MX

2 ) � 	YX
2 �

� 	YM·X
2 � 	YM·X

2 � 	YX
2 � 	YX

2 � 0

(10)

As previously noted, when �MX � 0, �MY consists of only true
correlation, and the resulting effect size of zero is consistent with
an indirect effect of zero. Rmed

2 is also consistent with an indirect
effect of zero when �MX � �YM·X � 0

Rmed
2 � �	YM·X � 	YX·M	MX�2 � �	YX

2 � 	YM·X
2 (1 � 	MX

2 ) � 	YX
2 �

� 	YX
2 � 	YX

2 � 0

(11)

Here, there is no true or spurious correlation, and, thus, the
zero-order correlation is also zero. However, the variance in Y
explained by X via the indirect effect when �YM·X � 0 is

Rmed
2 � �	YM·X � 	YX·M	MX�2 � �	YX

2 � 	YM·X
2 (1 � 	MX

2 ) � 	YX
2 �

� 	YX·M
2 	MX

2 � 	YX
2 � 	YX

2

� 	YX·M
2 	MX

2 .

(12)

The resulting nonzero effect size in this scenario is inconsistent
with an indirect effect of zero. As previously noted, when �YM·X �
0, �MY consists of only spurious correlation, meaning the joint
explained variance quantified by Rmed

2 in this scenario is not attrib-
utable to the indirect effect.

Because variance explained by spurious correlation is not asso-
ciated with the indirect effect, it follows that a variance explained
effect size measure for the indirect effect should not incorporate
this correlation. The variance in Y explained by M can be adjusted
for spurious correlation by subtracting �YX·M�MX from the zero-
order correlation, which is equivalent to replacing the squared
correlation between Y and M with the squared standardized regres-
sion coefficient �YM·X:

(�YM � 	MX	YX·M)2 � 	YM·X
2 . (13)

Inserting the result from Equation 13 into the Rmed
2 formula in

Equation 4 gives an adjusted version of Rmed
2 , which we will refer

to hereafter as upsilon (�), denoted at the population level as


 � (�YM � 	MX	YX·M)2 � (RY·MX
2 � �YX

2 ). (14)

The effect size � is a novel method for quantifying explained
variance in mediation analysis, and is interpreted as the variance in
Y accounted for jointly by M and X that corrects for spurious
correlation induced by the ordering of variables.

A circumstance in a three-variable mediation model in which
Rmed

2 would not need to be adjusted is when the spurious correlation
is zero (i.e., �MX�YX·M � 0). This circumstance is possible if
�MX � 0, �YX·M � 0, or �MX � �YX·M � 0. Because there is no
indirect effect when �MX � 0, the only circumstance under which
spurious correlation would not need to be accounted for is when

the direct effect is zero (i.e., �YX·M � 0). That is, Rmed
2 and � are

equivalent when the effect of X on Y is completely accounted for
by M. Therefore, it is not necessary to employ Rmed

2 because, under
the only circumstances in which the measure is appropriate, Rmed

2 is
a special case of �.

Adjusting Rmed
2 for spurious correlation (i.e., �) results in a

noteworthy interpretation for the variance explained in Y jointly by
M and X. Consider � from the previous three-variable mediation
example in Equation 14, which can be reexpressed as


 � 	YM·X
2 � (RY·MX

2 � �YX
2 ). (15)

Equation 15 can be reexpressed in terms of standardized regression
coefficients using the identities for RY·MX

2 in Equation 9 and �YX
2 �

�YX
2


 � 	YM·X
2 � �	YX

2 � 	YM·X
2 (1 � 	MX

2 ) � 	YX
2 �

� 	YM·X
2 � 	YM·X

2 (1 � 	MX
2 )

� 	MX
2 	YM·X

2 .

(16)

In other words, for three-variable mediation, the variance in Y
accounted for jointly by M and X adjusting for the ordering of
variables is equivalent to the squared standardized indirect effect.
This result suggests that to obtain an R2 effect size measure for the
indirect effect in three-variable mediation, one estimates the un-
standardized indirect effect, standardizes the estimated indirect
effect by the variance of X and variance of Y, and squares the
completely standardized indirect effect.

de Heus (2012) was the first to introduce the concept of the
squared standardized indirect effect as a measure of explained
variance, and explored the consequences of modeling the direct
effect on the interpretation of the variance explained by the indi-
rect effect. de Heus posited that, because the squared standardized
total effect quantified the variance explained in Y by X, measures
of variance explained by the direct and indirect effects could be
obtained by substituting the squared standardized total effect with
the squared sum of the standardized indirect and direct effects.
This results in three components of explained variance: (a) unique
variance explained by the indirect effect (�IND

2 ), (b) unique vari-
ance explained by the direct effect (�DIR

2 ), and (c) a component
representing variance explained not attributable to either the direct
or indirect effect alone. The results of this study confirm that �IND

2

indeed represents the unique variance explained by the indirect
effect. de Heus proposed two methods for quantifying the variance
explained by the direct and indirect effects that either ignores the
joint component of variance explained by the effects, or assigns the
joint overlap to either the direct or indirect effect depending on
which is of primary interest to the researcher. Because an effect
size measure for the indirect effect is of primary interest in the
present research (i.e., in quantifying the size of the indirect effect
in a mediation model), the components of variance explained by
the indirect effect that result from the two methods are conceptu-
ally and mathematically equivalent. In other words, the method of
assigning the joint variance explained by the direct and indirect
effects is inconsequential for an effect size measure designed
specifically for the indirect effect.

A factor to consider when interpreting � is the behavior of
standardized multiple regression coefficients. Although it may
appear that � is interpretable as a proportion of explained variance,
it is important to realize that standardized regression coefficients

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

249A NOVEL MEASURE OF EFFECT SIZE FOR MEDIATION



can be greater than 1 (Cohen et al., 2003; Jöreskog, 1999), so the
squared standardized regression coefficients should not be consid-
ered proportions. That is, squared path coefficients do not function
as proportions as do squared correlation coefficients (or squared
partial or semipartial correlation coefficients), and, therefore, al-
though � is a measure of variance explained, it is not interpretable
as a proportion.

Of the effect size measures for mediation analysis presented in
the previous section, � most closely resembles the R2 effect size
measures in Equations 5 to 7 (i.e., �MX

2 � �YM·X
2 , �MX

2 � �YM·X
2 /RY·MX

2 ,
and �MX

2 � �Y(M·X)
2 ). Although the R2 effect size measures in

Equations 5 to 7 are bounded by 0 and 1 and can be interpreted as
proportions, � has a key advantage as an R2 effect size measure.
This advantage becomes apparent when suppression is evident. In
mediation analysis, suppression occurs when the addition of a
mediator strengthens the relationship between the predictor and
outcome (MacKinnon, Krull, & Lockwood, 2000; Rucker,
Preacher, Tormala, & Petty, 2011), such that the direct and indirect
effects can have magnitudes greater than the total effect when sup-
pression is evident. As previously noted, the R2 effect size measures
in Equations 5 to 7 are always bounded by 0 and 1. When suppression
is not evident, � is also bounded by 0 and 1.2 In addition, all R2 effect
size measures are monotonic functions in absolute value of the indi-
rect effect when there is no suppression, differing only in scale (i.e.,
there is a one-to-one relationship between the effect size and the
standardized indirect effect in the population). However, � remains a
monotonic function of the indirect effect in the population when
suppression is evident (see Panel D of Figure 2). This is a desirable
property for an effect size measure in mediation analysis because a
larger effect size directly translates to a larger indirect effect, whereas
for a nonmonotonic effect size it would be unclear if a larger effect
size were due to a larger indirect effect, suppression effects, or some
combination thereof.

Properties of �

The measure � has several desirable properties for an effect size
for quantifying the indirect effect. First, � is standardized, so it is
scale invariant to linear transformations of X, M, and/or Y. Second,
� is a type of variance explained measure, which is a family of
statistics that are widely used in applied research settings and have
intuitive interpretations. Third, � is not dependent on sample size.
Fourth, � is a monotonic function in absolute value of the stan-
dardized indirect effect. Finally, � may be used for models with
continuous or binary X because the standardized coefficient of a
binary variable in simple linear regression is equivalent to a
Pearson correlation coefficient, and the squared correlation coef-
ficient is the variance explained in the outcome by the binary
variable. Taken together, these important properties make � a
promising effect size measure for mediation analysis with a highly
desirable set of properties.

In order to appropriately interpret the magnitude of an effect, it
is often useful for researchers to consult benchmarks for effect size
measures. Although not universally applicable, effect size bench-
marks often facilitate the understanding and communication of
results by allowing researchers to compare their estimates with
established references for small, medium, and large effects. Al-
though a continuing subject of debate in the social science litera-
ture, the most commonly cited of these benchmarks are those

proposed by Cohen (1988) for standardized regression coefficients
(small � 0.14, medium � 0.39, and large � 0.59) and proportions
of explained variance (small � 2%, medium � 15%, and large �
25%). Because � is being developed here, there is not yet a body
of literature from which to draw appropriate benchmarks.

Nevertheless, because � is a measure of explained variance,
there is justification for evaluating � in terms of Cohen’s bench-
marks for proportions of variance explained. Consider the example
of a three-variable mediation population model in which the direct
effect is zero. The key property of this model to note is that the
total and indirect effects are equivalent (i.e., �MX�YM·X � �YX).
When effects are standardized as we have assumed here, the total
effect is a standardized regression coefficient, the magnitude of
which can be appropriately compared with Cohen’s benchmarks.
An equivalent comparison is to square the standardized total effect,
which yields the proportion of variance in Y explained by X. This
R2 can also be compared with Cohen’s benchmarks. Because of the
equivalence of the total and indirect effects when the direct effect
is zero, � for this model would result in the same amount of
variance explained in Y by X through M as would be explained in
Y directly by X without considering M. The equivalence of � and
total R2 in this model suggests the effect sizes should have the
same interpretation in terms of variance explained in Y, and Co-
hen’s benchmarks for small, medium, and large proportions of
explained variance are applicable to �. However, we also stress
that Cohen’s benchmarks are conventions and not universally
applicable in all research settings, so researchers should carefully
consider prior research and the context of their study when inter-
preting the magnitudes of effects.

Sample Estimator of �

The effect size properties described thus far apply to � in the
population. The remaining properties outlined in Preacher and
Kelley (2011) apply to the sample estimator of � (i.e., bias,
consistency, efficiency, CIs). Because the population � is equiva-
lent to the squared standardized indirect effect for three variable
mediation models, a natural choice for the estimator is the sample
squared standardized indirect effect 
̂ � 	̂MX

2 	̂YM·X
2 .

It is not always true that the expected value of a sample esti-
mator obtained by inserting sample values for the population
analog is equivalent to its population parameters. Perhaps the most
notable example of this fact is sample estimators of variance
parameters. It has long been acknowledged in the methodological
literature that R2 estimates are positively biased (Ezekiel, 1930;
T. L. Kelley, 1935; Olkin & Pratt, 1958). Several formulas have
been proposed to adjust R2 for this bias in ANOVA and multiple
regression (see Yin & Fan, 2001, for a comprehensive review).

Because � is an explained variance measure, it is expected that

̂ is positively biased, meaning that 
̂ tends to be larger than the
corresponding population value. If 
̂ were unbiased, it could be
shown that E�
̂� � 
, or, alternatively, that the expected value of
the sample squared standardized indirect effect is the population
squared standardized indirect effect. However, the sampling dis-

2 For example, �YX is equivalent to a correlation when variables are
standardized, and, because �MX�YM·X 	 �YX when there is no suppression,
the standardized indirect effect is bounded by 
1. Therefore, � is bounded
by 0 and 1.
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tribution of the squared standardized indirect effect is not presently
known and not easily derived to our knowledge, so the moments of
this distribution are not presently available. However, it is possible
to derive the bias in the expected value of the sample estimator of
� by application of the known properties of independent, normally
distributed random variables that compose 
̂.

In order to make use of these properties, it is first necessary to
show that � can be considered the product of squared independent,
normally distributed variables. Although the sampling distribu-
tions of standardized regression coefficients are not normal, it is
the standard assumption that unstandardized regression coeffi-
cients are normally distributed across repeated samples when other
assumptions are satisfied (i.e., B̂MX � N�BMX, �MX

2 �, B̂YM·X �
N�BYM·X, �YM·X

2 �). The second property to consider is that when the
model is correctly specified as we assume here, B̂MX and B̂YM·X are
independent because (a) the residuals of the M and Y regressions
are independent, and (b) B̂YM·X is the relationship between Y and
the component of M orthogonal to X, which includes, therefore, the
component of X associated with M (i.e., B̂MX). The expected value
of B̂MXB̂YM·X is equal then to the product of the expected values
(i.e., E�B̂MXB̂YM·X� � E�B̂MX�E�B̂YM·X�). The third property to con-
sider is that functions of independent random variables are also
independent (Casella & Berger, 2002 p. 155), and, thus, B̂MX

2 and
B̂YM·X

2 are independent. Finally, as is common for standardized
regression coefficients and standardized indirect effects, we as-
sume that estimates of the variances of X (�̂X

2) and Y (�̂Y
2) are

constants and, thus, independent of B̂MX, B̂YM·X, �MX
2 , and �YM·X

2 .
Using the definition of the variance of a random variable

var(X) � E[X2] � (E[X])2, (17)

the expected values of B̂MX
2 and B̂YM·X

2 can be expressed as

E[B̂MX
2 ] � (E[B̂MX])2 � var[B̂MX] � BMX

2 � �MX
2

E[B̂YM·X
2 ] � (E[B̂YM·X])2 � var[B̂YM·X] � BYM·X

2 � �YM·X
2 .

(18)

Inserting these results into the definition of the squared standard-
ized indirect effect yields

E[B̂MX
2 B̂YM·X

2 (�̂X
2 ⁄ �̂Y

2)]

� E[B̂MX
2 ]E[B̂YM·X

2 ](�̂X
2 ⁄ �̂Y

2)

� (BMX
2 � �MX

2 )(BYM·X
2 � �YM·X

2 )(�̂X
2 ⁄ �̂Y

2)

� (BMX
2 BYM·X

2 � BMX
2 �YM·X

2 � BYM·X
2 �MX

2 � �MX
2 �YM·X

2 )(�̂X
2 ⁄ �̂Y

2).

(19)

This result shows that sample estimates of � using the estimator 
̂
are upwardly biased by the factor BMX

2 �YM·X
2 � BYM·X

2 �MX
2 �

�MX
2 �YM·X

2 .
It can be seen that as N becomes large, variances �MX

2 and �YM·X
2

approach zero and, thus, the bias in 
̂ approaches zero as well. In
other words, the bias in 
̂ is negligible in large samples. However,
this bias could be problematic at smaller sample sizes, so we derive
an estimator of � that adjusts for this bias.

Because the expected values of B̂MX
2 and B̂YM·X

2 are the sums
of their respective population parameters and sampling vari-
ances (see Equation 18), removing the respective sampling

variances from E�B̂MX
2 � and E�B̂YM·X

2 � would yield an expected
value of 
̂ equal to �:

E[B̂MX
2 � �MX

2 ]E[B̂YM·X
2 � �YM·X

2 ]

� (E[B̂MX
2 ] � E[�MX

2 ])(E[B̂YM·X
2 ] � E[�YM·X

2 ])

� (BMX
2 � �MX

2 � �MX
2 )(BYM·X

2 � �YM·X
2 � �YM·X

2 )

� BMX
2 BYM·X

2 . (20)

�MX
2 and �YM·X

2 can be replaced with the corresponding unbiased
sample estimators �̂MX

2 and �̂YM·X
2 :

E[B̂MX
2 � �̂MX

2 ]E[B̂YM·X
2 � �̂YM·X

2 ]

� (E[B̂MX
2 ] � E[�̂MX

2 ])(E[B̂YM·X
2 ] � E[�̂YM·X

2 ])

� (BMX
2 � �MX

2 � �MX
2 )(BYM·X

2 � �YM·X
2 � �YM·X

2 )

� BMX
2 BYM·X

2 . (21)

Therefore, the estimator �B̂MX
2 � �MX

2 ��BYM·X
2 � �YM·X

2 � (�̂X
2 ⁄ �̂Y

2), to
which we hereafter refer as 
̃, is an adjusted estimator that corrects
for bias in the expected value of the sample analog of �.

This adjusted estimator of � has some important properties that
lead us to conclude this estimator is highly promising. Because the
parameter estimated by 
̃ in finite samples is �, it is appropriate to
use 
̃ estimates to make inferences about the population �. As
sample size becomes large, the sampling variances of the coeffi-
cients B̂MX and B̂YM·X approach zero. Thus, in large samples the
adjusted and unadjusted � are approximately equivalent, and both
are unbiased estimators of � in the limit. Another property is that
because the adjusted estimator incorporates the sampling variances
of the coefficients that compose the indirect effect, equivalent
indirect effect estimates do not necessarily correspond to the same
effect size estimate. This means that the factors that affect sam-
pling variances (e.g., sample size, multicollinearity) also affect 
̃.
For example, consider indirect effects estimated from two samples
with all held equal except coefficient estimates and sampling
variances. In the first sample, B̂MX � 0.6 (�̂MX

2 � 0.05),
B̂YM·X � 0.4 (�̂YM·X

2 � 0.1), and �̂X
2 � �̂Y

2 � 1, resulting in a
standardized indirect effect of 0.24. In the second sample,
B̂MX � 0.4 �̂MX

2 � 0.05), B̂YM·X � 0.6 (�̂YM·X
2 � 0.08), and

�̂X
2 � �̂Y

2 � 1, also yielding a standardized indirect effect of 0.24.
The unadjusted sample estimates of � are equivalent (
̂1 � 
̂2 �
0.058), but the adjusted estimates differ, with the effect size
estimate from the second sample (
̃2 � 0.025) larger than the
estimate from the first sample (
̃1 � 0.019). This is because in
Equation 3, in which Y is regressed on M and X, collinearity
between M and X is stronger in the first sample than in the second,
resulting in a larger standard error for B̂YM·X in the first sample.
This suggests that, in general, for equivalent indirect effects and all
else being held equal, larger B̂YM·X coefficients have correspond-
ingly larger effect sizes, which is consistent with previous research
examining the behavior of different specifications for indirect
effects (Beasley, 2014; Fritz & MacKinnon, 2007; Fritz, Taylor, &
MacKinnon, 2012; Hoyle & Kenny, 1999).

Simulation Studies

Monte Carlo simulations are often employed to examine the
finite sample properties of statistical estimators. Employing this
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type of simulation allows for the behavior of estimators to be
studied under various conditions (e.g., small N, nonnormality,
violation of assumptions, model misspecification). Additionally,
Monte Carlo simulations are useful for understanding various
properties of estimators with asymptotic distributions that are
complex or unknown. For simple three-variable mediation models,
� is the square of the standardized indirect effect, the sampling
distribution of which is complex. The distribution of the square of
the standardized indirect effect is not known to have been derived.
Because the distribution of this effect size is unknown, we have
used Monte Carlo simulations to facilitate our understanding of the
measure. In addition, because Monte Carlo simulations can be
used to validate theoretical results, we have used Monte Carlo
simulations to determine whether the properties of the adjusted and
unadjusted estimators derived in the previous section were consis-
tent with the observed properties of the estimators.

The Monte Carlo simulation study was designed to examine the
finite sample properties of adjusted and unadjusted estimators of �
in a simple three-variable mediation model from populations with
varying but known magnitudes of indirect effects. For point esti-
mators, of interest were absolute bias, percent relative bias, mean
square error (MSE), degree of consistency, and degree of effi-
ciency. 95% CIs were constructed using a percentile bootstrap
procedure, in which of interest were CI widths, coverage, and the
proportions of estimates above and below the 95% CI limits.

Bias was defined as the difference between the expectation of
the sample estimator (�̂�) and the parameter that it estimates ():

bias(�̂) � �̂� � �. (22)

All else being equal, lower bias for an estimator indicates that the
expected value is on average closer to the parameter compared with a
competing estimator; an unbiased estimator has a bias of zero. Be-
cause � quantifies explained variance, we anticipate that the unad-
justed 
̂ would have bias similar to the bias inherent in unadjusted
estimators of R2. Note that this is not a limitation of our effect size per
se, but rather a limitation of the current unadjusted estimates of R2, on
which 
̂ are based. Therefore, it was hypothesized that 
̂ would be
upwardly biased, particularly for the smallest N and smallest effects,
and that bias would decrease at larger N and for larger effects.
However, it would be expected that bias of 
̃ would be acceptable for
all N and effect sizes considered.

Percent relative bias was defined as the ratio of the bias to the
parameter value:

biasrel(�̂) � �̂� � �
�

� 100. (23)

Like bias, with all else being equal, lower relative bias for an
estimator means that the expected value of the sample estimator is
on average closer to the population parameter compared with a
competing estimator; an unbiased estimator has a relative bias of
zero. However, relative bias is on a different scale than bias;
whereas the measures convey similar information, relative bias
provides results that may be more interpretable because it is scaled
relative to the size of the population value being estimated. We
regard both measures as useful. We considered percent relative
bias 	5% to be acceptable (Boomsma, 2013).

MSE was defined as the sum of the variance of sample estimates
and squared bias,

MSE � [bias(�̂)]2 � var(�̂). (24)

MSE is a measure of the bias and variability (the inverse of precision)
of a sample estimator and serves as a measure of accuracy; a smaller
(lower) MSE indicates a more accurate estimator. When a sample
estimator is unbiased, MSE is equivalent to the variance of that
estimator. Although we hypothesized that 
̂ would be positively
biased, we also hypothesized that the bias would decrease as sample
size increased. In addition, the variance would be expected to decrease
with increasing N. Therefore, we hypothesized that MSE would
decrease as N increased for 
̂. We hypothesized that 
̃ would be
unbiased for all conditions, so changes in N would not be associated
with changes in bias for this estimator. However, we expected that the
variance of 
̃ would decrease with increasing N, and, therefore, MSE
would decrease with increasing N.

Consistency of the estimators was evaluated by conducting the
simulations across multiple values of N. As N is increased, the
statistics were expected to converge to their population values (i.e.,
bias and variance would decrease as N increased). Moreover, MSE
and CI width were expected to decrease as N increased. Efficiency
of the estimators was evaluated by comparing the CI widths, in
which smaller CI widths indicate more efficient estimators. Com-
parisons were conducted taking the ratio of CI widths (i.e., relative
efficiency). Relative efficiencies greater than 1 indicated that the
estimator in the numerator was more efficient, and relative effi-
ciencies less than 1 indicated that the estimator in the denominator
was more efficient. It was unclear which estimator, 
̂ or 
̃, would
be more efficient, so this was addressed empirically.

Coverage was defined as the proportion of samples in which the
population parameter was contained within the 95% CI. We con-
sidered acceptable coverage to be between 92.5% and 97.5%
(Bradley, 1978), and hypothesized that coverage would approach a
nominal level of 95% as N increased. If the population parameter
was not contained within a 95% CI, it was recorded whether the
parameter was above the upper CI limit or below the lower CI
limit. A proper 95% CI with equal error rates in each tail requires
2.5% of samples outside of the CI to be above the upper confi-
dence limit and 2.5% below the lower confidence limit. It was
hypothesized that the proportion of these misses to the left and
right of the CI would be equal.

The three-variable mediation model in Figure 1 was the gener-
ating model for the simulation study. X, M, and Y were standard-
ized normal variates with means of zero and variances of 1. Regres-
sion coefficients composing the indirect effect were varied among .15,
.39, and .59, corresponding to small, medium, and large effect sizes
(Cohen, 1988). The direct effect was varied among 0, .15, and .39. We
did not consider models for which the population indirect effect was
zero because the bootstrap estimates have been shown to be unreliable
when the parameter of interest is on the boundary of the parameter
space (Andrews, 2000; Chernick, 2008). 10,000 replication samples
were created using the mvrnorm() function from the MASS pack-
age (Venables & Ripley, 2002) in R (Version 3.1.2; R Development
Core Team, 2014). 10,000 replications were sufficient to achieve
reasonably accurate estimates of bias and empirical 95% CI coverage.

For each of the 10,000 replications, 1,000 bootstrap resamples
were created by sampling cases with replacement, and 95% CIs
were constructed from the 2.5th and 97.5th percentiles of the
empirical distribution of estimates (i.e., percentile bootstrap CIs).
Values for the upper and lower percentiles, CI width, and whether
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or not the population parameter was within the CI were recorded
for each replication. When the population parameter was outside
the 95% CI, we also recorded whether the parameter was above the
upper CI limit or below the lower limit. 
̃ and 
̂ were also estimated
for each of the 10,000 replications, and means and variances of
each statistic were computed across replications. This procedure
was performed for N � 50, 100, 250, and 500, which are repre-
sentative of sample sizes commonly used in mediation models,
based on our experience.

Results of Monte Carlo Simulation

Results from the simulation study can be found in Tables 1
through 5. The hypothesis that 
̂ would be upwardly biased,
particularly at smaller N and for smaller effect sizes, and less
biased as N and effect size increased, was supported by the
simulation results (see Table 1). The direction of bias for 
̂ was
positive in all conditions. This is not surprising considering it was
demonstrated analytically that 
̂ is a positively biased estimator of
�. The largest values of percent relative bias (264.3%, 279.779%,
and 216.242%) occurred at the smallest N considered in the sim-
ulation (N � 50), and also for the smallest effects (�MX

2 � �YM·X
2 �

.15). In addition, for smaller effect sizes, percent relative
bias �5% was evident even at the largest N considered (N � 500).
Finally, bias decreased as N increased, supporting the hypothesis
that 
̂ is a consistent estimator.

Simulation results of percent relative bias for 
̃ can also be found in
Table 1. The hypothesis that bias of 
̃ would be acceptable across
simulation conditions was largely supported by simulation results.

Overall, percent relative biases for 
̃ were of much smaller magnitude
than for 
̂. For the conditions in which bias was greatest for the 
̂ (N �
50, �MX

2 � �YM·X
2 � .15), the relative biases of 
̃ were �6.783%,

11.104%, and �14.648%. In total, the largest relative bias across all
N and effect sizes considered for 
̃ was �14.648%. In terms of raw
values, the � value for this parameter combination was 0.000506, and
the average 
̃ was 0.000432. At N � 100, only four parameter combi-
nations had percent relative bias �5% (�5.245%, �5.987, �8.052,
and �5.749%), and no combination had percent relative bias �5% at
N � 250 and N � 500. Although As expected, bias was largest at the
smallest effect size considered, and there did not appear to be a
systematic relationship between population effect size and bias for 
̃

as there was for 
̂. Finally, as with 
̂, bias decreased as N increased,
supporting the hypothesis that 
̃ is a consistent estimator.

Simulation results of MSE can be found in Table 2 and CI
width in Table 3. It was shown that as N increased, MSE values
approached zero and CI widths narrowed for both measures,
supporting the hypothesis that overall accuracy of the measures
would increase with increasing N. Given that bias for 
̂ was
consistently larger than for 
̃, it was not surprising that 
̃

consistently exhibited smaller values of MSE across all param-
eter combinations. Results also show that average CI widths for
both estimators were comparable across conditions, with rela-
tive efficiencies of 
̃ to 
̂ ranging from approximately 0.9 to 1.0.
Interestingly, although of comparable magnitude, CI widths for

̃ were consistently narrower than CI widths for 
̂ for the vast
majority of simulation conditions, suggesting that 
̃ is a more
efficient estimator.

Table 1
Percent Relative Bias of the Unadjusted 
̂ and Adjusted 
̃

�MX �YM·X �YX·M

�̂ �̃

N � 50 N � 100 N � 250 N � 500 N � 50 N � 100 N � 250 N � 500

.15 .15 0 264.300 103.912 36.558 17.599 �6.783 �4.971 �1.752 �.816
.15 279.779 108.010 36.409 17.364 11.104 �.243 �1.349 �.719
.39 216.242 95.292 34.024 17.231 �14.648 �2.110 �.883 .448

.39 0 107.258 50.284 20.019 9.792 �2.715 �1.461 �.086 �.151
.15 98.362 47.324 19.148 9.894 �8.765 �3.886 �.879 .023
.39 99.667 44.701 17.112 8.523 �4.769 �5.245 �2.343 �1.101

.59 0 86.547 43.681 19.739 9.003 �7.410 �2.579 1.446 �.116
.15 83.967 40.001 16.593 7.903 �9.730 �5.987 �1.603 �1.173
.39 79.060 37.402 14.493 8.039 �14.169 �8.052 �3.489 �.940

.39 .15 0 129.587 60.146 21.388 12.492 �4.973 �1.600 �1.991 .907
.15 121.046 53.723 23.100 10.891 �8.062 �5.749 .443 �.211
.39 109.103 49.998 19.106 8.354 �.768 �.399 �.054 �1.049

.39 0 23.214 10.601 4.088 1.869 �3.633 �2.143 �.867 �.583
.15 23.481 9.619 4.188 2.459 �2.184 �2.553 �.554 .108
.39 16.731 8.220 2.564 1.673 �5.122 �2.270 �1.514 �.354

.59 0 13.385 6.765 2.528 .975 �3.074 �1.244 �.623 �.590
.15 12.110 5.091 1.975 .529 �3.655 �2.554 �1.042 �.971
.39 7.811 3.715 1.845 .677 �6.142 �3.090 �.842 �.660

.59 .15 0 152.448 70.384 26.387 12.584 �2.524 �1.978 �1.566 �1.261
.15 143.485 67.294 25.725 13.881 �2.303 �1.822 �.950 .672
.39 112.354 55.489 23.110 11.426 �6.754 �.755 1.321 .616

.39 0 20.691 8.311 3.531 1.639 �2.365 �2.624 �.721 �.467
.15 17.812 8.938 3.439 1.149 �3.076 �1.054 �.429 �.767
.39 11.038 5.780 2.071 1.317 �4.340 �1.600 �.808 �.112

.59 0 6.690 2.921 1.279 .388 �3.508 �1.997 �.647 �.569
.15 5.766 3.086 .770 .555 �3.207 �1.246 �.925 �.288
.39 2.240 .900 .395 .133 �3.862 �2.064 �.770 �.446
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The hypotheses that coverage would reach the nominal 95%
level as N increased, and that the proportions of misses to the left
and right of the 95% CI would be balanced, were partially sup-
ported by simulation results. Results for coverage and proportions
of misses to the left and right for 
̂ can be found in Table 4, and
results for 
̃ can be found in Table 5. As with bias, satisfactory
coverage was achieved with larger effect sizes and at larger N for
both measures. For both estimators, nominal coverage was satis-
factory at the smallest N for some parameter combinations, but for
most combinations, coverage achieved approximately nominal lev-
els as N increased. For both 
̂ and 
̃, satisfactory coverage was
achieved for all parameter combinations at N � 250. For 
̂, the
proportions of misses to the left and right were approximately
balanced when N � 250 and N � 500. For 
̃, although coverage
was satisfactory, there appeared to be a consistent imbalance in the
proportion of misses, such that it was more likely for misses to be
greater than the upper confidence limit, even at the largest N
considered.

Software Implementation

For simple three-variable mediation models, 
̂ is calculated by
simply standardizing the squared indirect effect, and 
̃ by stan-
dardizing the product of the squared coefficients after subtract-
ing the respective estimated coefficient variances. The esti-
mated coefficient variances can typically be found in the
estimated asymptotic covariance matrix. However, obtaining
bootstrap CIs for the estimators can be challenging. To facili-
tate the use of � for researchers, we have developed a set of R

functions and incorporated them into the MBESS (K. Kelley,
2007a, 2007b, 2017) R (R Development Core Team, 2010)
package. The function mediation() has been updated to
obtain unadjusted and adjusted estimates of �, with either
percentile, bias-corrected, or bias-corrected and accelerated
bootstrap CIs. The mediation() function accepts either raw
data or summary statistics as input. Documentation for the
functions is contained within the MBESS package.

Empirical Example

Here we present an empirical example to facilitate interpretation
and implementation of the unadjusted and adjusted � estimators.
We use results from an RCT examining the effects of cognitive–
behavioral therapy (CBT) for social anxiety disorder (SAD) by
Goldin et al. (2012). The purpose of the study was to examine
whether the effect of CBT on reducing symptoms of social anxiety
was mediated by changes in a certain type of self-belief called
cognitive reappraisal self-efficacy (CR-SE). The investigators ran-
domized 75 individuals who satisfied inclusionary criteria and met
diagnostic criteria for SAD to treatment (CBT; N � 38) and
wait-list control (WL; N � 37) conditions. Participants in the
treatment condition received weekly sessions of CBT administered
by trained clinical psychologists for 4 months. By the end of
treatment, six participants had dropped out from the CBT condi-
tion, and five from the WL condition. The mediator variable
CR-SE was measured using the self-efficacy subscale of the Emo-
tion Regulation Questionnaire. Scores on the eight-item subscale
were summed, such that higher values indicated greater perceived

Table 2
Mean Square Error for the Unadjusted 
̂ and Adjusted 
̃

�MX �YM·X �YX·M

�̂ �̃

N � 50 N � 100 N � 250 N � 500 N � 50 N � 100 N � 250 N � 500

.15 .15 0 .00002 	.00001 	.00001 	.00001 .00001 	.00001 	.00001 	.00001
.15 .00002 	.00001 	.00001 	.00001 .00001 	.00001 	.00001 	.00001
.39 .00001 	.00001 	.00001 	.00001 .00001 	.00001 	.00001 	.00001

.39 0 .00012 .00004 .00001 .00001 .00008 .00003 .00001 	.00001
.15 .00011 .00004 .00001 	.00001 .00008 .00003 .00001 	.00001
.39 .00010 .00003 .00001 	.00001 .00007 .00003 .00001 	.00001

.59 0 .00038 .00015 .00005 .00002 .00031 .00013 .00005 .00002
.15 .00036 .00014 .00005 .00002 .00030 .00012 .00004 .00002
.39 .00030 .00013 .00004 .00002 .00026 .00012 .00004 .00002

.39 .15 0 .00017 .00005 .00001 .00001 .00012 .00004 .00001 .00001
.15 .00015 .00005 .00001 .00001 .00010 .00004 .00001 .00001
.39 .00013 .00004 .00001 	.00001 .00009 .00003 .00001 	.00001

.39 0 .00081 .00031 .00011 .00005 .00066 .00028 .00010 .00005
.15 .00077 .00028 .00010 .00005 .00063 .00025 .00009 .00005
.39 .00054 .00022 .00008 .00004 .00045 .00020 .00008 .00004

.59 0 .00202 .00087 .00031 .00016 .00180 .00082 .00031 .00015
.15 .00182 .00078 .00028 .00014 .00165 .00075 .00028 .00014
.39 .00128 .00059 .00023 .00011 .00123 .00058 .00023 .00011

.59 .15 0 .00097 .00028 .00008 .00004 .00075 .00024 .00008 .00003
.15 .00086 .00028 .00008 .00004 .00066 .00024 .00007 .00003
.39 .00057 .00020 .00006 .00003 .00044 .00017 .00006 .00003

.39 0 .00308 .00125 .00046 .00022 .00271 .00117 .00045 .00022
.15 .00263 .00115 .00041 .00020 .00233 .00107 .00039 .00019
.39 .00177 .00079 .00029 .00014 .00160 .00075 .00028 .00014

.59 0 .00565 .00254 .00095 .00046 .00523 .00245 .00093 .00045
.15 .00464 .00209 .00078 .00039 .00433 .00201 .00077 .00038
.39 .00249 .00119 .00045 .00023 .00243 .00118 .00044 .00023
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capability to use cognitive reappraisals. The outcome variable was
measured using the Liebowitz Social Anxiety Scale (LSAS).
Scores on the 24-item scale were summed, such that higher values
indicated greater symptoms of social anxiety. CR-SE and SA
symptoms were assessed at pre- and posttreatment. Following the
original analysis, the mediator variable was defined as the change
in CR-SE (�CR-SE) from pre- to posttreatment, and outcome was
the LSAS score at posttreatment. The analytic sample consisted of
participants that completed pre- and posttreatment assessments of
both measures in the CBT (N � 32) and WL (N � 32) conditions.

We did not have access to the raw data from this study. Because
the percentile bootstrap requires resampling individual cases, we
simulated data using the descriptive statistics and results reported
in the original manuscript. Means and standard deviations for
simulated observations of �CR-SE (CBT � 15.55, SD � 12.03;
WL � �2.12, SD � 11.84) and LSAS (CBT � 53.45, SD � 241;
WL � 70.01, SD � 18.94) were comparable with those in the
original study. It is important to note that it is assumed that the
mediation model is correctly specified, and the model presented
here for demonstration purposes is an overly simplistic represen-
tation of this potential causal process. A more rigorous investiga-
tion could control for pretreatment LSAS, and assess potential
confounding of the �CR-SE/LSAS relationship using sensitivity
analysis (Imai, Keele, & Yamamoto, 2010).

Table 6 presents results for 
̂ and 
̃, as well as basic results for raw
regression coefficients. Because the standardized indirect effect and
MedES are also viable effect sizes for this design, we include esti-
mates and CIs for these measures for comparison. The raw indirect
effect of CBT on LSAS through �CR-SE was �11.792 (95% per-

centile bootstrap CI [�20.675, �3.122]), which was significantly
different from zero. The corresponding partially standardized indirect
effect size estimate was �0.508 (95% percentile bootstrap CI
[�0.89, �0.14]), and the corresponding MedES effect size estimate
was 0.287 (95% percentile bootstrap CI [0.065, 0.517]). For the �
estimators, the 
̂ effect size estimate was 0.065 (95% percentile
bootstrap CI [0.006, 0.201]), meaning that the variance explained
indirectly in LSAS by CBT through �CR-SE in this sample was
0.065. Assuming Cohen’s effect size standards are appropriate for this
study, this result would be considered a small to medium effect size.
The 
̃ effect size estimate was 0.057 (95% percentile bootstrap CI
[�0.005, 0.188]). 
̃ is interpreted as the estimated variance in LSAS
explained by CBT through �CR-SE in the population. By Cohen’s
standards, this would also be considered a small to medium effect
size.

Discussion

The goal of this research was to develop an effect size measure
that addressed the limitations of existing effect sizes for mediation
analysis. A review of currently available mediation effect sizes
revealed that many had deficiencies that limited their use. For the
mediation models considered in this study, � was shown to be an
appropriate and interpretable measure of effect size. It was dem-
onstrated that � represents the variance in the outcome explained
jointly by the predictor and mediator. � builds upon the explained
variance framework proposed by Fairchild et al. (2009) and Mac-
Kinnon (2008) by using decomposition techniques from path anal-
ysis to account for spurious correlation unassociated with the

Table 3
95% Confidence Interval Widths of the Unadjusted 
̂ and Adjusted 
̃

�MX �YM·X �YX·M

�̂ �̃

N � 50 N � 100 N � 250 N � 500 N � 50 N � 100 N � 250 N � 500

.15 .15 0 .0208 .0082 .0034 .0020 .0189 .0075 .0031 .0019
.15 .0205 .0082 .0033 .0020 .0187 .0075 .0031 .0019
.39 .0176 .0073 .0031 .0019 .0160 .0067 .0029 .0018

.39 0 .0459 .0244 .0129 .0087 .0432 .0233 .0125 .0085
.15 .0437 .0236 .0126 .0085 .0413 .0227 .0123 .0084
.39 .0409 .0220 .0120 .0082 .0390 .0213 .0118 .0081

.59 0 .0780 .0461 .0266 .0183 .0763 .0455 .0264 .0183
.15 .0749 .0442 .0256 .0179 .0738 .0438 .0255 .0178
.39 .0698 .0412 .0242 .0172 .0699 .0413 .0242 .0172

.39 .15 0 .0568 .0282 .0141 .0095 .0545 .0272 .0137 .0093
.15 .0540 .0270 .0140 .0092 .0517 .0260 .0136 .0091
.39 .0474 .0244 .0126 .0084 .0453 .0234 .0123 .0083

.39 0 .1079 .0679 .0401 .0277 .1018 .0651 .0393 .0274
.15 .1035 .0649 .0387 .0268 .0978 .0623 .0379 .0266
.39 .0897 .0581 .0347 .0242 .0851 .0560 .0342 .0240

.59 0 .1679 .1128 .0695 .0486 .1617 .1104 .0688 .0483
.15 .1566 .1056 .0658 .0462 .1517 .1037 .0653 .0460
.39 .1323 .0925 .0588 .0414 .1308 .0919 .0586 .0414

.59 .15 0 .1286 .0662 .0340 .0229 .1283 .0659 .0338 .0228
.15 .1215 .0637 .0331 .0225 .1211 .0634 .0329 .0223
.39 .1016 .0550 .0298 .0203 .1010 .0546 .0295 .0202

.39 0 .2112 .1354 .0826 .0576 .2053 .1326 .0818 .0573
.15 .1963 .1289 .0781 .0544 .1906 .1263 .0773 .0542
.39 .1611 .1080 .0659 .0462 .1561 .1059 .0653 .0460

.59 0 .2896 .1941 .1197 .0839 .2814 .1909 .1188 .0836
.15 .2623 .1777 .1091 .0767 .2555 .1751 .1084 .0765
.39 .1939 .1339 .0835 .0587 .1914 .1329 .0832 .0586
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indirect effect. Accounting for this spurious effect corrects a con-
tradictory result observed in Rmed

2 , in which an indirect effect of
zero can return a nonzero effect size. It was also shown that � is
equivalent to the squared standardized indirect effect, and repre-
sents the variance in an outcome explained indirectly by a predic-
tor through a mediator.

This measure has many desirable properties as an effect size for
the indirect effect in mediation analysis. First, � has an interpre-
table scale as a R2 measure of effect size, and can appropriately be
compared with benchmarks for R2 detailed in Cohen (1988).
Because the measure is a function of standardized regression
coefficients, � is also standardized; that is, the measure does not
depend on the scales of the predictor, mediator, or outcome, and is
invariant under linear transformations of the variables. � is a
monotonically increasing function in absolute value of the stan-
dardized indirect effect. This means that, with all else held con-
stant, a larger effect size directly corresponds to a larger magnitude
of the indirect effect. Second, Monte Carlo simulation demon-
strated that CIs can be constructed for the estimators for 
̂ and 
̃
using a bootstrap procedure, and that the percentile bootstrap CIs
show satisfactory coverage for the majority of parameter combi-
nations considered. Third, we showed that bias in the unadjusted
estimator 
̂ was acceptable for many parameter combinations at
N � 250 and N � 500 and presumably larger sample sizes.
Importantly, however, bias in the adjusted estimator 
̃ was accept-
able for the vast majority of simulation conditions. Fourth, 
̂ and 
̃
are consistent estimators of �. Fifth, 
̂ and 
̃ were comparable in
terms of CI widths, with 
̃ estimates exhibiting a slight but con-

sistent advantage in precision. For these reasons, we believe 
̃ has
substantial advantages over 
̂ as a sample estimator of �, especially
for studies with smaller N and for smaller effects. We therefore are
encouraged enough by our analytic justifications and Monte Carlo
simulation results to widely recommend use of 
̃ and believe that
it will help researchers in a wide variety of areas to better com-
municate the size of mediation effects.

Comparisons With Other Effect Size Measures for
Indirect Effects

It should be noted that the standardized indirect effect shares
many of the desirable properties of �. The standardized indirect
effect is interpretable in terms similar to the interpretation of a
standardized regression coefficient, invariant to appropriate linear
transformations (e.g., linear transformation of a categorical pre-
dictor would not be considered appropriate), and independent of
sample size. In this regard, for the indirect effect from a three-
variable mediation model, defining the effect size parameter of
interest as either the standardized indirect effect or � is a matter of
the desired interpretation. Because in the population, with all else
held constant, � is a monotonic function in absolute value of the
standardized indirect effect, the effect size measures are essentially
conveying the same information. This is analogous to the relation-
ship between a standardized regression coefficient and R2 for a
simple regression model in the population. However, the informa-
tion conveyed by the sample estimator of the standardized indirect
effect and 
̃ would not be redundant. The advantage of reporting 
̃

Table 4
Percent Confidence Interval Coverage, and Proportions of Misses to the Left and Right of the Confidence Interval of the Unadjusted 
̂

�MX �YM·X �YX·M

N � 50 N � 100 N � 250 N � 500

Cov ML MH Cov ML MH Cov ML MH Cov ML MH

.15 .15 0 99.2 .8 .0 99.0 1.0 .1 95.7 1.3 3.0 94.7 1.6 3.7
.15 99.0 1.0 .0 99.1 .9 .0 95.6 1.2 3.2 94.6 1.7 3.7
.39 99.3 .7 .0 98.7 1.1 .2 95.3 1.3 3.5 94.4 1.6 4.0

.39 0 98.3 1.5 .2 97.6 1.8 .6 95.4 2.1 2.5 94.7 2.4 2.9
.15 98.2 1.6 .2 97.7 1.8 .6 95.2 2.2 2.6 95.0 2.1 2.9
.39 98.2 1.7 .2 97.6 2.0 .4 95.6 2.1 2.2 94.6 2.5 2.9

.59 0 97.7 2.3 .0 97.4 2.5 .1 95.1 2.7 2.2 95.0 2.5 2.6
.15 97.5 2.4 .1 97.7 2.2 .1 95.8 2.3 1.9 94.6 2.7 2.8
.39 97.6 2.4 .0 97.4 2.6 .0 95.4 2.7 1.8 94.0 3.0 3.0

.39 .15 0 98.0 1.9 .2 97.4 2.1 .5 96.2 2.1 1.8 94.6 2.6 2.8
.15 98.3 1.5 .2 97.7 1.9 .4 96.0 2.4 1.6 94.9 2.3 2.8
.39 97.8 1.8 .3 97.3 2.1 .6 95.0 2.4 2.7 94.4 2.3 3.3

.39 0 94.2 1.8 4.0 94.5 1.8 3.7 94.2 2.3 3.6 94.9 2.1 2.9
.15 94.2 1.8 4.1 94.7 1.8 3.5 94.9 2.0 3.1 94.7 2.3 3.0
.39 94.3 1.6 4.1 94.4 1.9 3.7 94.6 2.1 3.4 94.9 2.3 2.8

.59 0 93.3 2.3 4.4 94.2 2.2 3.6 94.5 2.3 3.2 94.8 2.2 3.0
.15 93.5 2.3 4.2 93.8 2.4 3.8 94.4 2.5 3.1 95.0 2.2 2.9
.39 94.1 2.4 3.5 94.5 2.2 3.2 94.3 2.6 3.1 94.6 2.5 2.9

.59 .15 0 97.1 2.9 .0 97.5 2.5 .0 96.8 2.7 .5 95.2 2.3 2.5
.15 97.0 3.0 .0 97.0 3.0 .0 96.7 2.6 .7 95.0 2.7 2.2
.39 97.3 2.7 .0 97.3 2.7 .1 96.2 2.6 1.2 94.5 2.6 2.8

.39 0 94.9 2.3 2.8 94.3 2.4 3.3 94.8 2.4 2.8 94.5 2.6 2.8
.15 94.7 2.3 3.0 94.3 2.5 3.2 94.5 2.5 3.1 94.2 2.6 3.2
.39 94.2 2.1 3.6 94.3 2.5 3.2 94.8 2.4 2.8 94.5 2.7 2.8

.59 0 94.0 2.2 3.8 94.2 2.5 3.3 94.6 2.3 3.1 94.8 2.2 3.0
.15 93.9 2.4 3.7 94.0 2.7 3.3 94.9 2.1 3.0 94.8 2.3 2.9
.39 94.4 2.2 3.5 94.4 2.3 3.2 95.2 2.0 2.8 94.5 2.4 3.1

Note. Cov � % coverage; MH � % misses higher than upper confidence limit; ML � % misses below lower confidence limit.
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is therefore analogous to that of reporting the adjusted R2 for a
simple linear regression model, as the R2 adjustment penalizes
estimates for imprecision due to sample size and collinearity.
Alternatively, an advantage of the standardized indirect effect is
that the CI may include zero, making the measure more useful for

NHST purposes. However, although a useful property, utility in an
NHST framework is generally not a necessary property for effect
size measures; the purpose of an effect size is to quantify the
magnitude and precision of an effect of interest on a more mean-
ingful or interpretable metric, regardless of statistical significance.
Overall, because of the complexity inherent in even the simplest
mediation model, it is unlikely that a single effect size measure can
adequately capture all the ways in which indirect effects may
differ, and therefore we would recommend reporting both the
standardized indirect effect and 
̃.

Given the importance of binary predictors in psychological
research, particularly for coding group assignment in RCTs, and
because � is applicable as an effect size for these indirect effects,
it is also of interest to compare the properties of � with those of
MedES. It is important to note that MedES was developed in the
MacArthur framework for mediation analysis, which requires
modeling the interaction of the predictor and mediator, and � has
yet to be extended to this class of mediation models. However,
from a structural equation modeling perspective, MedES can be
reexpressed omitting the interaction so the measures can be di-
rectly compared. In the context of a binary predictor, MedES
translates the indirect effect into a difference in success rate
differences (SRDs), which gives the effect size an interpretable
scale with benchmarks for small, medium, and large obtainable
from benchmarks for Cohen’s d (Kraemer & Kupfer, 2006). In
addition, computation of MedES requires converting the total and
direct effects into Cohen’s d, meaning that MedES is partially
standardized in the sense that its value is invariant to changes in

Table 5
Percent Confidence Interval Coverage, and Proportions of Misses to the Left and Right of the Confidence Interval of the Adjusted 
̃

�MX �YM·X �YX·M

N � 50 N � 100 N � 250 N � 500

Cov ML MH Cov ML MH Cov ML MH Cov ML MH

.15 .15 0 99.4 .1 .6 96.2 .1 3.7 92.7 .4 6.9 93.3 .8 5.9
.15 99.3 .1 .6 95.8 .1 4.0 92.7 .5 6.8 93.3 1.0 5.7
.39 99.2 .0 .8 95.4 .2 4.4 92.5 .6 6.8 93.0 .9 6.1

.39 0 97.9 .3 1.8 97.0 .6 2.4 93.7 1.4 4.9 94.2 1.6 4.1
.15 97.9 .4 1.7 97.2 .6 2.1 94.2 1.1 4.7 94.3 1.5 4.2
.39 98.4 .5 1.1 97.4 .8 1.8 94.5 1.2 4.4 94.0 1.8 4.2

.59 0 99.0 .7 .3 98.0 1.3 .7 94.2 1.8 4.0 94.7 1.7 3.6
.15 99.0 .7 .3 98.4 1.1 .5 94.4 1.5 4.1 94.5 1.9 3.7
.39 99.0 .9 .1 98.5 1.3 .2 94.2 1.6 4.2 93.7 2.2 4.1

.39 .15 0 98.0 .4 1.5 97.1 .8 2.1 94.5 1.3 4.2 94.0 1.9 4.1
.15 98.0 .2 1.7 97.4 .8 1.8 95.0 1.3 3.7 94.4 1.5 4.1
.39 97.7 .5 1.8 96.7 .9 2.4 94.0 1.3 4.7 93.7 1.6 4.7

.39 0 91.8 .8 7.4 93.4 1.3 5.3 93.8 1.6 4.6 94.8 1.7 3.5
.15 92.0 .8 7.2 93.6 1.0 5.4 94.3 1.6 4.1 94.5 2.0 3.6
.39 92.2 .7 7.0 93.5 1.2 5.3 94.3 1.6 4.1 94.7 1.9 3.4

.59 0 92.2 1.4 6.5 93.7 1.4 4.9 94.5 1.7 3.8 94.8 1.8 3.4
.15 92.3 1.4 6.3 93.2 1.7 5.1 94.2 2.0 3.8 94.7 1.9 3.3
.39 93.1 1.4 5.5 94.1 1.5 4.4 94.2 1.9 3.8 94.3 2.3 3.4

.59 .15 0 98.9 1.0 .1 98.9 1.0 .2 96.4 1.5 2.1 94.6 1.5 3.9
.15 99.0 .9 .2 98.5 1.3 .2 96.2 1.5 2.3 94.7 1.8 3.6
.39 98.8 .8 .3 98.2 1.2 .6 95.2 1.4 3.4 94.3 1.8 3.8

.39 0 93.6 1.2 5.2 93.5 1.5 4.9 94.5 2.0 3.5 94.4 2.2 3.4
.15 93.5 1.3 5.2 93.7 1.8 4.6 94.3 1.9 3.8 94.2 2.1 3.6
.39 92.7 1.4 5.9 94.0 1.7 4.3 94.6 2.0 3.4 94.4 2.4 3.2

.59 0 93.3 1.3 5.4 93.9 1.9 4.3 94.3 2.0 3.8 94.6 2.0 3.4
.15 93.5 1.5 5.0 93.8 2.0 4.2 94.8 1.8 3.5 94.8 2.0 3.1
.39 93.6 1.6 4.9 94.1 1.9 4.1 94.9 1.8 3.4 94.4 2.1 3.4

Note. Cov � % coverage; MH � % misses higher than upper confidence limit; ML � % misses below lower confidence limit.

Table 6
Estimates, Standard Errors, and Confidence Limits for the
Mediation Model in the Goldin et al. (2012) Empirical Example

Statistic Estimate SE p

95% CI

LCL UCL

� CR-SE
Intercept 6.72 1.49 	.001
CBT 17.67 2.98 	.001

LSAS
Intercept 66.21 2.95 	.001
� CR-SE �.67 .22 	.05
CBT �4.77 6.42 .46

B̂MXB̂YM·X
�11.790 �20.675 �3.122

	MX	YM·X �.256 �.449 �.070
MedES .287 .065 .517

̂ .065 .006 .201

̃ .057 �.005 .188

Note. �CR-SE � pre- to posttreatment change in cognitive reappraisal
self-efficacy; CBT � cognitive behavioral therapy; LSAS � Liebowitz
Social Anxiety Scale; SE � standard error; LCL � lower 95% percentile
bootstrap CI limit; UCL � upper 95% percentile bootstrap CI limit; 
̂ �
unadjusted effect size; 
̃ � adjusted effect size.
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the scaling of M and Y. Precision in estimation of MedES can be
evaluated by 95% CIs constructed via a bootstrapping procedure
(Kraemer, 2014). These constitute a desirable set of properties for
an effect size for the indirect effect for mediation models with
binary predictors, and future research should further investigate the
properties of MedES. For example, although SRDs are bounded by
0 and 1 (provided the treatment effect is in the expected direction),
it is possible for differences in SRDs to be greater than 1 if the
SRDs are of opposite sign, and less than 0 if the null SRD is larger
than the overall SRD. It would be of interest to know the condi-
tions under which MedES exceeds these boundaries and to deter-
mine the plausibility of these conditions in practice. It would also
be of interest to investigate the sample properties of point and
interval estimators of MedES. Overall, MedES appears to be a
promising effect size measure for indirect effects for models with
binary predictors, sharing several desirable properties with �. As-
suming the presently unknown properties of MedES are deter-
mined to be satisfactory, our view of which effect size is preferable
would be largely informed by interpretability. However, as previ-
ously noted, the behavior of indirect effects in even the simplest
mediation models can be complex and not readily captured by a
single effect size measure, so we would recommend reporting both
MedES and 
̃ for these models.

Sample Size Planning

Notable among the reasons for using effect sizes outlined by the
APA Task Force on Statistical Inference (Wilkinson & American
Psychological Association Task Force on Statistical Inference,
1999) is sample size planning, so it is germane to discuss how �
may be used for this purpose. The most common approach to
sample size planning in applied research is based on the NHST
framework. Traditionally, sample size is determined using a com-
putational formula that requires the specification of a hypothesized
population effect size, the variance of the effect size estimator, the
Type I error rate, and the desired level of power (typically .80).
The estimator variance is derived from the sampling distribution,
which is either known, as is the case for means (t-distributed) and
variances (F-distributed), or is reasonably well approximated, as is
the case for the indirect effect (Fritz & MacKinnon, 2007; Wang
& Xue, 2016). The estimators of � have neither known sampling
distributions nor well-approximated sampling variances, so a com-
putational formula for power analysis is not available.

An alternative approach to sample size planning in a power
analytic framework is based on Monte Carlo simulation (Muthén
& Muthén, 2002). This approach is particularly useful for power
analysis in which the statistics of interest have unknown or intrac-
table sampling distributions but are functions of statistics with
known properties. Simulation-based power analysis works by fully
specifying the parameters of the hypothesized population model,
simulating a large number of data sets of a given sample size from
the model, estimating the model parameters and computing statis-
tics that are functions of those estimates, recording the statistical
significance estimates in each data set, and computing power as the
proportion of estimates significantly different from the respective
null hypothesized values. Systematically increasing the sample
size of the simulated data sets allows researchers to generate
empirical power curves for any model parameter and determine the
sample size necessary for the desired level of power. This ap-

proach can be implemented in common statistical software pack-
ages such as Mplus, R, and SAS.

It is important to recall, however, that � is not well-suited for
NHSTs in which the null is zero because the null hypothesis is on
the boundary of the parameter space. CIs for 
̂ are strictly positive
and, although CIs for 
̃ can contain values less than zero, negative
estimates are inconsistent with the definition of the population
parameter. Therefore, we would not recommend conducting power
analysis using � when the null hypothesis is of no effect. However,
if the null hypothesis were some nonzero value, then simulation-
based power analysis would be a promising approach for sample
size planning using � and its estimators. Because Monte Carlo
simulation is a model-based method, it would be necessary to fully
specify the parameters of the mediation model such that the
model-derived � has the desired effect size (e.g., small, medium, or
large based on Cohen’s standards for R2). An additional benefit of
this model-based approach to power analysis is that the relative
magnitudes of the �MX and �YM·X coefficients can have differential
influences on the CI width of the indirect effect and the sampling
variances of the coefficients, which, as previously shown, influ-
ence 
̃ estimates. However, it should be noted that a firm under-
standing of the phenomena under study is required to conduct
power analyses with nonzero null hypotheses, and are uncommon
in psychological research.

Although power analysis is standard practice in many applied
research settings, there are alternative approaches to sample size
planning for which � may also be a useful effect size measure. One
promising approach is the accuracy in parameter estimation
(AIPE) framework (K. Kelley, 2007c, 2008; K. Kelley & Maxwell,
2003; K. Kelley & Rausch, 2006). Whereas power analysis fun-
damentally relies on the NHST framework, the focus of the AIPE
approach to is to plan sample size for a desired CI width for the
parameter of interest. There is a strong relationship between
NHSTs and CIs, but the sample sizes required for the desired level
of power compared with the desired CI width may differ substan-
tially (K. Kelley, Maxwell, & Rausch, 2003; K. Kelley & Rausch,
2006), as they address fundamentally different questions. In es-
sence, the goal of conducting a power analysis is to find a CI that
excludes zero, whereas the goal of AIPE is to find a CI that is
sufficiently narrow (regardless of whether or not zero is in the
interval). AIPE sample size planning can be particularly useful for
studies in which investigators have only vague knowledge about
the model parameters. Power can vary substantially across com-
binations of parameter values, so if the true effect size differs from
that for which the sample size was determined, the power of a
study can be substantially less than the desired level. Planning for
parameter precision is less dependent on the true value of the
population parameter (Maxwell, Kelley, & Rausch, 2008).

Like sample size planning using power analysis, determining
sample size using � in the AIPE approach would also be based on
Monte Carlo simulation. However, rather than specifying a desired
level of power, the researcher must determine a desired maximum
CI width with sufficient assurance that the proportion of CI widths
larger than the specified maximum width is minimal (e.g., .05,
.01). For example, one might select an assurance of .80, implying
that 80% of 95% CI widths will be sufficiently narrow. The
researcher would specify the mediation model corresponding to
the desired � effect size, simulate data sets for a given sample size,
estimate and construct 95% CIs for 
̃ in each data set, recording the
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CI width, and computing the proportion of CI widths that are
sufficiently narrow. The minimum necessary sample size is then
the sample size for which the proportion of CI widths less than or
equal to the maximum specified width is the specified assurance.

One can also combine power and AIPE in the Monte Carlo
framework by determining the sample size that has at least the
desired degree of power (e.g., .80) for an effect size parameter
appropriate for NHSTs, while achieving a sufficient level of ac-
curacy (i.e., a high probability of a confidence interval no wider
than .10 units) for estimating �. For example, it is presumable that
a researcher using an effect size measure has already identified an
indirect effect of interest via a significance test or otherwise. In this
circumstance, the magnitude and precision of the � estimate would
be of more interest than its statistical significance. Applying this
logic to sample size planning, a reasonable approach would be to
combine a test of the existence of the indirect effect (i.e., can the
null hypothesis that BMXBYM·X � 0 be rejected?) and sufficient
precision of the effect size estimate (i.e., is the CI width for 
̃ less
than or equal to the specified maximum CI width?). In such a
combined approach, both power and accuracy are achieved, which
is arguably a best practice for designing studies.

Limitations

Although � is a promising effect size measure for mediation
analysis, there are several limitations of the current study that
should be considered prior to employing the effect size or its
estimators in practice. First, results of the Monte Carlo simulation
highlighted several circumstances in which percentile CIs for 
̂ and

̃ appear to be unstable. Specifically, coverage tended to be above
a satisfactory level at smaller N and for smaller effect sizes for
both estimators. In other words, 95% CIs constructed using the
percentile bootstrap were overly wide (i.e., conservative) in these
conditions. In addition, proportions of misses to the left and right
of the CI were consistently imbalanced for 
̃, such that the popu-
lation value tended to be greater than the upper CI limit. It is
possible that CIs constructed using other procedures (e.g., bias-
corrected bootstrap, Monte Carlo) may be superior to percentile
CIs in these circumstances, but a thorough investigation of these
alternative CIs was beyond the scope of the current study. Second,
the indirect effects considered in this study were restricted to
simple three-variable variable mediation models, so the methods
and results presented are not generalizable to the more complex
mediation models (i.e., multiple mediators, moderators, covari-
ates), but, in principle, they can be extended. Third, � and its
sample estimators were developed under the assumption that the
mediation model illustrated in Figure 1 is correctly specified, and,
therefore, the causal effect would be unbiased. However, as pre-
viously described, there are several assumptions necessary to jus-
tify claims that an indirect effect is a causal effect (i.e., constant
effect, sequential ignorability), and violation of these assumptions
introduces bias into estimation of the indirect effect. It follows,
therefore, that assumption violations would also introduce bias into
the estimation of �. Although the resulting biases for indirect
effects have been derived for many mediation models, the biases
for � are presently unknown. However, this does not prevent
researchers from obtaining � estimates from the bias-adjusted
indirect effect estimates in a sensitivity analysis. It is assumed that,
for a given set of conditions in a sensitivity analysis, the model is

correctly specified, so the assumptions employed in the derivation
of � and its estimators are assumed to hold under these conditions
as well (e.g., errors are uncorrelated given specified relationships
with a confounder). Regarding the constant effect assumption,
future work to extend � to moderated mediation models is neces-
sary to allow for obtaining effect size estimates when this assump-
tion is relaxed. To be clear, however, there is nothing we assume
here that researchers are not already assuming when using medi-
ation models and hypothesizing a causal process.

Future Research

Future research should extend � to these complex mediation
models, including models with multiple parallel and sequential
mediators, covariates, latent variables, moderators, and multilevel
and longitudinal data. In addition, mediator and outcome variables
considered in this study were continuous, and there may be alter-
native representations of � for models with binary and count
outcomes (e.g., pseudo-R2). Future research could also address
deficiencies in CI coverage and implement methods to construct
stable CIs across a range of parameter combinations and Ns.
Finally, research should evaluate the properties of � when the
assumptions of mediation analysis are violated. In concluding, we
believe that � advances research on mediation models by deriving
a theoretically meaningful and highly useful effect size. Further-
more, we believe that 
̃ has been demonstrated to be a quality
estimator of � and thus offers an advancement not only to the
methods literature but also to users of mediation models.
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