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Abstract

This review examines recent advances in sample size planning, not
only from the perspective of an individual researcher, but also with
regard to the goal of developing cumulative knowledge. Psychol-
ogists have traditionally thought of sample size planning in terms
of power analysis. Although we review recent advances in power
analysis, our main focus is the desirability of achieving accurate pa-
rameter estimates, either instead of or in addition to obtaining suf-
ficient power. Accuracy in parameter estimation (AIPE) has taken
on increasing importance in light of recent emphasis on effect size
estimation and formation of confidence intervals. The review pro-
vides an overview of the logic behind sample size planning for AIPE
and summarizes recent advances in implementing this approach in
designs commonly used in psychological research.
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INTRODUCTION AND
OVERVIEW

One of the most frequently asked questions
of a statistical consultant is how large a sam-
ple is needed for a specific research project.
This question is usually couched in terms
of designing a study with sufficient statisti-
cal power to achieve a statistically significant
result. Given recent arguments in favor of re-
ducing the role of null hypothesis significance
testing (NHST), such sample size planning
might seem less important. In fact, we believe
that sample size planning remains a vital as-
pect of research, regardless of one’s position
on the NHST controversy. In particular, we
argue that sample size planning is important
not only for an individual investigator who as-
pires to publish, but also for a discipline that
aspires to create a cumulative science.

From the standpoint of an individual inves-
tigator, statistical power is clearly important
because most publication outlets in psychol-
ogy implicitly require statistically significant
results as a prerequisite for publication. Thus,
investigators who want to publish need to have
adequate power. Despite the obvious nature
of this statement, literature reviews continue
to show that underpowered studies persist,
not just in psychology but also in other dis-
ciplines (Bezeau & Graves 2001, Cashen &
Geiger 2004, Chan & Altman 2005, Maggard
etal. 2003). Maxwell (2004) suggests that one
reason for their persistence is the simple fact
that most studies involve multiple hypothe-
sis tests. Even though the power of any sin-
gle test may be low by any reasonable stan-
dard, the opportunity to conduct multiple
tests makes it highly likely that something
of interest will emerge as statistically signif-
icant. Unfortunately, Maxwell (2004) goes on
to show that the consequence for the disci-
pline is an abundance of apparent contradic-
tions in the published literature. Other au-
thors such as Greenwald (1975) and Ioannidis
(2005) have similarly shown the importance
of power for the development of a cumulative
science.



O’Brien & Castelloe (2007) extend this
idea through what they define to be “crucial
Type I” and “crucial Type II” error rates. The
crucial Type I error rate is the probability that
the null hypothesis is true when the null hy-
pothesis s rejected. Similarly, the crucial Type
II error rate is the probability that the null
hypothesis is false when the null hypothesis
is not rejected. All too many researchers may
be under the false impression that these cru-
cial error rates are simply « and 3. In reality,
however, as O’Brien & Castelloe (2007) show,
these crucial error rates in fact are given by

o = Prob(Hy true|p < o)
a(l—y)

“ai-pra-py W
B* = Prob(H, false|p > o)
= o @

By + (1 —a)(1—y)’

where o* is the crucial Type I error rate, p*
is the crucial Type II error rate, o is the usual
Type 1 error rate, B is the usual Type II er-
ror rate, and y is the prior probability that
the null hypothesis is false (or, from a fre-
quentist perspective, the proportion of all rel-
evant studies for which the null hypothesis is
false). A key point emphasized by O’Brien &
Castelloe (2007) is that all other things be-
ing equal, greater power reduces both types
of crucial error. As a result, statistical results
are more trustworthy when power is high.

Thus, adequate power is an issue not only
for an individual investigator who aspires to
publish, but also for a discipline that aspires
to develop a cumulative literature. The effect
on the field may in fact be one reason why old
theories in psychology never seem to die, but
rather only fade away due to what is claimed
to be the slow progress in psychology (Mechl
1978). O’Brien & Castelloe (2007) provide a
related perspective by discussing the relation
between crucial error rates and the “March of
Science.”

The concept of power is relevant only in
the context of hypothesis testing, because the
very definition of power is the probability
of rejecting the null hypothesis in favor of

an alternative hypothesis when the alterna-
tive hypothesis is true. While acknowledging
the controversial nature of significance test-
ing (Harlow et al. 1997, Nickerson 2000),
we believe that power analysis should play
an important role in psychological research.
A full treatment of this issue is beyond the
scope of this review, so instead we borrow
from Jones & Tukey (2000), who among oth-
ers have pointed out that in many situations a
two-tailed hypothesis test provides informa-
tion about a potentially important question,
namely the direction of an effect. In particu-
lar, single-degree-of-freedom two-tailed hy-
pothesis tests generally lead to one of three
conclusions about a parameter or about a dif-
ference between parameters: () it is negative,
(&) itis positive, or (¢) the sign cannot be deter-
mined, so it plausibly could be negative, zero,
or positive.

How relevant to psychological research is
the information provided by hypothesis tests?
We submit that sometimes it is of crucial im-
portance, whereas other times it may be a
foregone conclusion. For example, consider
Festinger’s & Carlsmith’s (1959) classic study
of cognitive dissonance. Would participants
rate a boring study more highly if they re-
ceived a payment of $1 or a payment of $20
(roughly $7 and $140, respectively, in 2006
dollars)? As predicted by cognitive dissonance
theory, participants who received $1 rated the
study more highly than participants who re-
ceived $20. How does this relate to sample
size planning? We would maintain that the
primary goal of this study was to determine
the sign of the difference in mean rating be-
tween the two participant groups. In partic-
ular, which group would produce the higher
mean rating could not be predicted with cer-
tainty prior to conducting the study. Thus,
the hypothesis test allowed the investigators
to answer their primary research question.
Notice that this question was not literally
whether the groups would produce identical
ratings, but rather which group would pro-
duce the larger rating. This study continues to
be a classic at least in part because competing
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theories predicted different directions for the
difference. Whether the mean difference was
small, medium, or large was basically irrele-
vant. Thus, sample size planning for power
should play a critical role here because the
goal is to establish the direction of the mean
difference.

Now consider a different example.
Sternberg & Williams (1997) examined the
ability of Graduate Record Examinations
(GRE) scores to predict various measures of
graduate school success. Here it is difficult to
imagine that the direction of the correlation
would not be positive. Instead, the question
of interest is the magnitude of the correlation.
As a result, power takes on reduced impor-
tance. However, this hardly makes sample
size planning irrelevant, because the size of
the sample will directly affect the precision
and thus the accuracy with which the popu-
lation correlation is estimated. For example,
a correlation of 0.40 obtained in a sample of
100 yields a 95% confidence interval for the
correlation that stretches from 0.22 to 0.55.
The fact that the interval excludes zero allows
a conclusion that the population correlation
is positive, but the magnitude could be
anywhere from halfway between small and
medium to larger than large according to
Cohen’s (1988) conventions. If this interval
is deemed too wide, the simplest solution
(other than decreasing the level of confidence
below 95%) is to obtain a larger sample.

Notice the different emphases in the cog-
nitive dissonance and GRE examples. In the
first example, sample size should be driven
primarily by considerations of power. In the
second example, the main goal is to estimate
the magnitude of a parameter, which leads to
a different approach to sample size planning.
In particular, this review describes a variety of
procedures for choosing sample size to obtain
accurate parameter estimates, in the sense that
there is a sufficiently narrow range of plausible
values for the parameter of interest, as judged
by the width of the corresponding confidence
interval. However, we need to be clear that
methods of sample size planning for accuracy
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have only recently begun to be widely devel-
oped for many statistical methods. Thus, cer-
tain sections of this review focus exclusively
on sample size planning for power. We should
also add that sample size planning for power is
not at all incompatible with sample size plan-
ning for accuracy; instead, both perspectives
will often be important and need to be consid-
ered together because often the goal should be
to obtain an accurate estimate of a parameter
and also to ascertain whether the parameter is
negative, zero, or positive.

Confidence intervals provide a useful orga-
nizational framework for simultaneously con-
sidering the direction, the magnitude, and the
accuracy of an effect. Direction is unambigu-
ous (within the usual limits of probabilistic
certainty) when a confidence interval fails to
include zero as a plausible value. Thus, from
this perspective, power can often be construed
in terms of desiring a sufficiently high proba-
bility that a confidence interval based on one’s
observed data will not contain a value of zero.
Magnitude requires consideration of preci-
sion and accuracy. If estimating the magnitude
of a parameter is important, it follows imme-
diately that the width of a confidence interval
for this parameter should be considered, along
with the center of the interval. A narrow in-
terval results when the standard error of the
parameter estimate is small, which is equiva-
lent to saying that the parameter is estimated
precisely. Accuracy entails not only precision
but also an interval that tends to contain the
true population value. In many situations, ac-
curacy and precision go hand in hand, because
many estimators are unbiased or at least con-
sistent. Readers interested in additional dis-
cussion of the relationship between accuracy
and precision can consult Kelley & Maxwell
(2003, 2008), Kelley et al. (2003), and Kelley
& Rausch (2006).

A CLOSER EXAMINATION OF
POWER AND ACCURACY

Consider a researcher who is planning a two-
group study where the goal is to compare



mean scores in the treatment and control
groups. For simplicity, assume that partici-
pants are randomly assigned to groups, with
responses independently determined. Further
suppose that normality and homogeneity of
variance are plausible assumptions, so the re-
searcher plans to analyze these data with an
independent groups #-test with a two-tailed
alpha level of 0.05.

Suppose this researcher desires a power of
0.80. One immediate dilemma is the neces-
sity of specifying an effect size. Suppose the
researcher decides to follow Cohen’s (1988)
guidelines and on this basis specifies a medium
effect size (i.e., a population Cohen’s d of
0.50). The researcher discovers that he or she
will need to have 64 participants per group,
or a total sample size of 128, assuming no at-
trition. Now suppose the researcher conducts
the study, and it so happens that the standard-
ized sample mean difference between groups
turns out to be exactly 0.50, and thus is exactly
medium according to Cohen’s (1988) conven-
tions. The corresponding # value equals 2.83,
which is statistically significant at the 0.05
level. This might seem to be a happy end-
ing to the story—the apparent conclusion is
that there is a true mean difference between
the groups, and the difference corresponds
to a medium effect size. However, this ef-
fect size value of 0.50 is only an estimate and
is itself subject to variability. Recent author-
itative sources have recommended that con-
fidence intervals accompany effect size esti-
mates. For example, the Publication Manual of
the American Psychological Association (Am. Psy-
chol. Assoc. 2001) follows earlier advice of-
fered by Wilkinson etal. (1999) in stating that
“The reporting of confidence intervals (for
estimates of parameters, for functions of pa-
rameters such as differences in means, and for
effect sizes) can be an extremely effective way
of reporting results.. . .. The use of confidence
intervals is therefore strongly recommended”
(2001, p. 22). Similarly, the American Ed-
ucational Research Association reporting
standards state that “an indication of the
uncertainty” of effect size indices “should

be included” (Am. Educ. Res. Assoc. 2006,
p- 10).

Heeding the advice of the Publication Man-
ual of the American Psychological Association
(Am. Psychol. Assoc. 2001) and the Standards
for Reporting on Empirical Social Science Research
in AERA Publications (Am. Educ. Res. Assoc.
2006), our hypothetical researcher proceeds
to form a confidence interval. Specifically, a
95% confidence interval for the population
value of Cohen’s d turns out to range from 0.15
to 0.85. Suddenly, it is not at all clear that the
true effect here is medium even though the
sample value of Cohen’s 4 was exactly 0.50. In
fact, the confidence interval reveals that the
effect could plausibly be smaller than small
(i.e., less than 0.20) or larger than large (i.e.,
greater than 0.80).

Goodman & Berlin (1994) provide a link
between power and precision. In particu-
lar, they derive the following simple rule-of-
thumb approximate relations between confi-
dence intervals and detectable differences:

Predicted 95% CI
= observed difference +0.7A¢050 (3)
= observed difference + 0.6 A9, (4)

where A g9 = true difference for which there
is 80% power and Ag gy = true difference for
which there is 90% power.

Equation 3 shows why our conscientious
hypothetical investigator obtained such a wide
confidence interval for Cohen’s d even while
planning a study with adequate power. Recall
that the researcher chose a sample size that
would provide power of 0.80 for a medium
effect size of 0.50. Substituting a value of 0.50
into Equation 3 produces an interval stretch-
ing 0.35 below and 0.35 above the observed
difference. Because the observed Cohen’s d
was 0.50, the accompanying confidence inter-
val ranges from 0.15 to 0.85. Notice by im-
plication that regardless of the observed ef-
fect size, a total sample size of 128 (assuming
equal sample sizes of 64 per group) will result
in a 95% confidence interval for Cohen’s 4
whose total width will be approximately 0.70.
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The clear message here is that although a total
sample size of 128 may be adequate for power,
this sample size does not provide a highly ac-
curate estimate of the population Cohen’s d.
We revisit procedures for designing studies
to obtain a sufficiently accurate estimate of
Cohen’s d below.

It s
Equations 3 and 4 provide a useful rule of

important to emphasize that
thumb for sample size planning for any pa-
rameter estimate or effect size; the accuracy of
the approximation will depend on the extent
to which the relevant standard error is inde-
pendent of the effect size, an issue to which we
return below. For example, consider the goal
of ascertaining the relation between GRE
scores and graduate school success. Suppose
the sample size is chosen to be 84 to have
power of 0.80 to detect a medium correlation
of 0.30 according to Cohen’s (1988) conven-
tions. It immediately follows from Equation 3
that the total width of a 95% confidence inter-
val for the population correlation coefficient
will be approximately 0.42. For example, if the
observed correlation in the sample happens
to equal 0.30, the corresponding 95% confi-
dence interval will stretch from 0.09 to 0.48,
close to but not literally identical to the width
implied by Equation 3 because the standard
error of the sample correlation coefficient
depends partly on the value of the correlation
itself. The confidence interval once again
reveals all too clearly, just as it did in the pre-
vious example of Cohen’s 4, that considerable
uncertainty remains about the true value of
the population correlation coefficient.

These examples illustrate that even if sam-
ple sizes are sufficiently large to guarantee ad-
equate power, they may not be large enough
to guarantee accurate parameter estimates.
In reality, these examples probably underes-
timate the severity of the problem in the cur-
rent psychological literature because, as men-
tioned above, literature reviews continue to
show that studies tend to be underpowered
to detect a medium effect. If studies are ade-
quately powered to detect only a large effect,
Equations 3 and 4 show that the ensuing con-
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fidence intervals will be wider yet. This un-
derscores Cohen’s hypothesis about why con-
fidence intervals tend not to be reported in the
literature. In his classic 1994 American Psychol-
ogist article, he stated, “I suspect that the main
reason they are not reported is that they are so
embarrassingly large!” (Cohen 1994, p. 1002).
However, failing to report confidence inter-
vals simply provides a false sense of certainty,
and sets readers up to interpret seemingly dis-
crepant values reported in different studies as
being contradictory of one another. Such em-
barrassment may also reflect an unrealistic ex-
pectation about the extent to which a single
study can provide a definitive answer, a topic
that we discuss below.

The most general point here is that sam-
ple size planning should sometimes focus on
obtaining a sample large enough to have an
adequate probability to reject the null hy-
pothesis, whereas other times the focus should
be on an adequate probability of obtaining a
sufficiently narrow confidence interval. The
sample size necessary to obtain an accurate es-
timate can be larger than the sample size nec-
essary for adequate power, but the reverse can
also be true, depending primarily on the size
of effect to be detected. In fact, in many sit-
uations it should be important to achieve two
goals: (#) reject the null hypothesis and estab-
lish the direction of an effect, and (/) estimate
the effect accurately. The first of these implies
the need to plan sample size in terms of power,
whereas the second implies the need to plan
sample size in terms of accuracy. Work that is
described below has begun to develop sample
size planning methods that accomplish both
of these goals simultaneously.

CONCEPTUAL FOUNDATION
FOR SAMPLE SIZE PLANNING
FOR ACCURACY

Most behavioral researchers realize the im-
portance of sample size planning and power
analysis in order to have an appropriate prob-
ability of rejecting the null hypothesis when
it is false. However, fewer researchers are as



familiar with the role of sample size planning
in order to avoid having to present “embar-
rassingly large” confidence intervals. The cur-
rent section will provide a general conceptual
framework for the specific examples that fol-
low in later sections.

The basic idea of sample size planning for
accuracy (i.e., accuracy in parameter estima-
tion, or AIPE) is based on controlling the
width of the confidence interval of interest.
For example, consider the case of a confidence
interval for a difference between two indepen-
dent means. Assuming normality, homogene-
ity of variance, and equal group sizes, a 95%
confidence interval for a difference between
independent means can be written as

(Y1 = o) £ tor520-25py/2/m, ®)

where ¥} and ¥, are the sample means for
each group, #9752, 1s a critical 7 value corre-
sponding to an alpha level of 0.05 two-tailed
with 2n—2 degrees of freedom, sp is the pooled
sample standard deviation, and # is the sam-
ple size per group. Suppose a researcher wants
his or her confidence interval to have a “half
width” of w. In other words, the desired en-
suing 95% confidence interval will be

- +o. (6)

Notice that the effect of interest here, namely
the population mean difference, has a desired
precision equal to w, in the sense that the true
population difference should (with probabil-
ity of 0.95) be within w units of the sample
difference (notice the full confidence interval
width is 2w).

Equations 5 and 6 show that the confidence
interval will have the desired width if

® = t975m-25py/ 2/ n. (7

It might seem that we could easily obtain
the necessary sample size simply by solving
Equation 7 for n:

212 52
p = Jorsm2'p @®)

w2
However, three factors prevent Equation 8
from providing the actual desired sample size

per group. First, the t value in the numera-
tor depends on n, and thus n is necessarily
on both sides of the equation. However, ex-
cept for very small sample sizes, the z is very
close to the t, so introducing a z value of 1.96
for a two-sided 95% confidence interval only
very slightly underestimates the actual desired
sample size. Second, the variance term in the
numerator is a sample statistic. This dilemma
can be solved by replacing s? with a popula-
tion variance o°. Of course, this leads to other
issues, because o is itself unknown. Never-
theless, the sample size obtained from using
o’ can be thought of as a conditional sample
size, based on a working value of the popula-
tion variance. Ongoing research addresses the
possibility of updating this variance quantity
based on early looks at one’s data (Coffey &
Muller 2003, Proschan 2005). Yet another al-
ternative is to express the desired half-width
w in standard deviation units, in which case o?
appears in both the numerator and denomina-
tor and thus cancels itself out of the equation.

A third complication is less obvious and
pertains specifically to sample size planning
for accuracy. Even if a researcher were fortu-
nate enough to use the correct value of ¢* in
the equation for sample size, the actual con-
fidence interval will be based on the sample
variance s, not on o2. As a result, even if the
correct value of o2 is substituted into the ex-
pression for sample size, the result will be an
interval whose expected width approximately
equals the desired width. However, whenever
the sample variance happens by chance to be
larger than the population variance, Equa-
tion 5 shows that the interval obtained from
the sample data will be wider than desired.
As a result, AIPE requires the specification of
“tolerance,” which is the probability that the
interval will be wider than desired. For ex-
ample, a researcher might specify that he or
she wants to be 80% certain of obtaining an
interval no wider than the desired width, in
which case tolerance would equal 0.20. Such
a goal clearly requires a larger sample size than
if the researcher were willing to tolerate only
the expected interval width being sufficiently
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narrow. Sections of the review below pro-
vide references for incorporating this tol-
erance value into sample size planning for
various effects.

SPECIFICATION OF EFFECT
SIZE

One of the most troublesome aspects of sam-
ple size planning is the necessity to specify
an effect size. In fact, as Lipsey (1990, p. 47)
puts it in his chapter entitled “Effect Size:
The Problematic Parameter,” “The problem
that is perhaps most responsible for inhibit-
ing statistical power analysis in the design of
treatment effectiveness research, however, is
the fact that the effect size is generally both
unknown and difficult to guess.” Senn (2002,
p- 1304) addresses this criticism of power anal-
ysis by pointing out, “The difference you are
seeking is not the same as the difference you
expect to find, and again you do not have to
know what the treatment will do to find a fig-
ure. This is common to all science. An as-
tronomer does not know the magnitude of
new stars until he has found them, but the
magnitude of star he is looking for determines
how much he has to spend on a telescope.”
Also important is the point that power is not
literally a single number but instead is a func-
tion defined over parameter values consis-
tent with the alternative hypothesis. As such,
power curves and response surfaces show how
power changes as a function of such factors as
effectsize and sample size and thereby provide
much more information than a single number.

Adding to the confusion is considerable
disagreement about what magnitude of effect
is truly important. McCartney & Rosenthal
(2000) and Prentice & Miller (1992), among
others, have argued that psychologists tend
not to realize that effects conventionally
thought of as small or even less than small
may in fact be very important, either scientifi-
cally or practically. Unfortunately, in practice,
sample size planning often is based on exactly
the opposite perspective, whereby power be-
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comes adequate to detect only large effects.
As Goodman & Berlin (1994, p. 203) state,
“A typical sample size consultation often re-
sembles a ritualistic dance. The investigator
usually knows how many participants can be
recruited and wants the statistician to jus-
tify this sample size by calculating the dif-
ference that is ‘detectable’ for a given num-
ber of participants rather than the reverse.. . ..
The ‘detectable difference’ thatis calculated is
typically larger than most investigators would
consider important or even likely.” This de-
scription makes it abundantly clear why some
researchers may view the sample size planning
process as anything but scientific.

In principle, it would seem that researchers
who design studies with sufficient power to
detect only large effects would end up only
hurting themselves, because unless they ob-
tain statistically significant results, they may
be unlikely to publish their results. However,
any such self-correcting mechanism is likely
to operate very gently if at all because almost
all studies involve multiple hypothesis tests.
As Kelley et al. (2003) and Maxwell (2004)
point out, even if the power of any single
test is low, the power to detect some effect
among multiple tests can easily be quite high.
In this sense, the system provides little direct
incentive for researchers to adopt a procedure
whereby they choose sample size based on a
serious consideration of an effect size.

The discipline pays a price for underpow-
ered studies even if individual researchers may
not. First, as we have already mentioned, un-
derpowered studies tend to produce a lit-
erature with apparent contradictions. Sec-
ond, as Goodman & Berlin (1994), Hunter
& Schmidt (2004), and Maxwell (2004) have
pointed out, such apparent contradictions
may in fact reflect nothing more than inher-
ent sampling variability. Third, reporting re-
sults only as either significant or nonsignif-
icant exacerbates the problem. Much better
would be to report results in terms of confi-
dence intervals because they display the un-
certainty in effects, thus preventing readers



from overinterpreting the presence of multi-
ple asterisks next to small p-values.

A major advantage of sample size planning
for accuracy is that sample size formulas for
narrow confidence intervals can be much less
dependent on the actual value of the popu-
lation parameter in question than are sam-
ple size formulas for power. For example, the
mean difference between groups does not ap-
pear in Equation 8, so sample size planning
here is independent of effect size. In some sit-
uations (described below), the desired sam-
ple size is not independent of the underlying
effect size. However, in such situations sam-
ple size for accuracy is often less dependent
on the parameter value than is sample size
for power. As a result, sample size planning
from the AIPE perspective frequently over-
comes Lipsey’s (1990) major stumbling block
for sample size planning because the unknown
effect size may be relatively unimportant.

SAMPLE SIZE PLANNING
FOR SPECIFIC DESIGNS
AND ANALYSES

Comparing Two Independent
Groups

The comparison of means via the two-group
t-test is common in psychological research.
As with most sample size planning proce-
dures, obtaining sufficient power has domi-
nated sample size planning for comparing two
independent groups. Since Cohen’s (1962)
cataloging of typical standardized effect sizes
in abnormal-social psychological research, re-
searchers have often used Cohen’s rules of
thumb regarding small, medium, and large
effects sizes for the standardized mean differ-
ence when planning sample size and interpret-
ing study results.

Of course, rejecting a null hypothesis con-
cerning mean differences may not be as infor-
mative as forming a confidence interval for the
mean difference or Cohen’s 4. Thus, the AIPE
approach to sample size planning is more ap-

propriate than the power analytic approach
in some situations. Due to the distributional
differences between the unstandardized and
standardized mean difference, AIPE sample
size planning is not equivalent for these two
effect sizes. Kelley et al. (2003) discuss sam-
ple size planning from an AIPE perspective
in the context of two groups for the unstan-
dardized mean difference (see also Beal 1989).
Kelley & Rausch (2006) develop sample size
planning procedures from the AIPE perspec-
tive for the population standardized mean dif-
ference. Both Kelley et al. (2003) and Kelley
& Rausch (2006) also compare the power an-
alytic and AIPE approaches to one another.
In the context of AIPE for the unstandard-
ized mean difference, the width of the con-
fidence interval is independent of the size of
the mean difference (recall Equation 5), which
implies that the only parameter specification
required is the common variance (Kelley et al.
2003). Necessary sample size for the stan-
dardized mean difference is not independent
of the population standardized mean differ-
ence, but in practice, it depends relatively lit-
tle on the size of the effect (Kelley & Rausch
2006).

Figure 1 shows necessary sample size per
group as a function of the size of the popu-
lation standardized mean difference (between
0.10 and 0.50) for power of 0.50, 0.80, and
0.95 (where o« = 0.05, two-tailed) and for de-
sired 95% confidence interval widths of 0.35,
0.25, and 0.15. The smaller the value of the
population standardized mean difference, the
larger the sample size for a specified level of
power. However, the larger the standardized
mean difference, the larger the sample size for
a specified confidence interval width, albeit
the increase in sample size for larger standard-
ized mean differences is minimal. Thus, nec-
essary AIPE sample size for Cohen’s d depends
almost entirely on the desired confidence in-
terval width. Such a realization should help to
ease qualms about Lipsey’s (1990) “problem-
atic” unknowable effect size parameter in this
situation.
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Figure 1

Necessary
per-group sample
size as a function of
effect size for
desired power and
desired confidence
interval width.
Adapted from
Kelley & Rausch
(2006), with

permission.
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Adjustment for Multiple Comparison
Procedures

In the analysis of variance (ANOVA) frame-
work, multiple comparisons are commonly
performed to address targeted questions
about mean differences. Such contrasts are
generally evaluated with a modified criti-
cal value due to the effect of multiplicity
on the Type I error rate. Miller (1981) and
Hsu (1996) provide comprehensive reviews
on issues surrounding multiple comparisons.
When a multiple comparison procedure will
be used in data analysis, sample size planning
should take this into account. Without such
consideration, sample size will likely be too
small.

Pan & Kupper (1999) develop methods
for planning sample size from the AIPE per-
spective (both for the expected width and
desired tolerance) for multiple comparisons,
and Hsu (1989, 1996) provides an analogous
discussion from the power analytic perspec-
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tive. Both Pan & Kupper (1999) and Hsu
(1989, 1996) develop methods for the most
commonly used multiple comparison proce-
dures (e.g., Bonferroni, Tukey, Scheffé, and
Dunnett). Williams et al. (1999) discuss al-
ternative multiple comparison procedures, in-
cluding a sequential procedure for control-
ling the false discovery rate (FDR; Benjamini
& Hochberg 1995). Although controlling the
FDR tends to yield more power than con-
trolling the familywise error rate, as of yet no
formal sample size planning procedures cur-
rently exist for the FDR.

Multiple Regression

Kelley & Maxwell (2008) discuss sample size
planning for multiple regression in a two-by-
two framework, where one dimension repre-
sents the goal of the study, power or accuracy,
and the other represents the effect size of in-
terest, omnibus or targeted. Operationally, in



multiple regression the omnibus effect is the
squared multiple correlation coefficient, and
the targeted effect is a specific regression co-
efficient. Thus, the way in which sample size
is planned, and indeed the sample size itself,
should depend on the question of interest.
Cohen (1988) details sample size planning
for desired power for the omnibus effect (i.e.,
the squared multiple correlation coefficient)
and a targeted effect (i.e., a particular regres-
sion coefficient). Commonly cited rules of
thumb that pervade the literature on sample
size for multiple regression are rarely appro-
priate (Green 1991, Maxwell 2000). Maxwell
(2000) develops a set of procedures to plan
sample size for targeted effects (see also
Cohen 1988). Something not obvious is the
fact thatitis entirely possible for each regres-
sion coefficient to require a different sample
size in order for there to be the same degree
of power. More importantly, and not previ-
ously well documented in the literature, is that
an appropriate sample size for the test of the
squared multiple correlation coefficient in no
way implies an appropriate sample size for the
test of a particular regression coefficient.
Kelley & Maxwell (2003), later updated
and generalized in Kelley & Maxwell (2008),
develop methods for planning sample size
for a targeted regression coefficient from the
AIPE perspective. Much like the discussion
regarding unstandardized and standardized
mean differences, the value of an unstandard-
ized regression coefficient is independent of
confidence interval width, yet for standard-
ized regression coefficients, a relatively small
relation exists between the size of the stan-
dardized regression coefficient and the width
of the confidence interval (Kelley & Maxwell
2008). This demonstrates that the AIPE ap-
proach to sample size planning for a targeted
regression coefficient is easier to implement
than the corresponding power analysis in the
sense that the appropriate sample size is much
less sensitive to the unknown effect size.
Kelley & Maxwell (2008) and Kelley
(2007) develop AIPE sample size planning
methods for the squared multiple correlation

coefficient for fixed and random regressors,
respectively. The necessary AIPE sample size
for the squared multiple correlation coeffi-
cient, contrary to a targeted regression coef-
ficient, depends heavily on the value of the
effect size. Algina & Olejnik (2000) develop a
related method of planning sample size so that
the observed squared multiple correlation co-
efficient is within a specified distance from the
population value with some desired probabil-
ity. Algina and colleagues have also developed
sample size procedures for other important
effects not often considered when planning
sample size for multiple regression. In a cross-
validation context, Algina & Keselman (2000)
present methods to ensure that the squared
cross-validity coefficientis sufficiently close to
its upper limit, the squared population mul-
tiple correlation coefficient. Along the same
lines as Algina & Olejnik (2000), Algina &
Olejnik (2003) develop sample size planning
procedures for the zero-order, the zero-order
squared, and the partial correlation coeffi-
cient. Algina etal. (2002) also apply the sample
size approach of Algina & Olejnik (2000) to
the difference between squared multiple cor-
relation coefficients (i.e., the squared semipar-
tial correlation coefficient) in nested models.

The General Linear Multivariate
Model

Reviews of sample size planning for the mul-
tivariate general linear model have been pro-
vided by Muller et al. (1992) and O’Brien
& Muller (1993). A notable development in
sample size planning for the general linear
multivariate model is the work of Jiroutek
etal. (2003). Their work combines the power
analytic approach with an approach simi-
lar to AIPE, where the goal is to obtain a
narrow confidence interval, conditional on
the population value being contained within
the observed interval. Thus, the approach
of Jiroutek et al. (2003) accomplishes three
things simultaneously with a single method:
(4) an estimate that leads to a rejection
of the null hypothesis, (b)) a corresponding
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confidence interval that is sufficiently narrow,
and (¢) a confidence interval that correctly
brackets the population parameter, all with
some specified probability. The fundamental
idea of this approach is to formalize sample
size planning to ensure a specified probabil-
ity for obtaining an estimate that is simulta-
neously accurate and statistically significant.
Thus, the work of Jiroutek et al. (2003) is es-
pecially valuable for researchers whose goals
include establishing both the direction and
magnitude of an effect.

Most methods of sample size planning for
the general linear model assume fixed predic-
tors. Many psychological predictor variables
are continuous, and most continuous variables
in psychology are random instead of fixed.
Glueck & Muller (2003) review the limited
availability of sample size planning methods
with random predictors. They also discuss the
ramifications of incorporating a random base-
line covariate for the calculation of sample size
and power. Their methods extend directly to
the context of generalized estimation equa-
tions (e.g., Liang & Zeger 1986), where not
only are discrete and continuous outcomes
possible, so too is a flexible correlational
structure.

Exploratory Factor Analysis

Various suggestions and rules of thumb for
sample size planning permeate the literature
on exploratory factor analysis. Many rules of
thumb stipulate a desired ratio of sample size
to the number of factors, variables, or free
parameters. MacCallum et al. (1999, 2001),
Hogarty et al. (2005), Nasser & Wisenbaker
(2001), and Velicer & Fava (1998) each review
the existing literature and show that, in gen-
eral, such rules of thumb regarding necessary
sample size are oversimplified and should not
be trusted.

Monte Carlo simulations have clearly
shown that necessary sample size depends to
a large extent on the goals of the researcher,
and planning sample size cannot generally be
reduced to rules of thumb. Basing sample size
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on a ratio relative to the number of variables
or an absolute sample size ignores commu-
nalities, which greatly affect necessary sample
size. MacCallum et al. (1999) develop an ap-
proach that explicitly considers communali-
ties as a necessary part of the procedure, with
the goal of obtaining more valid factor analy-
sis solutions. MacCallum et al. (2001) extend
this work by allowing the factor model to be
misspecified.

Confirmatory Factor Analysis
and Structural Equation Modeling

Confirmatory factor analysis (CFA) and struc-
tural equation modeling (SEM) have become
indispensable in much psychological research.
SEM and CFA generally evaluate the overall
model with chi-square likelihood ratio tests
and/or with fit indices. The chi-square likeli-
hood ratio test evaluates exact fit, whereas fit
indices quantify how well a model fits the data.
One can also consider sample size for spe-
cific path coefficients (i.e., targeted effects).
Also, instead of considering only power, the
AIPE approach could also be used for model
fit and targeted effects. Currently, however,
AIPE has not been developed in this con-
text. Such a limitation is one that can certainly
benefit from future research. As in multiple
regression, the way in which sample size is
planned should depend on the particular re-
search goals (power and/or AIPE for omnibus
and/or targeted effects).

Satorra & Saris (1985) provide an early
approach to sample size planning based on
the chi-square likelihood ratio test, where a
specific but incorrect null model is hypothe-
sized and the noncentrality parameter is deter-
mined based on the correct alternative model
in order to calculate the probability of reject-
ing the specified null model.

Muthén & Muthén (2002), Mooijaart
(2003), and Yuan & Hayashi (2003) all extend
Satorra & Saris (1985) by developing compu-
tational approaches to sample size planning,
such that data are generated given a specific
set of parameters from a specified model in



order to determine power empirically. As Kim
(2005) points out, such approaches are based
on an alternative model being correctly spec-
ified, where all of the model parameters are
explicitly stated. Due to the sheer number of
parameters of many models, specification of
the set of parameters generally proves to be
quite difficult.

Rather than approaching sample size from
an exact fit perspective, MacCallum et al.
(1996) develop sample size planning methods
by defining the null hypothesis to be a partic-
ular value (generally not zero and thus not a
perfect fit) of the root mean square error of
approximation (RMSEA; Browne & Cudeck
1993, Steiger 1990, Steiger & Lind 1980).
The idea is not necessarily to test an exact
model, but rather to determine sample size
so that not-good-fitting models could be re-
jected. This approach is implemented by de-
termining sample size so that the upper limit
of a confidence interval for the population
RMSEA, given the hypothesized RMSEA
value, is less than what is operationally de-
fined as a not-good-fitting model. Such an ap-
proach overcomes the problem with the like-
lihood ratio test that very large samples will
essentially always reject the null hypothesis,
even for models that are useful (Browne &
Cudeck 1993). In this framework, unlike the
approach of Satorra & Saris (1985) where a
specific null model is specified, the relation-
ship between fit indices and the noncentrality
parameter from a noncentral chi-square dis-
tribution is exploited so that the fit index it-
self is specified instead of a large number of
individual parameters. For example, given the
model-specified degrees of freedom and a hy-
pothesized value of the population RMSEA
equal to 0.05, sample size can be planned so
that 0.08 is excluded from the confidence in-
terval for the population RMSEA with some
specified probability.

MacCallum & Hong (1997) and Kim
(2005) extend the methods of MacCallum
et al. (1996) to commonly used fit in-
dices other than the RMSEA. MacCallum
et al. (2006) further extend the methods of

MacCallum et al. (1996) so that differences
between the fit of competing models can be
tested. Because different fit indices can be
used, necessary sample size depends in part
on the particular fit index chosen. Hancock
& Freeman (2001) provide a tutorial for ap-
plied researchers on using the MacCallum
et al. (1996) approach, and Hancock (2006)
provides a tutorial chapter on general sample
size issues in SEM with CFA as a special case.
The effect of missing data (e.g., Dolan et al.
2005, Muthén & Muthén 2002) and type of
manifest variable (continuous versus discrete;
Lei & Dunbar 2004) on power has also been
considered.

Longitudinal Data Analysis

Latent growth curve (LGC) models (Bollen
& Curran 2006; McArdle 1988; McArdle &
Epstein 1987; Meredith & Tisak 1984, 1990)
and multilevel models for longitudinal data
(Raudenbush & Bryk 2002, Singer & Willett
2003) have become increasingly popular
methods for analyzing change. A number of
recent approaches have been developed to cal-
culate power and sample size for these models,
with continuous or discrete outcomes.

For continuous outcomes, Muthén &
Curran (1997) provide an extensive treatment
of using LGC models for the analysis of
randomized trials and illustrate an approach
to power analysis in this context. Hedeker
et al. (1999) provide a general framework
for sample size planning from a power per-
spective when designing longitudinal stud-
ies to detect group differences, focusing on
a mixed/multilevel model approach. Hedeker
et al. (1999) also allow for differing degrees
and patterns of attrition to be specified for
the purpose of examining the effect of missing
data on power in longitudinal studies. Similar
to the work of Hedeker et al. (1999), Jung &
Ahn (2003) provide sample size expressions
for sufficient power for group comparisons in
longitudinal data analysis that also allow for
varying degrees and patterns of attrition. An
important difference in these two approaches,
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however, lies in Jung & Ahn’s (2003) choice of
generalized estimating equations (GEE) for
the derivation of their results. Winkens et al.
(2006) provide expressions and an illustration
of the effects of increasing the number of par-
ticipants per group and the number of mea-
surement occasions on necessary sample size
and power for group comparisons in longitu-
dinal data analysis. Winkens etal. (2006) differ
from other researchers in this area, however,
in that these authors also explicitly incorpo-
rate a cost function into their expressions to
directly weigh the cost of adding participants
versus time points.

Raudenbush & Xiao-Feng (2001) provide
expressions for calculating power on group
differences in orthogonal polynomial growth
model parameters as a function of group sam-
ple size, study duration, and the number of
measurement occasions. Also in the context
of polynomial growth models, Biesanz et al.
(2004) note thatrecoding time generally leads
to “a change in the question asked” (p. 43)
with respect to the lower-order polynomial
growth parameters. Thus, changes in the cor-
responding power functions due to recoding
time are generally due to changes in the mean-
ings of these lower-order growth model pa-
rameters. Yan & Su (2006) provide methods
for sample size calculation for sufficient power
for group differences in longitudinal studies,
but also allow nonlinear models (e.g., Bates &
Watts 1988) for the growth functions of the
two groups.

Other studies have contributed to sample
size and power analysis for longitudinal stud-
ies of discrete outcome variables. For example,
Rochon (1998) proposes a general approach
to calculating minimum sample size for power
analysis in repeated measures designs based on
GEE, where the outcome variable can be dis-
crete or continuous. Rochon (1998) also pro-
vides illustrative examples based on binary and
Poisson outcome variables. Leon (2004) uses
previous work of Diggle et al. (2002) to pro-
vide sample size tables for power to detect a
treatment effect between two groups as a func-
tion of Type I error, the number of repeated
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binary observations, the group response rates,
and the intraclass correlation. Jung & Ahn
(2005) derive sample size expressions for suf-
ficient power when comparing group differ-
ences in rates of change on a binary variable.
Their approach is based on GEE, and itallows
researchers to specify the degree and certain
patterns of attrition.

Generalized Linear Models

The generalized linear model represents a
well-known class of statistical methods that
are useful for modeling categorical variables
and contingency tables, and more generally,
variables that are not normally distributed.
A number of sample size planning methods
have recently been proposed for this model-
ing approach, all from a power analysis per-
spective. Shieh (2005) presents an approach to
power and sample size calculation for gener-
alized linear models, which allows researchers
to test multiple parameters simultaneously us-
ing a Wald test, among other extensions. Lyles
etal. (2007) and Newson (2004) provide gen-
eral, practical approaches for power calcula-
tions in the context of the generalized linear
model.

The logistic regression model, which can
be conceptualized as a special case of the gen-
eralized linear model, is used to model cate-
gorical or ordinal outcome variables. Recent
articles on sample size and power for logistic
regression have provided a variety of perspec-
tives on power issues. Tsonaka etal. (2006) de-
scribe sample size and power calculations for
discrete bounded outcome variables in a ran-
domized trial. Taylor etal. (2006) illustrate the
loss of power and necessary increase in sample
size to achieve the same level of power when a
continuous variable is categorized, either for
the purpose of simplifying the analysis or via
the process of measuring a continuous vari-
able with ordinal categories. These authors
also illustrate the potential utility in utiliz-
ing logistic or probit ordinal regression mod-
els to minimize the loss of efficiency in such
situations.



Vergouwe et al. (2005) illustrate sample
size planning for externally validating various
logistic regression models using data from pa-
tients with metastatic testicular cancer. They
argue that this approach is especially useful for
model/variable selection. Furthermore, Vaeth
& Skovlund (2004) and Hsieh et al. (1998)
provide simple approaches to sample size cal-
culations for power in logistic regression. In
particular, Hsieh et al.’s (1998) simplified cal-
culations are based on comparisons of means
or proportions with a modification based on
a variance inflation factor. Also, Strickland
& Lu (2003) provide sample size calculations
for comparing two groups in pre-post designs
when the outcome variable is categorical or
ordinal.

Whereas some authors have focused di-
rectly on the role of sample size in increas-
ing power in the context of logistic regres-
sion, others have focused upon the utility
of collecting pretreatment covariates in ran-
domized studies for attaining increases in
power. For example, Hernandez et al. (2004)
illustrate the potential gain in efficiency ei-
ther through smaller required sample sizes
or through increased power in randomized
studies of dichotomous outcomes by incor-
porating a baseline covariate into the logis-
tic regression model. In fact, Hernandez et al.
(2004) report up to a 46% reduction in re-
quired sample size for a prespecified level of
power for the treatment effect through incor-
porating a baseline covariate into the analysis.

Cluster Randomized Trials

Cluster randomized trials are often used when
it is more practical or feasible to randomly
assign groups (i.e., clusters of individuals), as
opposed to individual participants, to various
treatment conditions (e.g., randomly assign-
ing classrooms instead of students). Sample
size planning may be especially important in
such situations because even if there are a large
number of participants per cluster, power and
accuracy will suffer if the number of clusters
is small. Thus, researchers should consider

a number of alternatives in designing cluster
randomized trials. Raudenbush (1997) uses a
multilevel modeling framework to evaluate a
number of key variables, including the study
cost, the number of participants within clus-
ter, the number of clusters, and the increase in
statistical efficiency that can be attained by in-
corporating a pretreatment covariate into the
statistical analysis.

Campbell et al. (2004) present a sample
size—calculating tool that can be used to de-
termine the necessary number of clusters and
participants within cluster to detect a mini-
mally meaningful treatment effect. Moerbeek
(2006) evaluates the cost of two approaches for
increasing power in a cluster randomized trial:
increasing the number of clusters and incor-
porating pretreatment covariates into the sta-
tistical model. In particular, Moerbeek derives
expressions that researchers can use to weigh
these two alternatives against one another in
terms of their relative costs. While also fo-
cusing one aspect of their study on the util-
ity of a pretreatment covariate in cluster ran-
domized trials, Murray et al. (2006) compare
mixed ANOVA/ANCOVA models to multi-
level models with respect to the power to de-
tect an effect and conclude that the mixed
model ANCOVA with a pretreatment covari-
ate is preferable.

Federov & Jones (2005) provide a general
exposition of a variety of issues in the analy-
sis of cluster randomized trials. In particular,
they express a preference for a random-effects
model for the analysis of cluster randomized
trials and also emphasize the importance of ac-
counting for a number of important variables
when designing a cluster randomized trial. Fi-
nally, Kraemer & Robinson (2005) clearly de-
scribe a number of important methodologi-
cal issues that need to be carefully considered
when designing, conducting, and analyzing
cluster randomized trials.

Survival Analysis

Survival analysis is often the method of choice
when the outcome variable of interest is the
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duration of time until a particular event oc-
curs (e.g., Singer & Willett 2003). Recent
work on study design for sufficient power in
survival analysis includes Maki (2006), who
presents expressions for power and sample
size when using a form of the Weibull model
to represent hazard functions. In contrast,
Vaeth & Skovlund (2004) provide an ap-
proach to sample size and power calcula-
tions based on the Cox regression model.
Furthermore, Schulgen et al. (2005) and
Bernardo & Harrington (2001) introduce for-
mulations necessary for sufficient power when
comparing two groups in survival analysis,
whereas Barthel et al. (2006) present a general
approach to power in survival analysis.

Mixture Modeling

The general goal of mixture modeling is to
decompose an observed distribution into mul-
tiple unobserved distributions. The observed
distribution is often termed a composite, as
the model implies it is the sum of com-
ponent distributions. One goal is simply to
model an observed, generally nonnormal, dis-
tribution. Another goal is to decompose a
nonnormal distribution into multiple compo-
nent distributions, where it is believed the
components represent unobserved (i.e., la-
tent) classes/groups. In so doing, the group-
ing variable can be regarded as missing with
the goal of the mixture model then being
the recovery of the parameters from each
class and/or classification of individuals into
the class to which they belong. McLachlan
& Peel (2000) provide a survey of mixture
models.

Mixture models have been extended to
many models, such as regression, confirma-
tory factor analysis, structural equation mod-
eling, and longitudinal models, among oth-
ers. Sample size planning for mixture models
is thus specific to the particular type of mix-
ture analysis of interest. Furthermore, sam-
ple size planning can be based on several dif-
ferent goals: distinguishing between different
competing models, assigning each individual
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to the appropriate class, AIPE for parame-
ter estimates, etc. Thus, crossing the differ-
ent types of mixture models with the different
goals leads to a large set of possible ways to
plan an appropriate sample size. Due to the
rich questions that mixture models can ad-
dress, sample size planning in mixture model-
ing certainly deserves increased attention.

Mufioz & Acufia (1999) and Zheng & Frey
(2004) evaluate different combinations of pa-
rameters and sample size on the effective-
ness of parameter recovery from mixed dis-
tributions. Not surprisingly, the consensus is
that results are better when sample size is
larger. Lubke & Neale (2006) evaluate the
role sample size plays in factor mixture models
when comparing two-class single-factor mix-
ture models with single-class two-factor mod-
els. Again, the general conclusion is that the
correct model tends to be selected with higher
probability for larger sample sizes and larger
class separations. Not obvious, however, is the
fact that larger sample sizes are also associated
with overestimation of the number of classes.
Such a finding supports a common recom-
mendation in the mixture modeling literature
that theory should play a role in determining
the number of latent classes.

EQUIVALENCE,
NONINFERIORITY, AND THE
GOOD ENOUGH PRINCIPLE

Equivalence is commonly studied in the med-
ical sciences where two treatments, often
drugs, are evaluated to investigate if there
is no meaningful clinical difference between
them. Evaluation of noninferiority is related
to equivalence, except instead of implying
there is no meaningful difference, nonin-
feriority implies that one treatment is no
worse than the other(s). Tryon (2001) pro-
vides a review of equivalence with connec-
tion to the psychological literature and the
controversy that sometimes surrounds null
hypothesis testing. Basic sample size issues
for equivalence and noninferiority are dis-
cussed in Julious (2004). Liu et al. (2002),



Tang et al. (2002), and Chan (2002) discuss
methods for equivalence/noninferiority for
binary data, the ratio of proportions in
matched-pair designs, and the difference be-
tween two proportions, respectively.

Such issues are related to the “good
enough” principle and the “good enough
belt,” where the limits of the belt define what
is considered a nontrivial effect (Serlin &
Lapsley 1985, 1993). The AIPE approach to
sample size planning can be helpful in this
context, because if the upper and lower con-
fidence limits are contained within the good
enough belt, then evidence exists that mean-
ingful differences are implausible at the spec-
ified confidence level. Because AIPE has not
yetbeen developed for all important statistical
methods, there is a corresponding deficiency
in the sample size planning literature with re-
gard to the good enough principle.

SIMULATION-BASED
APPROACHES TO SAMPLE
SIZE PLANNING

As has been detailed, sample size planning
procedures have been developed for a wide
variety of statistical tests. However, these pro-
cedures are typically based on standard tech-
niques when all assumptions have been met.
Sample size planning procedures for non-
standard analyses (e.g., classification and re-
gression trees) and/or computationally based
techniques (e.g., the bootstrap approach to
statistical inference) have not generally been
developed. Even when sample size planning
for power has been developed, at this time
there are often no corresponding methods
for AIPE. However, a general principle of
sample size planning appears to hold: Sam-
ple size can be planned for any research goal,
on any statistical technique, in any situa-
tion with an a priori Monte Carlo simulation
study.

An a priori Monte Carlo simulation study
for planning an appropriate sample size in-
volves generating random data from the popu-
lation of interest (e.g., the appropriate param-

eters, distributional form), implementing the
particular statistical technique, and repeating
alarge number of times (e.g., 10,000) with dif-
ferent sample sizes until the minimum sample
size is found where the particular goal is ac-
complished (e.g., 90% power, expected confi-
dence interval width of 0.15, 85% power and a
1% percent tolerance that the confidence in-
terval is sufficiently narrow). Conducting such
an a priori Monte Carlo simulation to plan
sample size requires knowledge of the distri-
butional form and population parameters, but
this is also true with traditional analytic meth-
ods of sample size planning (where normal-
ity of the errors is almost always assumed).
Muthén and Muthén (2002) discuss sample
size planning for CFA and SEM via an a pri-
ori Monte Carlo simulation study. In the con-
text of Bayesian inference, M’Lan etal. (2006)
and Wang & Gelfand (2002) discuss similar a
priori Monte Carlo simulation approaches for
AIPE and power.

PLANNED AND POST HOC
POWER ANALYSES

Although the fifth edition of the Publication
Manual of the American Psychological Associa-
tion (Am. Psychol. Assoc. 2001) encourages
researchers to take power considerations seri-
ously, it does not distinguish between planned
and post hoc power analysis (also called “ob-
served power” or “retrospective power” in
some sources). Hoenig & Heisey (2001) cite
19 journals across a variety of disciplines ad-
vocating post hoc power analysis to interpret
the results of a nonsignificant hypothesis test.
It is important to clarify that post hoc power
relies on using the sample effect size observed
in the study to calculate power, instead of us-
ing an a priori effect size.

Hoenig & Heisey (2001) argue convinc-
ingly that many researchers have misunder-
stood post hoc power. Specifically, a low value
of post hoc power does not necessarily im-
ply that the study was underpowered, because
it may simply reflect a small observed sam-
ple effect size. Yet another limitation of post
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hoc power is that Yuan & Maxwell (2005)
have shown that post hoc power does not
necessarily provide a good estimate of the ac-
tual population power even in large samples.
Taken together, these perspectives show that
confidence intervals and equivalence tests are
superior to post hoc power as methods for in-
terpreting the magnitude of statistically non-
significant effect sizes, whether the goal is to
assess support for a trivially small effect size,
such as for assessing equivalence or noninfe-
riority, or the goal is to argue that a study was
underpowered.

METHODS TO INCREASE
POWER AND ACCURACY

The emphasis placed on sample size in most
discussions of power and accuracy may lead
researchers to conclude that the only factor
under their control that can influence power
and accuracy is in fact sample size. In reality,
although sample size clearly plays a vital role,
there are often many other factors under an
investigator’s control that can increase power
and accuracy. In the specific case of a linear
model with 7 predictors, McClelland (2000)
notes that the confidence interval for a regres-
sion coefficient can be expressed as

MSE

b+ 1 Il 5>
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©
where b is the estimated coefficient, #x_;—1,4
is a critical value, N is sample size, MSE is
the model mean square error, Vy is the vari-
ance of the predictor variable, and R% is the
proportion of variance in the predictor shared
with other predictor variables in the model.
McClelland describes a variety of possible
methods for decreasing the width of the confi-
dence interval, and thereby increasing power,
in addition to simply increasing sample size.
More generally, Shadish etal. (2002) and West
et al. (2000) provide explanations of a num-
ber of factors that researchers should con-
sider in their efforts to increase power and
accuracy.
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META-ANALYSIS AND STUDY
REGISTRIES

Researchers who engage in appropriate meth-
ods of sample size planning may quickly dis-
cover that the sample size needed to obtain
adequate power or accuracy exceeds their re-
sources. Investigators who need only deter-
mine that effect sizes expected to be large are
in fact nonzero in the expected direction may
be perfectly able to continue designing stud-
ies with relatively modest sample sizes. How-
ever, investigators who need to detect small
effects or who need to obtain accurate param-
eter estimates will typically need quite large
samples. If psychology is to take seriously the
mission to estimate magnitude of effects ac-
curately, researchers may be shocked at how
large their samples will need to be.

For example, the standard error of the
sample correlation depends on the value of
the population correlation coefficient, but for
small values of the population correlation, the
standard error is approximately \/1/7. Sup-
pose a researcher wants to pinpoint the true
population value of the correlation coefficient
to within £0.05. A 95% confidence inter-
val for the correlation needs to be based on
roughly 1500 cases in order for the interval to
have an expected half-width of 0.05 unless the
correlation itself is sizable [a large correlation
of 0.50 according to Cohen’s (1988) conven-
tions would still require more than 850 cases].
Experimentalists do not get the last laugh, be-
cause the sample size necessary to obtain a
95% confidence interval with a half-width of
0.05 for a standardized mean difference be-
tween two independent means is more than
3000 per group. Sample sizes of such magni-
tudes presumably explain Hunter & Schmidt’s
(2004, p. 14) statements that “for correlational
studies, ‘small sample size’ includes all stud-
ies with less than a thousand persons and of-
ten extends above that” and “for experimental
studies, ‘small sample size’ begins with 3000
and often extends well beyond that.”

One way out of this conundrum is to
decide that intervals do not need to have



half-widths as narrow as 0.05 to be regarded as
sufficiently precise. Other considerations in-
clude the same factors besides sample size that
can increase precision, such as using a within-
subjects design or incorporating covariates in
the analysis. Even so, the fact remains that for
many types of research programs, very large
samples will be required to estimate effects
with any reasonable degree of precision, and
it will thus generally be difficult to obtain suf-
ficient resources to obtain accurate parameter
estimates in a single study.

Meta-analysis provides one potential solu-
tion to the lack of precision often observed
in individual studies. Cohn & Becker (2003)
point out that meta-analysis typically reduces
the standard error of the estimated effect size,
and thus leads to narrower confidence inter-
vals and therefore more precision. In addition,
power is often increased.

Hedges & Pigott (2001, 2004) argue for
the importance of conducting power analyses
before investing resources in a meta-analysis.
They show that standard tests performed as
part of meta-analyses do not necessarily have
high statistical power, especially tests of het-
erogeneity of effect sizes, reinforcing the need
to conduct a power analysis prior to under-
taking a meta-analysis. These two articles to-
gether demonstrate how to conduct a power
analysis for a variety of tests that might be of
interest in a meta-analysis.

Although a major goal of meta-analysis is
often to increase power and accuracy, resul-
tant power and accuracy in meta-analysis “can
be highly dependent on the statistical model
used to meta-analyze the data” (Sutton et al.
2007). In fact, Hedges & Pigott (2001, p. 216)
state that “The inclusion in meta-analysis of
studies with very small sample sizes may have
a paradoxical effect of decreasing the power of
random-effects tests of the mean effect size.”
Along related lines, Lau et al. (1992) suggest
that meta-analysis can be used to summarize
the state of knowledge at each stage of re-
search. Sutton et al. (2007) implicitly adopt
this perspective and thereby argue that sample
size planning should often be done not from

a perspective of designing a single study with
sufficient power, but instead should be done
in the context of designing a new study to con-
tribute to a larger body of literature in such a
way that an ensuing meta-analysis adding the
new study to the extant literature will have suf-
ficient power. They then proceed to presenta
simulation approach to sample size planning
based on this idea. One important result they
demonstrate is that in a random effects meta-
analytic model, multiple smaller studies can
sometimes provide much more power than a
single larger study with the same total sample
size. This result converges with cautions of-
fered by Schmidt (1996) and Wilson & Lipsey
(2001) regarding the hazards of overinterpret-
ing any single study, regardless of how large
its sample size might be.

An important limitation of meta-analysis
is its susceptibility to biased effect size esti-
mates as a result of such factors as publication
bias (such as the “file drawer” effect due to un-
published studies). Although methodologists
continue to develop new methods to identify
and adjust for publication bias, concerns re-
main about how well current methods work.
For example, Kromrey & Rendina-Gobioff
(2006) conclude that current methods to iden-
tify publication bias often either fail to con-
trol Type I error rates or else lack power.
Furthermore, Kraemer et al. (1998) have
shown that including underpowered studies
in a meta-analysis can create bias, underscor-
ing the importance of designing individual
studies with sufficient power. Beyond prob-
lems caused by entire studies not being re-
ported, a related problem is selective report-
ing of results, even in published studies. Chan
et al. (2004) find clear evidence of selec-
tive reporting within studies in a large lit-
erature review they conducted. Chan et al.
(2004) recommend that studies should be reg-
istered and protocols published online prior
to the actual execution of a study. Toward
this goal, the member journals of the In-
ternational Committee of Medical Journal
Editors adopted a policy in 2004 requiring
registration of all clinical trials in a public
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trials registry as a condition of consideration
for publication.

Multisite studies offer an alternative to
meta-analysis and at least in principle are less
prone to the “file drawer” effect. Kelley &
Rausch (2006, p. 375) point out that “The
idea of such multisite studies is to spread
the burden but reap the benefits of estimates
that are accurate and/or statistically signifi-
cant.” However, Kraemer & Robinson (2005,
p- 528) point out that it is important to “pre-
vent premature multicenter RCTs [random-
ized clinical trials] that may waste limited
funding, investigator time and resources, and
burden participants for little yield.” They dis-
cuss various aspects of sample size planning
in multicenter studies and provide a model
of the respective roles of multicenter studies
and individual studies in creating a cumulative
science.

SUMMARY AND CONCLUSIONS

Advances continue to be made in methods for
sample size planning. Some of these advances
reflect analytic contributions for specific sta-
tistical methods, whereas others reflect new
perspectives on fundamental goals of empiri-
cal research. In addition to the developments

SUMMARY POINTS

we have described, other important advances
are taking place in the role of pilot studies
in sample size planning (e.g., Kraemer et al.
2006), methods for dealing with the fact that
the effect size is unknowable prior to con-
ducting a study (e.g., O’Hagan et al. 2005),
accounting for uncertainty in sample size due
to estimating variance (e.g., Muller & Pasour
1997), adaptive sample size adjustments based
on interim analyses (e.g., Jennison & Turnbull
2006, Mehta & Patel 2006), complications
in planning subgroup analyses (e.g., Brookes
etal. 2004, Lagakos 2006), the impact of non-
compliance on power in randomized studies
(e.g., Jo 2002), and Bayesian approaches to
sample size planning (e.g., Berry 2004, 2006;
Inoue etal. 2005; Lee & Zelen 2000). As psy-
chologists consider the importance of effect
size measures, it becomes incumbent to rec-
ognize the inherent uncertainty in effect size
measures observed in small samples. Thus,
the AIPE approach to sample size planning
should assume an increasing role in psycho-
logical research. At the same time, it is im-
portant for researchers to appreciate the role
of statistical power and AIPE not only for
their own individual research but also for
the discipline’s effort to build a cumulative
science.

1. Sample size planning is important to enhance cumulative knowledge in the discipline

as well as for the individual researcher.

2. Sample size planning can be based on a goal of achieving adequate statistical power,

or accurate parameter estimates, or both.

3. Researchers are actively involved in developing methods for sample size planning,

especially for complex designs and analyses.

4. Sample sizes necessary to achieve accurate parameter estimates will often be larger

than sample sizes necessary to detect even a small effect.

5. Sample sizes necessary to obtain accurate parameter estimates or power to detect
small effects may often require resources prohibitive to the individual researcher,

thus suggesting the desirability of study registries accompanied by meta-analytic

methods.
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