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ABSTRACT
The Pearson correlation coefficient can be translated to a
common language effect size, which shows the probability of
obtaining a certain value on one variable, given the value on
the other variable. This common language effect size makes
the size of a correlation coefficient understandable to laypeo-
ple. Three examples are provided to demonstrate the applica-
tion of the common language effect size in interpreting
Pearson correlation coefficients and multiple correlation
coefficients.
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The Pearson product-moment correlation coefficient measures the linear
relationship between two continuous variables. If one variable is dichotom-
ized, the Pearson product-moment correlation becomes a point-biserial cor-
relation. The sign of the Pearson product-moment correlation identifies the
direction of the relationship between the two variables. A positive correl-
ation implies that both variables have a tendency to increase or decrease
together. A negative correlation, however, implies that when one variable
increases the other has a tendency to decrease, and vice versa. The value of
a Pearson correlation ranges from a negative one to a positive one, with
zero meaning no association between the two variables. The absolute value
of the correlation shows the strength of the relationship between the two
variables. As the absolute value of the correlation increases toward one, the
two variables become more related. Although the Pearson correlation is
one of the most common effect sizes, it may be difficult to explain its size
to non-specialists or laypeople, who can nevertheless be the stakeholders of
evaluation research.
The sizes of correlations can vary widely from one field of study to

another. Cohen (1988) used .1, .3, and .5 to represent “small,” “medium,”
and “large” correlations. His rule-of-thumb numbers provide some guid-
ance on the size of a correlation, but they are not always intelligible to
laypeople, who may have trouble relating a correlation coefficient to some-
thing concrete. The difficulty with interpreting a correlation lies in the fact
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that a correlation coefficient, though numerically simple, represents some-
thing abstract.
We can use the formulas to show that a correlation coefficient is indeed

an abstract concept.

q ¼
Pn

i¼1 zxzy
n

(1)

The correlation q is the average of the cross products of the standardized
scores of the two continuous variables (zx and zy) among n number of sub-
jects. If the two variables often vary in the same direction, the cross prod-
ucts of their standardized scores are mostly positive. So the average of
those cross products is positive—a positive correlation. As the cross prod-
uct does not represent any concrete entity in real life, it remains an abstract
quantity. In other words, the average of the cross products (i.e., correlation)
does not represent anything that people can see or feel in real life.
Laypeople in particular have trouble sizing up a correlation coefficient. The
problem is not unique to correlation coefficients. Laypeople have similar
difficulty with Cohen’s d, the most commonly used effect size.
McGraw and Wong (1992) suggested a common language effect size to

help explain Cohen’s d to laypeople. They used the probability of a ran-
domly selected observation from one population being larger than a ran-
domly selected observation from the other population. In essence, the
Cohen’s d is converted to a probability value. The idea of using probability
as a way of communicating the difference between two groups is very
appealing because the probability of a randomly selected observation from
one group being larger over that of the other can easily resonate with peo-
ple’s intuition. The probability converted from Cohen’s d serves as a bridge
between the scientific findings and a broad audience. A recent study sug-
gests that common language effect sizes are perceived as more understand-
able and useful than traditional effect size statistics (Brooks, Dalal, &
Nolan, 2014). Therefore, the common language effect size can increase the
interpretability of scientific findings and broaden their impact on the soci-
ety at large. Grissom and Kim (2012) discussed the common language
effect size and referred to it as the probability of superiority. Vargha and
Delaney (2000) generalized the common language effect size to ordinal
measures and created a general effect size, which they called the measure of
stochastic superiority.
Dunlap (1994) extended the idea of common language effect size to

bivariate normal correlations. A positive correlation is converted to a prob-
ability of having the same sign for the difference scores on the two varia-
bles (X and Y) between two randomly selected individuals, that is,
x1 " x2 > 0 and y1 " y2 > 0 or x1 " x2 < 0 and y1 " y2 < 0: The subscripts
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1 and 2 represent the two randomly selected individuals. The probability
converted from the correlation can be written as

P x1"x2> 0 \ y1"y2> 0½ $ þ P x1"x2< 0 \ y1"y2< 0½ $: (2)

It indicates how likely the order of two random individuals remains the
same for the two variables X and Y. Since the above-mentioned probability
expression comprises two probability terms of equal size, it can be abbrevi-
ated as

2P x1"x2> 0 \ y1"y2> 0½ $: (3)

For a negative correlation, Dunlap suggested one minus the above-men-
tioned probability. For instance, the probability 2P x1"x2> 0 \ y1"y2> 0½ $
is .63 for a positive correlation .4. If the correlation is ".4, the probability
2P x1"x2> 0 \ y1"y2> 0½ $ will be 1".63 or .37. As it does not require
much statistical knowledge to understand a probability value, Dunlap’s
common language effect size for correlation makes more sense to laypeople
than a regular correlation coefficient.
In this paper, we will offer a new way to translate a correlation coeffi-

cient to a common language probability. Our approach uses probability
too, but it is more flexible with the reference values on the two variables.
Such flexibility allows us to tailor the interpretation of the correlations to
suit different research contexts. We will demonstrate that Dunlap’s joint
probability can be viewed as a special case of the flexible approach. We will
use a conditional probability to show how likely one variable exceeds a cer-
tain reference value, given a certain reference value on the other variable. If
the two reference values on the two variables are the averages, the condi-
tional probability mathematically equals Dunlap’s joint probability for a
positive correlation. We can also apply the conditional probability to inter-
pret a multiple correlation in regression analysis because the multiple cor-
relation is the correlation between the actual outcome and the
predicted outcome.
In the following, we first discuss the conditional probability, its relation

to the Pearson’s correlation, and the common language effect size. We then
apply the idea of common language effect size to Pearson’s famous correl-
ation of father’s height and son’s height. The correlation of .4 between
father’s height and son’s height essentially means that there is a 63% prob-
ability of son’s height being above the average given father’s height being
above the average. The correlation .4 is an abstract statistic, whereas the
conditional probability 63% is the corresponding common language effect
size. In addition, we provide two more examples to demonstrate the appli-
cations of common language effect size for correlation in real-world set-
tings. One of the two examples is about military admissions, and the other
example is multiple regression.
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Common language effect size for Pearson correlation

Conditional probability can be used to show the relationship between
two events A and B. If the two events are unrelated, then the probabil-
ity of event A given event B is the same as the probability of event A,
that is, P AjB½ $ ¼ P A½ $: In this case, the conditional probability, P AjB½ $;
equals the unconditional probability, P A½ $: When the events A and B
are related, the conditional probability, P AjB½ $; will no longer be the
same as the unconditional probability, P A½ $: For instance, let us look at
depression diagnosis (event A) and depression symptoms (event B). The
disease occurs in the general population with a probability, P A½ $: As the
disease is related to its symptoms (event B), the probability of someone
having the disease in the presence of the symptoms—the conditional
probability P AjB½ $ – is larger than the probability of having the disease
in the general population. Although the value of P AjB½ $ relative to P A½ $
may not appear obvious, we can use Bayes theorem to explain why
P AjB½ $ is larger than P A½ $: We can express P AjB½ $ in terms of P BjA½ $:
By Bayes theorem, we have

P AjB½ $ ¼ P A \ B½ $
P B½ $ ¼ P BjA½ $P A½ $

P B½ $ ¼ P BjA½ $
P B½ $ P A½ $ (4)

The conditional probability, P AjB½ $; is a multiple of the probability, P A½ $:
The multiplier is P BjA½ $=P B½ $: Our common sense suggests that the prob-
ability of having symptoms given the disease, P BjA½ $; is typically higher
than the probability of having symptoms, P B½ $: The multiplier, P BjA½ $=P B½ $;
is therefore larger than one. It follows that P AjB½ $ is larger than P A½ $:
We can use the conditional probability to show the relationship between

two bivariate normal variables because their correlation can be translated
to a conditional probability. We can start with the averages (lx and ly) as
two reference values on the two variables for the conditional probability,
because almost everyone understands the idea of an average. We will calcu-
late the probability of the observation Y on a randomly selected individual
being larger than its average ly; given that the observation X on that ran-
domly selected individual exceeds its average lx; that is,

P Y > lyjX > lx
! "

:

This conditional probability can be computed as a function of the correl-
ation q between the two variables X and Y. Using Bayes theorem, we can
first compute the joint probability of Y > ly and X > lx and then the
conditional probability.

P Y > lyjX > lx
! "

¼
P Y > ly \ X> lx
! "

P X > lx½ $
(5)
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The joint probability P½Y > ly \ X > lx$ is the cumulative distribution
function (cdf) of a bivariate normal distribution with a correlation q
between X and Y.
We can simplify the computation by converting the observations X and

Y to their respective z scores, zx and zy: The inequality Y > ly is mathem-
atically equivalent to zy > 0 because the z score of the average ly is zero.
Likewise, the inequality X > lx is equivalent to zx > 0: The joint prob-
ability in the numerator of Equation 5 is the cdf function of a standard
bivariate normal distribution for the first quadrant, which contains all the
pairs of observations with positive z scores (i.e., zx > 0 and zy > 0) (see
Equation 6 in Appendix A).

P Y > ly \ X> lx
! " ¼ P zy> 0 \ zx> 0½ $ (6)

Further, the probability P½X > lx$ in the denominator of Equation 5 is .5
because half of the X scores are above the average lx: The conditional
probability in Equation 5, therefore, becomes (see Equation 7 in
Appendix A)

P Y > lyjX > lx
! "

¼
P Y > ly \ X> lx
! "

P X > lx½ $
¼ 2P zy> 0 \ zx> 0½ $ (7)

For a negative correlation –q; the conditional probability is defined as the
chance of Y below the average given X above the average,

P Y < lyjX > lx
! "

: (8)

The value of the conditional probability, P YlyjX > lx
! "

; will remain the
same as the previous conditional probability P Y > lyjX > lx

! "
for the

positive correlation q: Unlike Dunlap’s method, we use the same probabil-
ity value to show the same degree of association between two variables.
This makes it easier to compare the sizes of the correlations. A higher con-
ditional probability simply means stronger association between the two var-
iables, regardless of the sign of the correlation. The sign of the correlation,
however, is reflected in the definition of the conditional probability. The
users can immediately know the direction of the correlation from the
expression of the conditional probability in either case.

Example 1

We can apply the conditional probability to the correlation between father’s
height and son’s height in Pearson (1896). Let father’s height be X and
son’s height be Y. The conditional probability, P Y > lyjX > lx

! "
; means

the chances of having a son above the average height, given his father being
above the average height. If father’s height has no relationship with son’s
height (i.e., q ¼ 0), the conditional probability, P Y > lyjX > lx

! "
; equals
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the unconditional probability P½Y > ly$ or .5. In this case, there is a 50%
chance that the son’s height is above average. However, heredity has a
bearing on a child’s height. Father’s height and son’s heights are related—a
correlation of .40. The conditional probability, P Y > lyjX > lx

! "
; evaluates

to .63; that is,

P Y > lyjX > lx
! "

¼ 2P zy > 0 \ zx > 0½ $ ¼ 2 & :3155 ' :63:

We can then explain the correlation between father’s height and son’s
height in colloquial language: There is a 63% chance that the son’s height
is above the average if his father’s height is above the average. Thus, the
relationship between father and son’s height is presented in a way easily
comprehensible to laypeople.
The conditional probability P Y > lyjX > lx

! "
is numerically equal to

the joint probability 2P x1"x2> 0 \ y1"y2> 0½ $ for a positive correlation,
although Dunlap (1994) did not explicate the idea of conditional probabil-
ity in his article. The equivalence is due to the fact that the joint probability
P x1"x2> 0 \ y1"y2> 0½ $ is mathematically equal to the cdf function,
P zy> 0 \ zx> 0½ $; for a positive correlation. However, such equivalence
does not carry over to negative correlations for Dunlap’s joint probability.
We prefer the conditional probability approach over the joint probability

approach, because the conditional probability can refer to other values than
the averages lx and ly in the probabilistic expression. It is not uncommon
for people to seek out a reference value other than the average on the vari-
able because that reference value (e.g., an above-average cutoff score for
competitive admission) may be desired or relevant in the specific context.
The reference values for X and Y need not be the same. For example, a col-
lege admissions officer may be interested in screening applicants for
entrance. He or she is concerned about the applicants’ potential success in
college studies, which is measured by freshman GPA (Y). If GPA 2.5 is the
desired benchmark for college graduation, it makes sense to set the refer-
ence value on the variable freshman GPA to 2.5. The conditional probabil-
ity approach can easily accommodate the changed reference value. We can
interpret the conditional probability as the probability of having freshman
GPA above 2.5, given the applicant’s characteristic (X). The reference value
on the X variable need not stay at the average either. It can be a different
value if that value makes more sense in the context. Consequently, our
approach can make the interpretation of a correlation more relevant to
various research contexts.
In general, we can represent the conditional probability with any refer-

ence values (a and b) on the two variables (X and Y) as P Y > bjX > a$:½
When computing the conditional probability, we can convert the two varia-
bles to their z scores. The conditional probability equals
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P Y > bjX > a½ $ ¼ P zy > zbjzx > za
! "

¼
P zy> zb \ zx > za½ $

P zx> za½ $
; (9)

where za and zb are the z scores of the two reference values a and b (see
Equation 9 in Appendix A). As the z score determines the percentile score,
we can use percentiles to refer to za and zb in our interpretation. For
instance, za and zb can be the 40th percentile and the 75th percentile,
respectively. The conditional probability then represents the chances of
someone ranking above the 75th percentile on Y, given his or her rank of
at least 40th percentile on X. For a negative correlation –q; the value of the
conditional probability is the same, but the probabilistic expression is dif-
ferent. It will be P zy<"zbj zx > za$

!
instead of P zy> zbjzx > za$:

!

Example 2

The Armed Services Vocational Aptitude Battery (ASVAB) test is adminis-
tered by the U.S. military to determine the eligibility and qualifications of
new recruits. The ASVAB test is found to be correlated with the American
College Testing (ACT). The correlation between the ASVAB and ACT is
.767 (Koenig, Frey, & Detterman, 2008). This finding may be of great inter-
est to the military officers who want to find new recruits among high
school graduates, who often take the ACT test. The ACT scores are access-
ible to the military officers and can be used to assess the eligibility of
potential recruits. Unless the military officers are well versed in applied sta-
tistics, the correlation of .767 (q ¼ :767) will read opaque to them. The
common language effect size can serve as a useful tool to make the correl-
ation comprehensible to the military officers.
Suppose that the ACT score (X) of the potential recruits at one high

school is a little above the national average of the ACT score, say 22. The
ACT scores have a national average of 20.9 with a standard deviation of
4.8 (i.e., lx ¼ 20:9 and rx = 4.8). The ASVAB score (Y) is usually normal-
ized and converted to a percentile score for the purpose of recruitment.
The U.S. military may use different criteria to admit new recruits to various
services (e.g., U.S. Army and Air Force). For instance, Air Force recruits
need to have higher percentile scores on the ASVAB than U.S. Army
recruits. We can use the common language effect size for correlation to
show the correspondence between an ACT score of 22 and various percent-
ile scores of the ASVAB. Laypeople can review the correspondence and get
a concrete sense of how the ASVAB and ACT scores are related.
Table 1 shows the probabilities of obtaining different percentiles on the

ASVAB given the ACT score 22. To compute the conditional probability,
we can first find the percentile score of the ACT 22. The percentile score is
about .59. As the percentile scores correspond to unique z scores, we can
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use the z scores for the percentile scores in the actual computation. The
59th percentile on the ACT 22 corresponds to a z score, z:59: The percentile
(p) on the ASVAB can vary from .01 to .99, according to the desired criter-
ion for recruitment. The ASVAB score Yp of 100 & pth percentile corre-
sponds to its z score, zp: The common language effect size for the
correlation can be computed as a conditional probability (see Equation 10
in Appendix A):

P Y > YpjX > 22
! "

¼ P zy> zpjzx > z:59
! "

: (10)

The probability of ranking at least 20th (p = .20) on the ASVAB given the
ACT 22 is evaluated to be .98. The probability of exceeding the 50th per-
centile on the ASVAB (p = .50) given the ACT 22 is .83. If the admission
criterion for elite service needs to be above the 80th percentile on the
ASVAB, then such probability given an ACT score of 22 is .43.
When interpreting a correlation coefficient, we can select a desired per-

centile (e.g., 50th percentile) on the ASVAB and compare the status on the
ASVAB between two different correlations (e.g., 0 vs. .767). One correlation
coefficient is the obtained one (i.e., .767); and the other can be arbitrarily
chosen for comparison purpose. If the chosen correlation is 0, the condi-
tional probability, P½Y > Y:5jX > 22$; is equal to the unconditional prob-
ability P½Y > Y:5$; that is, P Y >Y:5½ $ ¼ 1" p ¼ :5: There is a 50% chance
that the prospective recruit ranks above the 50th percentile on the ASVAB
in the presence of a zero correlation. However, the correlation between the
ASVAB and the ACT is .767. The probability of ranking above the 50th

percentile on the ASVAB given an ACT score 22 evaluates to 83%.
The improvement from 50% to 83% shows the comparison between 0 and
.767 correlations, and such comparison can be easily obtained from the
rows in Table 1 for other percentiles on the ASVAB.

Common language effect size for multiple correlation

The common language effect size can be used to interpret a multiple correl-
ation coefficient in regression analysis, which assumes normality, linearity,

Table 1. Probability of obtaining the percentile on the
ASVAB (Y) given the ACT (X) score 22.
Percentile of ASVAB (p) P[Y> Yp j X > 22]

.2 .98

.3 .95

.4 .90

.5 .83

.6 .73

.7 .59

.8 .43
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independence, and homoscedasticity. Assume that all the assumptions of
the regression analysis are tenable. The multiple correlation coefficient R is
the square root of R2; which measures how well the independent variables
together predict the outcome variable Y. The model fit index, R2; is always
reported in a regression analysis, and it is also called the coefficient of
determination. The R2 can range from 0 to 1. If the R2 is 1, the independ-
ent variables perfectly predict the outcome. A zero R2; on the contrary,
means that the predictors are useless in predicting the outcome. In practice,
the R2 falls anywhere between 0 and 1 and is a fractional number. The
numerical value of R2 appears simple, but there is no consensus on how to
interpret the size of an R2: Cohen (1988) used .0196, .13, and .26 for
“small,” “medium,” and “large” R2: These rule-of-thumb numbers do not
convey a concrete sense of being small, medium, and large to laypeople.
However, we can convert the R2 to a common language effect size to
improve its interpretability.
Our approach of common language effect size directly applies because

the square root of an R2 represents the correlation between the outcome
variable Y and its predicted value Ŷ : We can use any reference value on
the outcome to show how much the predictors are related to the outcome
variable. We can start with the average as the reference value for simplicity
of illustration. If the predictors are not related to the outcome, the condi-
tional probability of the outcome being above the average given an above-
average predicted outcome is the same as the unconditional probability of
the outcome being above the average or 50%. If the predictors are related
to the outcome, a multiple correlation R will be larger than zero. The prob-
ability of the outcome being larger than the average given such
prediction will exceed a 50% chance. In other words, our
prediction of the outcome will be better than the random guess of a coin
toss, P½Y > lyj Ŷ > lŷ $ > :5 for a non-zero R. The average of the out-
come is just one possible reference point, although the reference point can
be taken anywhere on the scale of the variable.
We can use a series of percentile scores on the outcome in a multiple

regression by way of illustration. Suppose that we regress the outcome Y
on a set of predictors Xs and obtain a multiple correlation R. The predicted
outcome is Ŷ : The percentile score for the outcome is denoted by a sub-
script p (i.e., Yp and Ŷ p). For instance, Ŷ :10 is the 10th percentile score of
the predicted outcome, and Y:10 is the 10th percentile score of the actual
outcome. We can change the reference value to any other point on the
scale, say, the 75th percentile (Y:75). The conditional probability is then
P Y >Y:75 Ŷ > Ŷ :75$;
!

which means the likelihood of the actual outcome
being above the 75th percentile, given such prediction of the outcome
from regression.
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The conditional probability, P½Y > YpjŶ > Ŷ p$; is a function of the
multiple correlation R. The higher a multiple correlation R is, the higher
the conditional probability gets. If the multiple correlation R is zero, the
conditional probability, P½Y > YpjŶ > Ŷ p$; is equal to the unconditional
probability, P½Y > Yp$: In other words, the prediction based on regression
is useless in assessing the ranking of the actual outcome. For instance, the
conditional probability, P Y >Y:75jŶ > Ŷ :75$;

!
will be the same as the

unconditional probability P½Y > Y:75$ or a 25% chance if the multiple cor-
relation is zero. When the predictors are related to the outcome, the condi-
tional probability P Y >Y:75jŶ > Ŷ :75$

!
will exceed a 25% chance. The

higher the multiple correlation R gets, the greater the difference between
the conditional probability, P½Y > YpjŶ > Ŷ p$ and the unconditional
probability, P½Y > Yp$: The different values of R will yield different condi-
tional probabilities. Thus, we can compare one multiple correlation with
another (e.g., .36 vs. .51) by reviewing the change in the conditional prob-
ability, P½Y > Yp Ŷ > Ŷ p$: Table 2 lists the conditional probability,
P½Y > YpjŶ > Ŷ p$; under three multiple correlations (i.e., .14, .36, and
.51). The three multiple correlations are the square roots of Cohen’s
“small,” “medium,” and “large” R2 :

ffiffiffiffiffiffiffiffiffiffiffi
:0196

p
¼ :14;

ffiffiffiffiffiffi
:13

p
ffi :36;

and
ffiffiffiffiffiffi
:26

p
ffi :51:

We can examine the conditional probability, P½Y > Y:3jŶ > Ŷ :3$; and
the multiple correlation R for the 30th percentile of the outcome (i.e., p =
.3). In the absence of any information on the predictors, the probability of
a randomly selected individual ranking higher than the bottom 30% of the
outcome Y is .7 (i.e., P Y >Y:3½ $ ¼ :7). Multiple regression is then used to
help predict the outcome. For a multiple correlation .14 (R = .14), the
regression explains the outcome to a limited extent. If the predicted out-
come is believed to rank higher than the bottom 30% of the predicted out-
come (Ŷ > Ŷ :3), the probability of the actual outcome ranking higher than
the bottom 30% given this prediction is .72 (P Y >Y:3jŶ > Ŷ :3

! "
¼ :72).

Obviously, the odds of ranking higher than the bottom 30% given such
prediction is not much different from the odds without using any predic-
tion. This is because the predictors together do not explain a great amount

Table 2. Probability of obtaining a matching outcome given such predic-
tion, P½Y > YpjŶ > Ŷ p$:
Percentile of the outcome (p) P½Y > Yp$ R ¼ .14 R ¼ .36 R ¼ .51

.2 .8 .81 .84 .86

.3 .7 .72 .77 .80

.4 .6 .64 .69 .73

.5 .5 .54 .62 .67

.6 .4 .45 .54 .60

.7 .3 .36 .45 .53

.8 .2 .26 .36 .44

.9 .1 .15 .25 .33
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of the variation in the outcome—the multiple correlation is low (R = .14).
However, the conditional probability will improve if the predictors as a
whole explain the outcome well (R = .51). In this case, the conditional
probability, P Y >Y:3jŶ > Ŷ :3

! "
; will rise to .80. Similarly, we can explain

any other percentile score of the outcome with reference to different mul-
tiple correlations.

Example 3

We can use the common language effect size to explain how well a multiple
regression helps select employees for satisfactory job performance. Suppose
that there is a job performance criterion on a normalized scale (Y) and a
few continuous predictors of job performance. A multiple regression can
be used to make prediction on job performance, given the information on
the predictors. If regression is not used to predict job performance, 50% of
potential employees will naturally score above the average of the job per-
formance criterion. Without using predictors and regression, the chances
that the hired employees exceed the average of the job criterion are basic-
ally a coin toss. However, if a regression analysis is used to select employ-
ees, based on the predicted above-average performance, then the chances of
the employees’ outperforming the average given such a prediction will
exceed 50%. In other words, the odds start to move in favor of above-aver-
age job performance. The 50% chance is the unconditional probability
without the help of any predictors and regression, whereas the better than
50% chance is the conditional probability of above-average job perform-
ance, given such a prediction from the regression, that is,
P Y >Y:5jŶ > Ŷ :5

! "
: The conditional probability conceptually resembles

the “proportion satisfactory among those selected” in Taylor and Russell
(1939), which is used in lieu of a correlation between the selection test and
job performance in the studies of personnel selection. The higher the mul-
tiple correlation R the regression produces, the higher the conditional prob-
ability, P Y >Y:5jŶ > Ŷ :5

! "
; will become. We can examine this

conditional probabilities for Cohen’s “small,” “medium,” and “large” mul-
tiple correlations (i.e., .14, .36, and .51). The conditional probability,
P Y >Y:5jŶ > Ŷ :5

! "
; evaluates to .54, .62, and .67 for Cohen’s “small,”

“medium,” and “large” multiple correlations, respectively (see the fourth
row in Table 2). In effect, these probabilities allow us to recalibrate the
multiple correlation coefficients and render them intelligible to laypeople.
For instance, if we interpret a multiple correlation .51 in a traditional way,
we can say that the actual job performance and the predicted job perform-
ance have a correlation of .51. This explanation is not very intuitive to
non-statisticians. Using the common language effect size, we can explain
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that the multiple correlation .51 means a .67 probability of above-average
job performance given such a prediction from regression. Laypeople can
then discern the size of the multiple correlation in a sensible way.

Conclusion

There has been an increasing emphasis on reporting effect sizes in psycho-
logical research. The Pearson correlation coefficient is one of the most
common effect sizes. Despite its numerical simplicity, it requires some stat-
istical sophistication to fully appreciate the size of a correlation coefficient,
which may pose a challenge to non-specialists or laypeople. They can
nevertheless be the stakeholders of psychological testing. The standard
effect sizes often work for specialists and statisticians but not necessarily
for laypeople. As the old adage suggests, one size does not fit all. Non-trad-
itional effect sizes like common language effect sizes can be used to suit the
consumers of psychological research who are not well trained in statistics
(Brooks et al., 2014).
The common language effect size for correlation offers an alternative

way to view the relationship between two bivariate normal variables. If
there is a correlation between the two variables, knowing the values on one
variable allows us to assess the probability of obtaining certain values on
the other variable. This is a conditional probability, and it has often been
used to shed light on one event with information on another related event.
In a similar way, a correlation coefficient—be it a Pearson correlation or a
multiple correlation—can be converted to a conditional probability to show
how one variable is related to the other. The probabilistic expression is
flexible in referring to different reference values on the two variables, and
it can be tailored to suit various research contexts.
The common language effect size for correlation shares the same charac-

teristic as the previously published common language effect sizes because
they are all expressed in probability (Dunlap, 1994; McGraw & Wong,
1992; Vargha & Delaney, 2000). It makes a correlation coefficient compre-
hensible to laypeople, who are not knowledgeable about statistics but are
consumers of scientific research. The common language effect size enables
a researcher to interpret a correlation coefficient to non-statisticians in col-
loquial probability terms.
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APPENDIX A: COMPUTATIONAL FORMULAS

Equation 6:

P Y> ly \ X> lx
! " ¼ P zy > 0 \ zx > 0½ $ ¼

ðþ1

0

ðþ1

0
p zx; zy; qð Þdzxdzy;

where pðzx; zy; qÞ is the probability density function of a standard bivariate normal distribu-
tion with a correlation q between the two variables. The double integral can be easily
obtained with the help of statistical software.

Equation 7:

P Y> lyjX > lx
! "

¼
P Y> ly \ X> lx
! "

P X > lx½ $
¼ 2P zy > 0 \ zx > 0½ $ ¼ 2

ðþ1

0

ðþ1

0
p zx; zy; qð Þdzxdzy

Equation 9:

P Y> bjX > a½ $ ¼ P zy > zbjzx > za
! "

¼
P zy > zb \ zx > za½ $

P zx > za½ $
¼ 1

P zx > za½ $

ðþ1

zb

ðþ1

za
p zx; zy;qð Þdzxdzy

Equation 10:

P Y > YpjX > 22
! "

¼ P zy > zpj zx > z:59
! "

¼ 1
1" :59

ðþ1

zp

ðþ1

z:59
p zx; zy;qð Þdzxdzy
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APPENDIX B: R CODE

library(mvtnorm)

# example 1
2+pmvnorm(lower¼ c(0,0), upper¼ c(þInf,þInf), mean¼ c(0,0),

corr¼matrix(c(1,.4, .4,1),ncol ¼ 2)) [[1]]

#Table 1 in example 2
for(i in 2:8){
p¼ i/10
zb¼ qnorm(p)
za¼(22-20.9)/4.8
pxy¼ pmvnorm(lower¼ c(zb,za), upper¼ c(þInf,þInf), mean¼ c(0,0),

corr¼matrix(c(1,.767,.767,1),ncol ¼ 2))[[1]]
py_x¼ pxy/(1-pnorm(za))
cat("\t", p,"P[y> bjx> a]¼",py_x,"\n")

}

# last column of Table 2 in example 3
for(i in 2:9){

p¼ i/10
zp¼ qnorm(p)
pxy¼ pmvnorm(lower¼ c(zp,zp), upper¼ c(þInf,þInf), mean¼ c(0,0),
corr¼matrix(c(1,.51,.51,1),ncol ¼ 2))[[1]]
py_x¼ pxy/(1-p)

cat(p,"\t"," P[y> y_pjyhat> yhat_p]¼",py_x,"\n")
}
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