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Abstract
Clustered data are common in many fields. Some prominent examples of clustering are employees clustered
within supervisors, students within classrooms, and clients within therapists. Many methods exist that
explicitly consider the dependency introduced by a clustered data structure, but the multitude of available
options has resulted in rigid disciplinary preferences. For example, those working in the psychological,
organizational behavior, medical, and educational fields generally prefer mixed effects models, whereas those
working in economics, behavioral finance, and strategic management generally prefer fixed effects models.
However, increasingly interdisciplinary research has caused lines that separate the fields grounded in
psychology and those grounded in economics to blur, leading to researchers encountering unfamiliar statistical
methods commonly found in other disciplines. Persistent discipline-specific preferences can be particularly
problematic because (a) each approach has certain limitations that can restrict the types of research questions
that can be appropriately addressed, and (b) analyses based on the statistical modeling decisions common in
one discipline can be difficult to understand for researchers trained in alternative disciplines. This can impede
cross-disciplinary collaboration and limit the ability of scientists to make appropriate use of research from
adjacent fields. This article discusses the differences between mixed effects and fixed effects models for
clustered data, reviews each approach, and helps to identify when each approach is optimal. We then discuss
the within–between specification, which blends advantageous properties of each framework into a single
model.

Translational Abstract
Even though many different fields encounter data with similar structures, the preferred method for modeling
such data can be vastly different from discipline to discipline. This is especially true in the case of clustered
data where in subsets of observations belong to the same higher order unit, as is common in organizational
science, education, or longitudinal studies. To model such data, researchers trained in the economic tradition
primarily rely on fixed effects models, whereas researchers trained in the psychological tradition employ
mixed effects models. As the disciplinary lines between these economics and psychology continue to be
blurred (e.g., in fields such as behavioral economics or strategic management), the disparity in approaches to
statistical modeling can prevent dissemination and proper interpretation of results. Additionally, each of these
statistical methods has certain limitations that can prevent answering particular research questions, limiting the
scope of hypotheses that can be tested. The goal of this article is to compare and contrast the fixed effect and
mixed effect modeling frameworks to overview the general idea behind each and when employing each
method may be most advantageous. We also discuss ways in which aspects of both models can be blended
into a single framework to maximally benefit from what each method can provide.

Keywords: fixed effect model, multilevel model, HLM, panel data, random coefficients model

Clustered data are ubiquitous in many contexts; classical cross-
sectional examples include students nested within schools in edu-
cational contexts, clients nested within therapists in clinical psy-

chology, patients nested within doctors in medicine, persons
clustered within neighborhoods in epidemiology, employees
nested within firms in business, and hospitals within systems in
health care (Hox, 2010; Raudenbush & Bryk, 2002; Snijders &
Bosker, 2012). Clustering also occurs by repeated measures on
multiple units, often deemed longitudinal or panel data, in which
the same information is tracked across time for the same units. In
this context, the nesting structure is in terms of the multiple
observations being nested within a single entity (Bollen & Curran,
2006; Greene, 2003; Rabe-Hesketh & Skrondal, 2008; Singer &
Willett, 2003; Wooldridge, 2002). When data are cross-sectional,
panel data, or a combination of the two, the nested structure of the
data must be accommodated in the analysis. A failure to do so
violates the independence assumption postulated by many popular
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models, which leads to biased standard error estimates (often
downwardly biased) and improper statistical inferences (e.g., Li-
ang & Zeger, 1986; Maas & Hox, 2005; Moulton, 1986, 1990;
Raudenbush & Bryk, 2002; Wooldridge, 2003).

Fortunately, several methods exist to account for clustering so
that inferences made with clustered data are appropriate and yield
test statistics that align with the theoretical properties (e.g., well-
behaved Type I error rates and confidence interval coverage).
There are strong disciplinary preferences by which clustered data
are modeled (McNeish, Stapleton, & Silverman, 2017). For exam-
ple, a review performed by Bauer and Sterba (2011) found that
about 94% of psychology studies between 2006 and 2011 ac-
counted for clustering via mixed effects models (MEMs). Con-
versely, a review by Petersen (2009) showed almost the exact
opposite trend in econometrics—only 3% of studies reviewed used
MEMs. As noted in McNeish et al. (2017), MEMs are so fre-
quently used in psychological research that it has, for all intents
and purposes, become synonymous with modeling clustered data.
However, as noted by recent articles (Huang, 2016; McNeish &
Stapleton, 2016), several alternative methods exist for modeling
clustered data. In addition to classical approaches, such as within-
subjects analysis of variance and multivariate analysis of variance
for modeling clustered data (e.g., Maxwell, Delaney, & Kelley,
2018), more modern approaches have included the use of MEMs,
which have become popular in psychology, or fixed effects models
(FEMs), which have become popular in fields grounded in eco-
nomics. Recent studies have contrasted the typical approach for
modeling clustered data in psychology to methods common in
biostatistics, such as generalized estimating equations (McNeish et
al., 2017), and survey methodology methods, such as Taylor series
linearization (Huang, 2016). However, there has been less atten-
tion paid to differences between MEMs that are widely adopted by
psychologists and FEMs that tend to be preferred by researchers
working in the econometric tradition. Given that there can be
considerable disparities in training within psychology-adjacent
fields (e.g., industrial-organizational psychology, management
studies, education, and policy studies), researchers trained in one
tradition may have difficulty comprehending the rationale behind
the analytic methods chosen by their colleagues within their own
field but trained in another statistical tradition. This may result in
difficulty interpreting statistical results in such fields, which can
cause confusion and inhibit the pace of development as such fields
move forward.

This article reviews FEMs, which are popular in fields grounded
in an econometrics tradition (A. Bell & Jones, 2015) but not well
known in psychology. We provide comparisons between the FEMs
and MEMs, making recommendations for when each should be
used. Generally, FEMs account for a clustered data structure by
including the cluster affiliation information directly into the model
as a predictor (i.e., a fixed effect) rather than treating cluster-
specific quantities as random effects. In other words, FEMs are
equivalent to adding categorical predictors to the model represent-
ing the cluster variable (e.g., including an intercept for each person
in a longitudinal model). Some researchers in fields related to
economics have gone so far as to refer to the FEM framework as
the “gold standard” for modeling clustered data (Schurer & Yong,
2012). In the political science literature, in which the econometric
tradition has a strong presence, a recent article by A. Bell and

Jones (2015) tried to dissuade researchers from using FEMs,
arguing that they are overused much in the same way that McNeish
et al. (2017) argued that MEMs are overused in psychology.
Clearly, some clarification and recommendations are needed to
help clarify when each method is appropriate.

Despite the high praise for, and near ubiquity of, FEMs in the
econometrics and related literatures, psychological researchers
seem largely indifferent with this modeling framework. As evi-
dence for this claim, we searched two flagship empirical psychol-
ogy journals for references to FEMs and MEMs: Journal of
Personality and Social Psychology and Journal of Applied Psy-
chology, during the publication years 2015 and 2016. In the
Journal of Personality and Social Psychology, 0 of 247 studies
contain the phrase “fixed effects model” or “fixed-effects model.”
When searching for “fixed effect” instead, we found three studies,
but each of these referred to fixed factors in a fixed effects
ANOVA context or a fixed effect in a MEM context. In the
Journal of Applied Psychology, we found three studies from a
possible 399 articles (0.8%) containing the phrase “fixed effects
model” or “fixed-effects model” as used in an FEM context. The
more relaxed search term “fixed effect” yielded two additional
studies, but both of these additional used the phrase in the context
of ANOVA or MEMs. In a pair of searches performed in leading
economic journals, 33 of 79 articles (42%) published in the Quar-
terly Journal of Economics during the same time period featured
FEMs, and 131 of 248 articles published in the Journal of Finan-
cial Economics (53%) featured FEMs. There were also major
discrepancies between statistical texts in their discussion of ana-
lyzing clustered data. Texts commonly used in psychology, such as
Raudenbush and Bryk (2002), Maxwell et al. (2018), and Hox
(2010), do not feature any coverage of FEMs, whereas Snijders
and Bosker (2012) discuss FEMs only briefly (pp. 43–48). Con-
versely, the Greene (2003)1 text on econometric analysis briefly
discusses MEMs (pp. 293–295, 318–320), with additional discus-
sion of the different estimation procedures (pp. 295–301).

This vast disconnect between fields with a psychological foun-
dation and fields with an economic foundation begs the question,
are psychology and related fields at a disadvantage by not consid-
ering an entire modeling framework that is the principal approach
to modeling clustered data in economics? Conversely, are econom-
ics and related fields at a disadvantage by predominantly focusing
their modeling efforts on FEMs? These questions have particularly
strong implications as disciplinary boundaries between business,
psychology, and economics continue to be blurred.

To address the chasm between MEMs and FEMs, we provide an
overview of both the MEM and FEM frameworks to help readers
understand alternative frameworks with which they may not be
familiar. We then discuss strengths and limitations of each model
for types of analyses common in psychology and provide empirical
examples. Particular emphasis is placed on discussion of the exo-
geneity assumption of MEMs, whose tenability has led to different
methods being preferred in different fields. We conclude with the
within–between specification of a MEM, a method that incorpo-
rates advantages of both FEMs and MEMs, especially with respect
to treatment of the exogeneity assumption. We discuss how this

1 Page numbers refer to the fifth edition of this text.
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specification flexibly applies elements of both methods, making
analyses stronger across both traditions.2

Overview of Mixed Effects Models

In MEMs, the clustered structure of the data is accounted for by
including random effects in the model (Laird & Ware, 1982;
Stiratelli, Laird, & Ware, 1984). Coefficients in MEMs represent
two possible types of effects: fixed effects or random effects. Fixed
effects are estimated to represent relations between predictors and
the outcome irrespective to which cluster observations belong,
similar to a standard single-level multiple linear regression model
(Raudenbush & Bryk, 2002). Random effects, on the other hand,
capture how much the relation between the predictor and the
outcome differs from the fixed effect estimate for a specific
cluster, essentially capturing the unique effect of the predictor in
the cluster of interest. Put another way, the effects within each
cluster form a distribution of effects in which the fixed effect is the
mean and the random effects are unique data points.

Mathematically, MEMs for continuous outcomes can be ex-
pressed as

yj � Xj� � Zjuj � �j, (1)

where yj is an mj � 1 vector of responses for cluster j and mj is the
number of units within cluster j, Xj is an mj � p design matrix for
the fixed predictors in cluster j (at either level) and p is the number
of predictors (including the intercept), � is a p � 1 vector of
regression coefficients, Zj is an mj � q design matrix for the
random effects of cluster j, uj is a q � 1 vector of random effects
for cluster j, q is the number of random effects (where p � q),
E(uj) � 0, Cov(uj) � G, G is q � q, �j is an mj � 1 vector of
residuals of the observations in cluster j, E(�j) � 0, and Cov(�j) � R.
Although there are several estimators that can be used to estimate
MEMs, either maximum likelihood or restricted maximum likeli-
hood are typically used (e.g., SAS Proc Mixed, SPSS, Stata, R
lme4). For more detail on the algorithms and methods typically
employed to estimate these models, see Goldstein (1986, 1989).
For foundational information on restricted maximum likelihood
estimation, see Harville (1977) or Patterson and Thompson (1971).
For a more general statistical overview of the mixed effects model,
see Laird and Ware (1982). For a conceptual overview of the
differences between maximum likelihood and restricted maximum
likelihood estimation, see McNeish (2017b).

Assumptions

Although MEMs permit rich models to be fit to clustered data,
the inclusion of random effects in these models require that several
assumptions be made. An important assumption of MEMs is that
the predictor variables included in the model do not covary with
either the residuals or the random effects (i.e., Cov[X, u] � Cov[X,
r] � 0), which is commonly referred to as the exogeneity assump-
tion (e.g., Gardiner et al., 2009). When the exogeneity assumption
is violated, the model is said to be endogenous, meaning that there
is an unmodeled relation that establishes nonzero covariance be-
tween a predictor in the model and a random error term. That is,
there are omitted confounders that threaten construct validity (e.g.,
see Maxwell et al., 2018, for a review). If the exogeneity assump-
tion is violated, then the coefficient estimates will contain notice-

able amounts of bias (Greene, 2003). We will return to this issue
in subsequent sections, because differing disciplinary perspectives
on this assumption are a primary reason for preferring either
MEMs or FEMs.

Other assumptions of MEMs include that (a) all relevant random
effects have been included in the model, (b) the covariance struc-
tures of the residuals and random effects have been properly
specified, and (c) the residuals and the random effects follow
multivariate normal distributions and do not covary across levels.
Violating these assumptions can affect model selection as well as
estimates and inferences made from the model. For more infor-
mation on the ramifications of assumption violations, see Ebbes,
Wedel, Böckenholt, and Steerneman (2005), Kim and Frees (2006,
2007), McNeish et al. (2017), and Raudenbush and Bryk (2002,
Chapter 9).

Hypothetical Example

Although matrix notation can help facilitate mathematical de-
tails of MEMs, it is more common to see Raudenbush and Bryk
(RB) notation in empirical applications. RB notation more clearly
displays the location and relations between predictors and eluci-
dates why these models are often referred to as hierarchical or
multilevel models. To demonstrate RB notation, consider an ex-
ample in which work motivation (at Level 1, the employee level)
and the quality of the company’s incentive program (at Level 2, the
company level) predict employee productivity.3 This model would
be represented as

Productivityij � �0j � �1j Motivationij � rij (2a)

�0j � �00 � �01Incentivej � u0j (2b)

�1j � �10 � �11Incentivej, (2c)

where Productivityij is the productivity score for the ith employee
in the jth company, �0j is the company-specific intercept for the jth
company, �1j is the company-specific slope for motivation for the
jth company, and rij is the residual for the ith person in the jth
company.

2 Comparisons of FEMs and MEMs have appeared in other literatures
over the last decade (e.g., Clark & Linzer, 2015; Gardiner, Luo, & Roman,
2009; Greene, 2003; Halaby, 2004; Yang & Land, 2008) but with little
relevance to psychology. These previous treatments have focused on in-
tersections of areas outside of psychology (healthcare and economics,
economic sociology) and cover analyses that are germane to those areas but
that are not always common in psychology. The current article discusses
these models in contexts directly relevant to the study of psychological
phenomenon.

3 The notation in Equation 1 does not differentiate at which level the
predictor exists. This can be seen much more clearly in RB notation. Level
1 predictors are collected at the lowest level of the hierarchy (e.g., em-
ployees if data are collected in companies, time-varying covariates if data
are collected longitudinally). These variables appear in the first equation in
RB notation. Level 2 predictors are collected at the higher level of the
hierarchy (e.g., company-level variables if data are collected on employees
clustered within companies; time-invariant predictors if data are collected
longitudinally). Level 2 predictors can either be properties of the Level 2
unit itself (e.g., school size) or an aggregation of the Level 1 units with the
Level 2 unit (e.g., average salary at a company). Although other methods
do not formally adopt the level-specific designation of predictors, research-
ers often use this terminology out of convenience.
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Equation 2a then allows researchers to model the company-
specific intercept (�0j; i.e., the Level 1 coefficients in Equation 2a
are the dependent variables in Equations 2b and 2c). In Equation
2b, �00 is the overall intercept for productivity across all compa-
nies, �01 is a regression coefficient that captures how much the
intercept of productivity is expected to change for a one-unit
change in incentive for company j, and u0j is a random effect for
the jth company that captures how much the intercept for the jth
company differs from the overall intercept �00 after accounting for
incentive. The company-specific intercepts �0j follow a normal
distribution that is centered on �00 � �01Incentivej, with a variance
denoted by �00 in this notation. If u0j is not included in Equation
2b, then this implies that �00, the variance of the intercepts between
different clusters, is equal to zero. Equation 2c contains similar
information as Equation 2b except that the outcome is now the
company-specific slope (�1j) rather than the company-specific
intercept. In Equation 2c, the absence of a random effect for
motivation means that, controlling for the incentive, the effect of
motivation on productivity does not vary between companies. The
three separate equations can be combined into one single equation
such that

Productivityij � �00 � �01Incentivej

� (�10 � �11Incentivej) � Motivationij � u0j � rij. (3)

Note that Equation 3 contains a “mix” of the fixed effect �
parameters as well as the random effect u parameter, giving rise to
the “mixed effect model” name.

In general, MEMs are a flexible method that allows researchers
much freedom in building models that test their research questions
and theories. However, researchers pay for this flexibility with
assumptions.

Overview of Fixed Effects Models

As noted in Gelman and Hill (2006, p. 245) and Gardiner et al.
(2009), the term “fixed effect” has several, nonoverlapping defi-
nitions when used in various branches of statistics. When psychol-
ogists hear or see “fixed effects,” they tend to think of (a) param-
eters in MEMs that represent the association between a Level 1
predictor and the outcome across all clusters, or (b) levels of one
or more factors (e.g., control group, Treatment A, Treatment B)
that are purposely chosen in the context of analysis of variance.

In the econometric tradition, “fixed effects” does not refer to a
particular component of a model for clustered data or a type of
research design. Rather, “fixed effects” refers to an entire model-
ing framework (Allison, 2009). Similar to MEMs, FEMs explicitly
model the clustered structure of the data. However, FEMs do not
use random effects or random coefficients (i.e., the u parameter in
Equation 2 and 3). Instead, cluster affiliation dummy variables are
included directly in the model as predictor variables. A regression
coefficient is then estimated for each cluster affiliation variable to
yield cluster-specific estimates, much in the same way that each
cluster has a unique random intercept estimate in MEMs (Gardiner
et al., 2009). To make another connection, the FEM can be seen as
an ANCOVA in which the cluster affiliation is a categorical factor
predicting the outcome. All variability at Level 2 is explained in
the FEM because the cluster affiliation variables are treated as
predictors (unlike MEMs, in which Level 2 variability is a parti-

tioned component of the residual variance). Unlike traditional
ANCOVA, the focus of the FEM is on the covariates, with the
categorical cluster factor serving as a control variable to account
for the data structure.

Such a specification has noticeable ramifications for how vari-
ability at Level 2 is accounted for, which can be viewed as an
advantage or disadvantage depending on the research question at
hand. Though we will discuss this issue in much more detail in
subsequent sections, the general consequence of the FEM is that
the cluster affiliation variables account for all of the variability at
Level 2. This means that researchers need not be concerned with
including Level 2 predictors in the model, because variance attrib-
utable to all Level 2 variables (whether available in the data or not)
is consumed by the cluster affiliation variables. As a result, all
Level 1 coefficients are conditional on all possible Level 2 effects.
As a cost of such a strategy, researchers lose the ability to estimate
coefficients for any individual Level 2 predictor in the model—
once the cluster affiliation variables are included in the model,
only coefficients for Level 1 predictors can be estimated.

MEMs assume that random effects are drawn from a particular
distribution (often a normal distribution); however, FEMs do not
assume that clusters are a random sample from the possible pop-
ulation of clusters. This represents one reason why FEMs tend to
be popular in economics research—clustering units are frequently
selected for a specific purpose (e.g., European countries, chief
executive officers from Fortune 100 companies, top-rated univer-
sities) instead of being randomly selected.

In FEMs, the creation of cluster-specific affiliation variables can
be done with two different dummy-coding methods. The first
method of coding, which we will refer to as absolute coding, is to
include as many cluster affiliation variables as there are clusters
and to remove the intercept to prevent overparameterization of the
model. In this case, estimates for the cluster affiliation variables
represent the intercept value for each specific cluster, similar to
how each cluster receives a cluster-specific intercept estimate in
MEMs. Another method of coding, which we refer to as reference
coding, is to retain the intercept estimate in the model and leave
one of the cluster affiliation variables out as a reference cluster.
Cluster affiliation variable estimates with this method represent the
difference in the intercept between a specific cluster and the
reference cluster whose cluster affiliation variable was omitted
form the model. Thus, the first method gives the cluster affiliation
estimates an absolute interpretation, whereas the second method
gives a relative interpretation.

Notationally, using an absolute coding scheme, the FEM can be
written as

yj � Xj� � Cj� � rj, (4)

where yj is an mj � 1 vector of responses for the jth cluster,4 Xj is
an mj � p design matrix of substantive predictors, � is a p � 1
vector of substantive regression coefficients, Cj is an N � J matrix
of cluster affiliation dummy codes, � is a J � 1 vector of

4 Readers may note that the FEM is a single-level model, but we define
the model using j subscripts to denote the cluster. Though not required, we
use this model notation because it elucidates the role of the cluster affili-
ation dummy variables and the associated coefficients. Otherwise, this
information would be appended to the end of the � matrix, where its
function may be less clear.
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cluster-specific intercepts, and rj is an mj � 1 vector of residuals
that is traditionally assumed to be distributed N (0, �2I). Because
the cluster affiliation dummy variables account for all cluster-level
variance, the FEM residual variance is equivalent to the Level 1
residual variance in MEMs, not the total residual variance across
all levels. Because there are no random effects in the model,5

FEMs with continuous outcomes are often estimated with ordinary
least squares (OLS; the same as a single-level multiple linear
regression model). The form of the model presented in Equation 4
assumes that coefficients are equal across clusters. As will be
discussed later, this can be relaxed.

Assumptions

A primary benefit of the FEM framework is that there are far
fewer assumptions compared with MEMs. In FEMs, the model
only needs to be properly specified with respect to Level 16

predictors (time-varying predictors in panel data) for the parameter
estimates and standard errors to have desirable statistical proper-
ties: The cluster affiliation dummy variables handle all possible
Level 2 predictors (time-invariant predictors in panel data) regard-
less of whether the variable was collected in the data or not. Level
1 predictors must have variability within clusters because FEMs
only explicitly model within-group variation (all variables without
within-group variance are accounted for by the cluster affiliation
dummy variables). This means that effects for Level 2 predictors
cannot be directly estimated within a FEM (Baltagi, 2013; Hsiao,
2003; Kim & Frees, 2006), although they will be accounted for in
the model via the cluster affiliation dummy variables (i.e., other
effects are conditional on the Level 2 predictors, but effects of
specific Level 2 variables are not estimable). If an FEM model is
estimated with OLS, then it is conventional to assume that the
residuals are distributed N (0, �2I). This assumption may be
reasonable with cross-sectional clustering but could be violated
with panel data because of the presence of autocorrelation (A. Bell
& Jones, 2015), meaning that the residuals at different time points
are not independent of one another. However, other estimation
methods like generalized least squares or maximum likelihood can
account for this dependence with different types of residual struc-
tures (e.g., compound symmetry, Toeplitz). Unlike MEMs, FEMs
do not assume that clusters are sampled randomly.

Hypothetical Example

To see how FEMs differ from MEMs, consider the example
from the previous section in which employee productivity is pre-
dicted by work motivation and the quality of the company’s
incentive program. If there are five companies in the data, the FEM
would be written out completely as

Productivityij � �1Motivationij � �2(Motivationij � Incentivej)

� �1Company1 � �2Company2 � �3Company3

� �4Company4 � �5Company5 � rij, (5)

where �1 captures the relation between motivation and productiv-
ity, �2 captures how the effect of motivation changes depending on
the values of incentive (i.e., the interaction of the two), and the 	
parameters represent the company-specific intercepts (we use the
absolute coding here). Notice that the incentive predictor does not

explicitly appear in the model as a separate term (although it does
appear as part of an interaction) because the main effect of incen-
tive is included in the variance accounted for by the company
variables. The tests for motivation and the Motivation � Incentive
interaction therefore control for incentive even though it is no
longer possible to estimate the specific effect of incentive, because
this variable is perfectly collinear with the company variables. This
is an important distinction in FEMs—the cluster affiliation vari-
ables include all the measured and unmeasured variables at Level
2 even though the specific effects of Level 2 predictors are unob-
tainable. That is, all effects in the model are conditional on
incentive (and all other Level 2 variables), but the main effect for
incentive specifically is inestimable. The company variables sub-
sume all Level 2 variables and explain all the variance at Level 2;
therefore, there is no unique variance left for any single Level 2
variable to explain because any variance explained any Level 2
variables will necessarily overlap completely with variance ex-
plained by the company variables. The Motivation � Incentive
interaction term is permissible even though it involves a Level 2
variable because there is still within-cluster variation once the
multiplicative term is created. Table 1 shows how parameters from
Equation 2 map onto parameters in Equation 5.

De-Meaning

The previous FEM description is commonly referred to as the
least square dummy variable (LSDV) fixed effects model. There is
another alternative specification that may be used to achieve the
same goal without needing to create dummy variables, which can
be useful when there are many clusters and estimation would be
computationally burdensome with many dummy variables (e.g., in
big data; Allison, 2009).7 This alternative approach is referred to
as de-meaning, in which the cluster means are subtracted from the
observed values for all variables. The de-meaned version of Equa-
tion 5 without the Motivation � Incentive cross-level interaction
would be

�Productivityij 	 Productivity�j) � �1(Motivationij 	 Motivation�j)

� (rij 	 r�j). (6)

To demonstrate how de-meaning works, consider Equation 5 as
a random intercepts MEM such that

Productivityij � �1Motivationij � u0j � rij. (7)

5 Technically, FEMs do have a random component in the model because
the residuals are random effects and are assumed to be randomly drawn
from a particular distribution. In this article, we reserve use of “random
effects” for random effects at Level 2 and refer to what are technically
Level 1 random effects as “residuals.”

6 Although we talk about “levels” in FEMs, note that FEMs do not
consider different levels of analysis as in MEMs. The FEM model does not
differentiate between Level 1 or Level 2 variables. The FEM is an inher-
ently single-level regression model that uses clever coding to manipulate
the single-level framework into estimating coefficients from clustered data.
We use “Level 1” and “Level 2” to facilitate the discussion about param-
eters that are similarly estimated by MEMs and FEMs. In the FEM
framework, Level 1 means that the variable has variability within clusters,
whereas Level 2 means that that variable has no variability within a cluster.

7 Such big data situations will likely become more common in psychol-
ogy and related fields due to the instrumented world in which we now live
and such methods can measure various aspects of behavior (e.g., Adjerid &
Kelley, 2018).
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If Equation 7 were de-meaned (i.e., means are subtracted so that
the variables are in terms of deviations from the mean), any
variable with no variation within clusters (i.e., Level 2 predictors
and random effects) will be reduced to a constant value of zero and
will therefore drop out of the model because the cluster mean and
the observed values will necessarily be identical:

�Productivityij 	 Productivity�j)

� �1(Motivationij 	 Motivation�j) � (u0j 	 u�0j) � (rij 	 r�j)

� �1(Motivationij 	 Motivation�j) � (rij 	 r�j). (8)

Equation 6 and Equation 8 are the same and are also equivalent
to Equation 5 without the Motivation � Incentive interaction term.
However, there is a difference in implementation. Using the LSDV
FEM, software will use the correct degrees of freedom for the
standard error calculation, because the cluster affiliation dummy
variables are directly included in the model and consume one
degree of freedom each, as with any categorical predictor. In the
de-meaned approach, degrees of freedom will not be computed
properly because the subtraction of the means occurs as a data
preprocessing step that precedes the estimation of the model. As a
result, the p values and inferential tests will not be correct and must
be adjusted to reflect the implicit inclusion of the cluster means in
the model (Judge, Griffiths, Hill, & Lee, 1985).

Comparing MEMs and FEMs

MEMs and FEMs each offer defensible ways to model clustered
data and have the same general goal. However, there are consid-
erable differences with regard to the type of analytic scenarios in
which each can be optimally applied, or even applied at all.
Differences between these two approaches across a range of sce-
narios are summarized in Table 2. In the subsequent sections, we
provide additional discussion to highlight the more salient differ-
ences between the methods.

Sample Size

In many disciplines, the number of clusters in data sets tends to
be small due to practical concerns, such as financial limitations,

the use of extant data sets, or difficulties in recruiting large
numbers of participants (Dedrick et al., 2009; McNeish & Staple-
ton, 2016). MEMs applied to data with fewer than 30 clusters have
been shown to be at risk for downwardly biased estimates of the
variance component and regression coefficient standard error es-
timates (e.g., B. Bell, Morgan, Schoeneberger, Kromrey, & Ferron,
2014; Maas & Hox, 2005). Several remedies have been proposed,
including the Kenward-Roger correction (Kenward & Roger,
1997), Bayesian Markov Chain Monte Carlo (MCMC) estimation
(Hox, van de Schoot, & Matthijsse, 2012), and Monte Carlo
resampling methods (Bates, 2010). These methods are generally
serviceable in practice although they are not without their faults
(e.g., Ferron, Bell, Hess, Rendina-Gobioff, & Hibbard, 2009;
McNeish, 2016, 2017b).

Because FEMs are routinely estimated with OLS, they tend to
be much less susceptible to bias when data have very few clusters,
because standard errors have a closed form and there is no need to
estimate variance components. For example, for cross-sectional
clustering and fewer than 15 clusters, McNeish and Stapleton
(2016) found that FEMs performed the best overall with respect to
minimizing bias, controlling Type I error rates, and maximizing
power from among 12 competing small sample methods, including
MCMC MEMs with the half-Cauchy prior recommended for small
samples by Gelman (2006).

As noted previously, coefficient estimates of Level 2 predictors
cannot be obtained from FEMs. This may lead some researchers to
acknowledge the superior small sample performance, but note that
FEMs ultimately do not estimate all the quantities that are often of
interest in many contexts. Although true, note that these Level 2
coefficients are typically estimated rather poorly with fewer than
20 clusters (Baldwin & Fellingham, 2013; Hox et al., 2012; Steg-
mueller, 2013), so researchers should carefully consider the im-
portance of Level 2 coefficients in such cases. Prioritizing the
estimation of these Level 2 coefficients could lead to biased
estimates throughout a MEM, whereas a FEM would limit the
coefficient estimates to Level 1 coefficients. However, FEMs
would safeguard against bias for the estimates the model does
yield (i.e., Level 1 coefficients) while controlling for measured and
unmeasured Level 2 effects, provided that FEM assumptions are
met.

Cross-Level Interactions

Cross-level interactions refer to an interaction of two variables
in which one variable is at Level 1 (e.g., the employee level) and
the other is at Level 2 (e.g., the company level).8 Cross-level
interactions can be tested using either the FEM or MEM frame-
work, with examples being presented in Equation 2 and Equation
5. In Equation 2, the cross-level interaction for a MEM is present
by modeling the coefficient of a Level 1 predictor as a function of
a Level 2 predictor (the �11 specifically represents this cross-level
interaction effect). In the FEM model in Equation 5, the same
cross-level interaction effect is captured by the �2 parameter.

8 Although we talk about “levels” in FEMs, note that FEMs do not
consider different levels of analysis as in MEMs. The FEM model does not
differentiate between Level 1 or Level 2 variables. The FEM is an inher-
ently single-level regression model that uses clever coding to manipulate
the single-level framework into estimating coefficients from clustered data.

Table 1
Comparison of MEM and FEM Model Parameters

From MEM To FEM From FEM To MEM

�00 Weighted average of 	1 to 	5 �1 �10

�01 None, included in 	1 to 	5 �2 �11

�10 �1 	1 u01

�11 �2 	2 u02

u0j 	j
� 	3 u03

rij rij 	4 u04

	5 u05

rij rij

Note. MEM � mixed effects model; FEM � fixed effects model.
� 	 and u are conceptually related but are not the same. 	j are fixed effects,
whereas uj are random effects. Depending on how the FEM is specified, 	j

is either the complete intercept for cluster j or the difference between the
intercept of cluster j and a reference cluster. In MEM, uj are the deviations
from the overall mean and are defined to have a mean of 0. Even if all other
aspects of the model are identical, the uj and 	j estimates will differ
because uj will be shrunken via empirical Bayes estimation.
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Although FEMs do not allow for Level 2 predictors to be
included in the model, cross-level interactions can be assessed with
FEMs, because interactions of variables collected at different
levels (e.g., employee and supervisor; client and therapist, student
and teacher) will differ for each Level 1 unit and will therefore not
be perfectly collinear with the cluster affiliation variables (i.e.,
there is within-cluster variation). To include these predictors in a
FEM, similar to MEM, a product term is created and included in
the model. Even though the Level 2 predictor cannot be included
in the model, the Level 2 predictor main effect is still controlled for
by the cluster affiliation dummy variables because these variables
account for all variance attributable to measured and unmeasured
Level 2 variables (Allison, 2009). Interactions of two Level 1
variables are also permissible in FEMs, but interaction effects of
two Level 2 variables are not possible in FEMs because there will
be no within-cluster variation.

Cluster-Varying Effects

A common research question is whether Level 1 effects vary in
different clusters. For example, in an organizational setting, a
researcher may want to determine if the effect of motivation on
productivity is the same across supervisors. In MEMs, this is
straightforward to test—one only needs to include a random slope
for the Level 1 variable of interest (motivation, in this hypothetical
example). If the associated random effect has a large variance

relative to the magnitude of the coefficient, then it can be con-
cluded that the effect differs depending to which cluster an em-
ployee belongs. Otherwise, the effect can be declared constant
across clusters and the random effect removed. Using the hypo-
thetical example from Equation 2, the effect of motivation on
productivity can vary by clusters by adding a single random effect
(u1j) into the model, such that

Productivityij � �0j � �1jMotivationij � rij (9a)

�0j � �00 � �01Incentivej � u0j (9b)

�1j � �10 � �11Incentivej � u1j (9c)

Similar to the interpretation of the random intercept (u0j) above,
u1j allows the company-specific slope �0j to change for each
company beyond the change predicted by incentive. The u1j term
captures the difference in the effect of motivation from the overall
slope �10 for the jth cluster, conditional on incentive.

In FEMs, cluster-varying effects are possible but are more
difficult to specify and interpret. As discussed so far, cluster
affiliation coefficients in FEMs are similar to a random intercepts
MEMs such that each cluster receives a unique intercept estimate.
However, the Level 1 coefficients in FEMs do not vary across
clusters as described so far, which would be equivalent to a MEM
without random slopes. If cluster-varying effects are desired, this
can be accomplished by including an interaction term between the

Table 2
Comparison of the Types of Modeling Questions That Can Be Assessed With MEMs and FEMs

Modeling problem MEM FEM

Accommodation of clustering Random effects must be explicitly modeled by
the user. The covariance matrix of the
random effects also must be explicitly
modeled.

Cluster affiliation dummy variables are included
directly in the model.

Common estimation method (Restricted) Maximum likelihood Ordinary least squares
Predictors at Level 2 Allowed and coefficients are directly

estimated. Proper specification is required,
meaning that no relevant variables are
omitted.

Generally not estimable (although there are proposed
methods that claim to be able to provide estimates
under particular circumstances). Omitted Level 2
variable bias is not a concern.

Omitted variable bias A concern at all levels Only a concern at Level 1
Accommodation of variability at

Level 2
Predictor variables and random effects Cluster affiliation dummy variables

Coefficient interpretation Coefficients at either level are interpreted
conditional on the variables explicitly
included in the model.

Level 1 coefficients are conditional on all Level 2
variables (measured and unmeasured) being
accounted for.

Level 2 sample size requirement 30 is the general recommendation; can be
reduced (to about 10) if corrective
procedures are used

Viable with very small Level 2 sample sizes

Cluster-varying slopes Easily modeled with random effects Must use interaction terms with cluster affiliation
variables

Supports impure hierarchies Yes No
Efficiency More efficient (smaller standard errors) but

more likely to be biased if assumptions are
violated or if the model is misspecified

Less efficient but less likely to produce biased
estimates because there are fewer assumptions and
fewer locations where misspecifications can occur

Mediation possible Yes Only if all variables are at Level 1
Analysis of contextual effects Yes No
Cross-level interactions Yes Yes
Extendable to three-level hierarchies

(or more) Yes Not with a purely FEM
Assumption about sampling of

clusters
Clusters are randomly sampled and

representative of the population
Clusters need not be randomly sampled

Note. MEM � mixed effects model; FEM � fixed effects model.
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cluster affiliation variables and the Level 1 predictor into the
model. In this way, the Level 1 predictor will be estimated to have
a unique effect in each cluster.

To make this model more explicit, recall the hypothetical ex-
ample of modeling productivity as a function of motivation and
incentive. In Equation 5, the model posits that the effect of moti-
vation is constant across all companies, conditional on the other
effects that are in the model. If a researcher wanted to model
unique effects for motivation in each company, the main effect for
Motivation would be removed and Motivation � Company inter-
actions would be included, such that

Productivityij � �1(Motivationij � Company1)

� �2(Motivationij � Company2)

� �3(Motivationij � Company3)

� �4(Motivationij � Company4)

� �5(Motivationij � Company5) � �1Company1

� �2Company2 � �3Company3 � �4Company4

� �5Company5 � rij (10)

Coefficients �1 through �5 now represent the effect of motiva-
tion on productivity for each respective cluster, similar to random
effects in a MEM. There are also alternative ways in which this
could be coded, such as leaving the main effect of motivation in
the model but including J – 1 interaction terms (i.e., reference
coding). The coefficients of these interaction terms would then
represent the difference in the effect of motivation on produc-
tivity from the effect of motivation in the reference cluster. As can
be seen from Equation 10, if there are many clusters in the model,
estimation of the model with this approach can quickly become
burdensome due to the large number of parameters.

Although this type of specification can achieve the goal of
modeling a cluster-varying effect within the FEM framework, such
an approach does have disadvantages. One disadvantage is that
each cluster affiliation by Level 1 predictor interaction coefficient
will consume a degree of freedom, meaning that researchers may
not have enough degrees of freedom to estimate multiple cluster-
varying effects or even a single cluster-varying effect if there are
many predictors in the model. Another disadvantage is that, unlike
MEMs, which estimate a variance component for the random
slopes, which can inferentially tested (although specialized 50:50
mixture chi-square tests are usually needed for this test; see Stram
& Lee, 1994), FEMs have less intuitive methods to infer whether
a cluster-varying effect is needed in the model. If reference coding
is used such that the interaction terms are compared with a refer-
ence cluster, a multiparameter test for the interaction term (e.g.,
omnibus F test, Wald multiparameter Type III test) may provide
helpful inferential information. With absolute coding, such a mul-
tiparameter test would likely be of little use, because it would be
testing whether the cluster slopes are collectively equal to zero
rather than testing if they are different from each other (with
reference coding, these two questions are synonymous). The vari-
ance of the cluster affiliation effects can also be calculated by
saving all of the estimates and running descriptive statistics, al-
though this will not be equal to a MEM variance component
estimate because it will not account for aspects such as unequal
cluster sizes or differential reliability in each cluster.

Mediation

Using our running example, suppose that a researcher’s interest
is, again, the effect of motivation on productivity; however, now it
is of interest to test whether the effect of job satisfaction on
productivity is mediated by motivation. Mediation analysis is one
of the most important methods for explaining causal pathways.
Mediation analyses with clustered data can also be modeled in
either the MEM or FEM framework as well as other frameworks
(e.g., structural equation modeling, linear regression). A path di-
agram for this type of mediation model in the FEM framework is
displayed in Figure 1. FEMs can only model mediation if all the
variables are at Level 1. This would correspond to the so-called
1–1–1 mediation model, in which all variables of interest are at the
lowest level of the hierarchy but are clustered within higher level
units. Level 2 variables cannot be included in a FEM mediation
model because they are collinear with the cluster affiliation vari-
ables (Hayes, 2013).

In Figure 1, the cluster affiliation dummy variables are predic-
tors of both the mediator (motivation) and the outcome (produc-
tivity) because both serve as dependent variables in the system.
The independent variable (job satisfaction) is an exogenous vari-
able in the model (in that no arrows point to job satisfaction) and
therefore need not be regressed on the cluster affiliation dummy
variables. As noted in Hayes (2013), the FEM specification assumes
that the effects of the coefficients do not vary across clusters. It is
possible to create Cluster Affiliation � Predictor Variable interaction
terms, as was discussed in the previous section, to overcome this,
although the interpretation of the model would be similarly difficult.
The intercepts of motivation and productivity must also be con-
strained to zero if using absolute coding in order to avoid overparam-
eterizing the model. Alternatively, the intercepts could be retained if
reference coding were used.

If relations beyond what can be tested in a 1–1–1 model are of
interest, then one can use either a MEM framework (Krull &
MacKinnon, 1999) or the closely related multilevel structural
equation modeling (ML-SEM) framework (Kenny, Korchmaros,
& Bolger, 2003; Preacher, Zyphur, & Zhang, 2010; Zhang, Zy-
phur, & Preacher, 2009). These frameworks allow researchers to
test mediation involving Level 2 predictors, with the ML-SEM
allowing for the most general models (Preacher et al., 2010).
Importantly, it is easy to allow coefficients to differ across the

Figure 1. Path diagram for 1–1–1 mediation models using a fixed effects
approach. The cluster affiliation variables are depicted as a single box—in
the actual path diagram each cluster affiliation variable would be repre-
sented by its own box. a, b, and c � mediation paths; Job Sat. � Job
Satisfaction; Mot. � Motivation; Prod. � Productivity.
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different clusters in either framework by including random effects
(Bauer, Preacher, & Gil, 2006; Preacher, 2011; Preacher, Curran,
& Bauer, 2006). Using the hypothetical example from Figure 1,
this means that the relation from job satisfaction to motivation
could vary across clusters or that job satisfaction could be mea-
sured at the company level instead of the employee level.

Contextual Effects

The goal of a contextual effect analysis is to determine the
extent to which a Level 1 effect differs from a Level 2 effect for
the cluster mean of the same variable (Raudenbush & Bryk, 1986).
From the definition alone, it may be clear that FEMs cannot
accommodate this type of question because FEMs remove consid-
eration of all specific Level 2 information from the model (Beck &
Katz, 2001). In MEMs, contextual effects are estimated by includ-
ing a Level 1 predictor in the model and then including the cluster
mean for that same variable as a Level 2 predictor (e.g., Rauden-
bush & Bryk, 2002, p. 139). Depending on how the Level 1
variable is centered, the contextual effect is either captured by the
Level 2 regression coefficient (with grand-mean centering) or the
difference of the Level 2 regression coefficient and the Level 1
regression coefficient (with group-mean centering; e.g., Enders &
Tofighi, 2007; Hofmann & Gavin, 1998; Kreft, de Leeuw, &
Aiken, 1995). More information about contextual effect analysis
can be found in Raudenbush and Bryk (2002, pp. 139–141), or in
Feaster, Brincks, Robbins, and Szapocznik (2011) for a less tech-
nical introduction.

Nonpure Hierarchies and Multiple
Levels of Clustering

In the MEM framework, nonpure hierarchies are straightforward
to model with cross-classified models (see Grady & Beretvas,
2010, or Meyers & Beretvas, 2006, for more detail on cross-
classified models). Because FEMs use dummy-coded cluster af-
filiation variables to account for clustering, cross-classification
cannot be accommodated because cluster affiliation is not mutu-
ally exclusive (A. Bell & Jones, 2015).

Data with multiple levels of clustering (e.g., three-level mod-
els) are also common, including hierarchies such as employees/
department/companies, people/neighborhoods/cities, and students/
teachers/schools. In the MEM framework, additional levels can
be added without much effort through the use of nested random
effects (Bryk & Raudenbush, 1988). In a pure FEM, three or
more levels of clustering cannot be included in a single model
because there will not be sufficient degrees of freedom. In
several contexts, the lack of generalizability of the FEMs to
more than two levels can be problematic. In panel data, for
instance, if employees are followed over time but are also
clustered within companies or departments (e.g., repeated-
measures/person/department), FEMs are not equipped to ac-
commodate this three-level data structure.

However, FEMs and MEMs can be combined in the case of
three or more levels of clustering (McNeish & Wentzel, 2017).
This is most likely to be used when a researcher does not have
theoretically meaningful predictors at the third level. In this case,
a fixed effects approach can be used to account for the third level,
whereas the first two levels are modeled with a MEM. This way,

the Level 1 and Level 2 coefficients are estimated such that they
control for all measured and unmeasured Level 3 variables without
needing the less interesting level to be explicitly modeled. Higher
levels of the hierarchy also tend to have smaller samples, which are
less problematic for FEMs compared with MEMs (McNeish &
Stapleton, 2016).

Endogeneity and Omitted Confounders

In econometrics, the primary argument for FEMs stems from
concerns about the correct attribution of causality and the addi-
tional assumptions imposed by MEMs (Kim & Frees, 2006, 2007;
Plümper & Troeger, 2007). Specifically, violations of the exoge-
neity assumption are the primary concern. Under such a violation,
the model is said to be endogenous. Endogeneity refers to a
non-null correlation between the errors (either the Level 2 random
effects or the Level 1 residuals) and the outcome variable, which
often arises from omitted confounders (e.g., Allison, 2009; Kim &
Frees, 2006, 2007). More formally, endogeneity occurs when
Cov(X, u) 
 0 and/or Cov(X, r) 
 0 using the notation defined
earlier. In the MEM framework, endogeneity most often results
from the omission of relevant Level 2 variables from the model
(although endogeneity can be caused by other design aspects such
as self-selection into treatment groups; e.g., Tofighi & Kelley,
2016). In such a case of omitted confounders, the errors in the
model contain information from the omitted predictor. However,
because both the omitted variable and the other predictors in the
model are related to the outcome, the included predictors are no
longer independent of the error term. More formally, for an omit-
ted variable O, if Cov(O,Y) 
 0 and Cov(X, Y) 
 0, then Cov(O,
X) 
 0. Because the covariance of omitted variables is relegated to
an error term, omission of a meaningful variable implies that
Cov(X, u) 
 0 or Cov(X, r) 
 0, which is the definition of
endogeneity. In the presence of endogeneity, the estimates of a
MEM are no longer statistically consistent and coefficients can
exhibit bias, even as sample size approaches infinity (Greene,
2003).

Although many studies in psychology are nonexperimental or
quasi-experimental and strict causal claims may not be desired,
statistical consistency of estimates remains a relevant consider-
ation (Antonakis, 2017; Antonakis, Bendahan, Jacquart, & Lalive,
2010). Even in correlational research, reporting that X is related to
Y contains some degree of causal implication (Antonakis et al.,
2010), and threats to validity need to at least be considered.
Antonakis, Bendahan, Jacquart, and Lalive (2014) go as far as to
say “nonexperimental designs that do not address problems of
endogeneity are pretty much useless for understanding a phenom-
enon” (p. 94). Although the merits of the aforementioned state-
ment can be debated, the issue of endogeneity is important to all
users of MEM, even when causal claims are not the primary
interest.

Despite the vast emphasis placed on endogeneity in economet-
rics, endogeneity does not receive as much attention in the psy-
chological tradition. To provide some anecdotal evidence, for
publication years 2014 through 2016, 41 of the 199 articles (21%)
that appeared in Econometrica discussed issues related to endoge-
neity. By contrast, during the same time frame in Psychological
Methods, only one out of 97 articles (1%) discussed issues related
to endogeneity (this lone article is DeMaris, 2014). In addition,
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popular checklists written for researchers in the psychological
tradition for conducting analyses with a MEM by Ferron et al.
(2008), Dedrick et al. (2009), and Hox (2010) do not mention
checking or accommodating issues related to exogeneity assump-
tions or omitted variables. Granted, many studies in psychology
were historically based on controlled experiments, in which the
risk of confounding variables is minimized. However, in areas of
psychology that are more observational in nature, we believe that
the researchers need to consider the deleterious effect that endo-
geneity can have on the validity of causal interpretations—an issue
that has historically plagued econometricians who have a difficult
time performing experimental studies in macro situations.

Inattention to the exogeneity assumption of MEMs, and the lack
of familiarity with FEMs, may contribute to the pervasive use of
MEMs in psychology and related fields (Kim & Frees, 2006,
2007). In studies grounded in psychology, for example, it is
common to see researchers report that random intercepts included
in a MEM account for all the variability at Level 2 (McNeish et al.,
2017). However, random intercepts included in MEM account for
all of the variability at Level 2 only when the exogeneity assump-
tion is met. As aptly stated in Allison (2009),

the key point here is that, contrary to popular belief, estimating a
[mixed] effects model does not really “control” for unobserved het-
erogeneity. That’s because the conventional [mixed] effects model
assumes no correlation between the unobserved variables and the
observed variables. (p. 22)

However, as pointed out in A. Bell and Jones (2015), there is a
similar misconception about FEMs made by econometricians,
namely, that if one wishes to protect against endogeneity from
omitted variables at Level 2, then one must employ FEMs and thus
lose the ability to estimate Level 2 coefficients in the process. As
a further consequence, researchers lose the ability to address
research questions and advanced modeling techniques that require
these coefficients (note that FEMs are robust to endogeneity pro-
duced by omitted Level 2 variables but not necessarily endogene-
ity attributable to design issues). However, FEMs are not the only
modeling option one can employ to address potential endogeneity
attributable to Level 2 variables. As will be discussed in the next
section, there are modeling strategies that provide the benefit of
FEMs in accounting for possible endogeneity at Level 2 and also
provide the benefit of MEMs in that Level 2 coefficients can be
estimated.

Combining the Benefits of the Econometric and
Psychological Traditions

The distinction between FEMs and MEMs sets up what is
commonly referred to in econometrics as “the all or nothing” effect
(e.g., Baltagi, 2013; Kim & Swoboda, 2010). MEMs allow re-
searchers to flexibly model all the effects in which they are
interested, but all relevant predictors must be included in the model
to avoid endogeneity—a potentially daunting task in observational
behavioral science and economic research. Conversely, FEMs are
inflexible in that they do not allow for Level 2 predictors to be
estimated, yet endogeneity at Level 2 will not be problematic.
Researchers in either discipline may be slow to appreciate the
advantages of the modeling approach taken by the other. Domain-
specific preferences suggest that psychologists want Level 2 co-

efficient estimates and econometricians want protection from en-
dogeneity. However, thinking of clustered data as a binary choice
between MEMs or FEMs imposes a false dichotomy: There are
gradations that exist between two extremes. We now present a
model specification that addresses endogeneity while also allow-
ing for Level 2 coefficients to be estimated, allowing researchers
to break free from the false dichotomy imposed by “the all or
nothing” effect.

To simultaneously model Level 2 coefficients and successfully
address issues of endogeneity, we recommend that researchers use
a within–between specification of a MEM (WB-MEM), an exten-
sion of Mundlak’s (1978) specification. Although similar sugges-
tions have recently been provided (e.g., A. Bell & Jones, 2015;
Dieleman & Templin, 2014), the method has not been prominently
utilized in analyses of empirical data. In the WB-MEM specifica-
tion, the Level 1 predictors are group mean centered and the cluster
mean of the Level 1 predictor is also included as a Level 2
predictor. Researchers in psychological or organizational research
may recognize that this approach as an extension the process used
to investigate contextual effects. Consider, again, the example of
predicting productivity from motivation that has been used
throughout this article. The WB-MEM specification for this model
to protect against Level 2 endogeneity would be written

Productivityij � �0j � �1j�Motivationij 	 Motivation�j) � rij

(11a)

�0j � �00 � �01Motivation�j � u0j (11b)

�1j � �10 (11c)

The Level 1 motivation predictor is included in the model as
usual but the Level 2 cluster mean for motivation is then included
as a Level 2 predictor. This specification results in the Level 1
coefficient estimates in which omitted variables at Level 2 are not
a concern, provided that the model is properly specified at Level 1
(an assumption also made by FEMs). If multiple Level 1 predictors
are of interest, then the corresponding cluster mean would be
included as a Level 2 predictor of the intercept for each pre-
dictor. For example, if compensation were added to the model
in Equation 11,

Productivityij � �0j � �1j�Motivationij 	 Motivation�j)

� �2j�Compensationij 	 Compensation�j) � rij (12a)

�0j � �00 � �01Motivation�j � �02Compensation�j � u0j

(12b)

�1j � �10 (12c)

�2j � �20 (12d)

Alhough the WB-MEM specification appears to be only a minor
tweak to a standard MEM, setting the model up as a WB-MEM can
have a profound impact on meeting the requirements of the exo-
geneity assumption.

In essence, the WB-MEM specification completely separates the
estimation of within-cluster effects from between-cluster effects, a
notable advantage, as this allows for the Level 2 effects to be
modeled. This follows from the properties of the de-meaned FEM.
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The logic of the WB specification is similar to the de-meaned
specification in Equation 6—group-mean centering creates a
within-cluster estimate of motivation that does not depend of
between-cluster information which is absorbed in the Level 2
cluster mean predictor. Unlike the de-meaned model, the WB-
MEM specification allows for estimates of coefficients for Level 2
variables as well as random effects on Level 1 coefficients. Put
another way, effects of endogeneity manifest in MEMs because
two processes—the effect being explicitly modeled and the im-
plicit effect of omitted variables—are relegated to one parameter
in the model (A. Bell & Jones, 2015). Splitting each Level 1 effect
into within and between components allows the within component
to be estimated irrespective of possible omitted Level 2 variables.
The effect of Level 2 variables are completely consolidated into
the between component (detailed statistical arguments for the
effectiveness of this general strategy can be found in Mundlak
(1978).

Provided that the model is properly specified at Level 1, the
WB-MEM specification protects against bias from potential omit-
ted Level 2 variables while also allowing for coefficients of Level
2 predictors to be directly estimated. That is, Level 2 predictors are
no longer perfectly collinear with the mechanism that guards
against omitted variable bias at Level 2. Thus, if researchers want
to estimate effects of incentive (at the company level) and moti-
vation (at the employee level) while also accounting for possibly
omitted company-level variables (as in the FEM in Equation 4),
this could be done with a WB-MEM specification as

Productivityij � �0j � �1j�Motivationij 	 Motivation�j) � rij

(13a)

�0j � �00 � �01Incentivej � �02Motivation�j � u0j

(13b)

�1j � �10 � �11Incentivej (13c)

Even though group-mean centering is widely used in psychol-
ogy studies, Allison (2009) notes,

Although it is well-known that group mean centering can produce
substantially different results, [the mixed-effects model] literature has
not made the connection to fixed effects models, nor has it been
recognized that group mean centering controls for all time-invariant
predictors. (p. 25)

Thus, even though the spirit of the WB-MEM specification is
commonplace in contextual analyses, its utility is much broader in
scope, such that it can be employed to address endogeneity issues
attributable to omitted Level 2 variables.

Illustrative Example

To demonstrate the practical differences between the types of
models we discussed, we present two examples. The first example
features a panel analysis from Holzer, Block, Cheatham, and Knott
(1993) examining the effect of training grants on worker efficacy
across 54 manufacturing firms. This analysis will assume the effect
for all time-varying covariates is the same across all firms (e.g.,
none of the Level 1 effects vary across the firms). The second
example will use the same data set but will allow one of the

covariates to vary randomly for each firm to explore how different
methods are influenced by cluster-varying effects.

Holzer et al. (1993) followed 54 manufacturing firms in Mich-
igan to investigate whether one-time training grants improved
worker performance as defined by the scrap rates of products
produced by the firms (scrap rate is measured once per year,
resulting in three measures per firm). The outcome variable is the
log of the scrap rate per 100 units, which is then modeled by
whether the firm received a training grant in the current year
(grant), whether the firm received a training grant the previous
year (grant last year), the percentage of the firm’s employees that
received training (percent), and whether the firm’s employees are
unionized (union). Grant, grant last year, and percent are time-
varying (Level 1) covariates, and union is a firm covariate (Level
2). Table 3 shows the model specification for three models used in
each of these examples. In all models, the residual error structure
is a homogeneous diagonal (i.e., �2I), and for the firm-varying
slope models, the random effects did not covary with the random
intercepts for the MEM or WB-MEM specification.

No Firm-Varying Slopes

Table 4 shows the results for the three different model types
with the predictors not being allowed to vary across firms. Gen-
erally, the results show that receiving a grant in the previous year
and having a higher percentage of workers receiving training
decreased the number of scrapped items. Although not egregious,
the results do show some possible effects of endogeneity based on
a comparison of coefficients across models. If all relevant Level 2
predictors were included, the effects of the traditional MEM would
align with the WB-MEM specifications because the alternative
specification would have no advantages, as the standard MEM
would meet all requirements of the exogeneity assumption. In the
MEM, the effect of union is positive but not significant. However,
in the WB specification, the effect of union is notably larger (0.58
vs. 0.76, a 30% increase), though the effect remains nonsignificant
and may be due to sampling error. As expected, the time-varying
effects are identical between the FEM and WB-MEM specifica-
tions, demonstrating that both specifications account for endoge-
neity. As an added benefit, the WB-MEM specification allows
researchers to estimate and test the union effect, which is not
possible in the FEM (although the FEM does control for union).

With Firm-Varying Slopes

Table 5 shows the results for the models allowing the effect of
percent to vary across firms. In the MEM and WB specifications,
the variance for this random effect was statistically significant
using a 50:50 mixture chi-square test, as recommended by Verbeke
and Molenberghs (2003). The omnibus test for the Percent � Firm
interaction was also significant in the FEM. In Table 5, the
comparison of the results for MEM and WB specifications follows
a similar pattern to Table 4: The union effect is noticeably different
between specifications. The union effect in the MEM is smaller
and not statistically significant, whereas the effect is notably larger
and statistically significant in the WB model. A similar pattern is
found with the percent predictor. In this model, the FEM is
estimating 110 parameters (two time-varying covariates, 54 firm
intercepts, 54 percent slopes) from 157 total observations. The
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model can be fit, but the model is heavily parameterized (only 47
degrees of freedom remain from 157 observations), which is
reflected in the instability of the estimates, which depart from the
estimates of the other models.

Discussion

Readers may note that the within– between specification pos-
sesses the advantages of FEMs while maintaining the flexibility
of MEMs. This begs the question, when should researchers use
standard FEMs or MEMs? A. Bell and Jones (2015) addressed
this via theoretical and simulation-based arguments and found

that the WB specification is at least as good as the FEM with
respect to estimating coefficients in the presence of endogeneity
due to omitted variables. Bell and Jones also found that the WB
specification often outperformed the FEM in other scenarios
such as unbalanced clusters. As noted earlier in this article,
FEMs can be more cumbersome to specify for more complex
analyses for which automated procedures do not always exist
(e.g., FEM regressions in Stata are straightforward to specify
but a fixed effects mediation model in Mplus is not) or are
unable to address common types of data structures and research
questions that MEMs can handle with relative ease. By using a
WB specification, the flexibility of MEMs can be realized while

Table 3
Model Equations for the Holzer et al. (1993) Example Analyses

Model type No firm-varying slopes With firm-varying slopes

MEM Log�Scrap Rate� � �0 � �1Grantij � �2Grant LYij
� �3Percentij � rij

�0 � �00 � �01Unionj � u0j
�1 � �10
�2 � �20
�3 � �30

Log�Scrap Rate� � �0 � �1Grantij � �2Grant LYij
� �3Percentij � rij

�0 � �00 � �01Unionj � u0j
�1 � �10
�2 � �20
�3 � �30 � u3j

FEM Log�Scrap Rate� � �1�Grantij� � �2�Grant LYij �
� �3�Percentij� � �1Firm1 � . . . � �54Firm54
� rij

Log�Scrap Rate� � �1�Grantij� � �2�Grant LYij �
� �1Firm1 � . . . � �54Firm54
� �1�Firm1�Percentij� � . . .
� �54�Firm54�Percentij� � rij

WB-MEM Log�Scrap Rate� � �0 � �1�Grantij 	 Grant�j�
� �2�Grant LYij 	 Grant LY�j�
� �3�Percentij 	 Percent�j� � rij

�0 � �00 � �01Unionj � �02Grant�j � �03Grant LY�j

� �04Percent�j � u0j
�1 � �10
�2 � �20
�3 � �30

Log�Scrap Rate� � �0 � �1�Grantij 	 Grant�j�
� �2�Grant LYij 	 Grant LY�j�
� �3�Percentij 	 Percent�j� � rij

�0 � �00 � �01Unionj � �02Grant�j

� �03Grant LY�j � �04Percent�j � u0j
�1 � �10
�2 � �20
�3 � �30 � u3j

Note. MEM � mixed effects model; FEM � fixed effects model; WB-MEM � MEM with within-between specification; LY � last year.

Table 4
Holzer et al. (1993) Results for Model With No
Firm-Varying Slopes

Predictor

MEM FEM WB-MEM

Est. p Est. p Est. p

Time-varying predictors
Intercept .58 — — — �.27 —
Grant �.08 .65 �.07 .66 �.07 .66
Grant LY �.63 �.01 �.65 �.01 �.65 �.01
Percent �.56 �.01 �.60 �.01 �.60 �.01

Firm-level predictors
Unionized .58 .18 — — .76 .07
Grant mean — — — — 2.24 .16
Grant LY mean — — — — �1.14 .49
Percent mean — — — — .37 .54

Variance components
Var(Int) 2.02 — 1.76
Var(Residual) .23 .23 .23

Note. MEM � mixed effects model; FEM � fixed effects model; WB-
MEM � MEM with within-between specification; Est. � estimate; LY �
last year.

Table 5
Holzer et al. (1993) Results for Model With
Firm-Varying Slopes

Predictor

MEM FEM WB-MEM

Est. p Est. p Est. p

Time-varying predictors
Intercept .52 — — — �.22 —
Grant �.29 .06 �.41 .58 �.28 .07
Grant LY �.72 �.01 �.86 �.01 �.74 �.01
Percent �.41 .07 �.50 .04 �.46 .05

Firm-level predictors
Unionized .63 .13 — — .78 .05
Grant mean — — — — 1.98 .20
Grant LY mean — — — — �1.03 .52
Percent mean — — — — .28 .65

Variance components
Var(Int) 1.71 — 1.55
Var(Percent) .64 — .62
Var(Residual) .16 .16 .16

Note. MEM � mixed effects model; FEM � fixed effects model; WB �
MEM with within-between specification; Est. � estimate; LY � last year.
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simultaneously estimating Level 1 effects that are protected
from threats of omitted variables, at least to the extent that such
protection is afforded by FEMs. With the WB specification,
researchers do not have to consciously disregard aspects like
cluster-varying effects or mediation hypotheses—these can be
framed within the WB specification. More directly, MEMs can
very often be specified in a way that can encompass the benefits
of FEMs while also maintaining the flexibility to assess more
types of and more complex research interests.

If researchers are weary of the assumptions made by includ-
ing random effects, Dieleman and Templin (2014) also note that
the WB specification does not necessarily require that cluster-
ing be accommodated with MEM—the WB specification can be
adapted for use with cluster-robust errors or generalized esti-
mating equations, such that omitted confounder bias can be
similarly guarded against if clustering is accommodated with
design-based methods. As has been argued (e.g., Beck & Katz,
2001; A. Bell & Jones, 2015; Castellano, Rabe-Hesketh, &
Skrondal, 2014), the information that is being discarded in
FEMs can often explain phenomena of interest; indeed, an
MEM approach would allow a richer set of questions to be
addressed. It is unwise to merely control for the entirety of
Level 2 when there are straightforward ways to incorporate
such information into the model and preserve access to research
questions addressing Level 2 effects.

As studies continue to stray from the classic controlled ex-
periment and as nonrandom samples continue to be collected,
endogeneity increasingly threatens the validity of claims made
by researchers. Given the increasingly interwoven and complex
processes that are modeled in modern psychological research,
omitted confounders are a genuine concern and researchers
from the psychological tradition would be wise to adopt some
econometric tools and concerns. Altering MEMs ever so
slightly so that they form a WB-MEM specification could go a
long way to address the impact of endogeneity issues have had
on models for psychological data. Additionally, such a speci-
fication would allow more flexibility for econometrically
grounded researchers accustomed to employing the FEM frame-
work. This type of cross-fertilization of methods presents ad-
vantages for a wide variety of researchers, similar to the emer-
gence of structural equation modeling framework that arose
from blending structural models from economics with factor
models from psychology, forming a stronger overall modeling
framework.

Despite the high praise given to the WB-MEM specification,
it is not a universal solution for modeling clustered data. As
noted in McNeish and Stapleton (2016), the performance of
MEMs, including the WB specification, are adversely affected
by small samples. Both A. Bell and Jones (2015) and McNeish
and Stapleton (2016) recommended a FEM when the number of
Level 2 units is small. In such cases, the data are often not
sufficiently rich to support the more ambitious WB-MEM spec-
ification (Maas & Hox, 2005; Stegmueller, 2013). The random
effects in a WB-MEM also assume random sampling of clusters.
Should this assumption be inappropriate, the assumption could be
circumvented with an FEM because no such assumption is required in
the FEM framework. Alternatively, design-based methods like gen-
eralized estimating equations can accommodate a WB specification
that preserves Level 2 predictors without modeling with random

effects. The WB-MEM specification also does not solve all issues
with endogeneity. If researchers are trying to estimate treatment
effects, endogeneity can occur when treatment and control
groups are nonrandom or self-selected (e.g., only poorly per-
forming employees are eligible for selection into the treatment
group). Endogeneity, in this case, is attributable to properties of
the research design, measurement errors, and/or the data col-
lection, not due to the way the data are modeled (A. Bell &
Jones, 2015; Kennedy, 2008; Li, 2011). Neither the WB spec-
ification nor the FEM address endogeneity attributable to the
research design, and any estimated treatment effects using these
methods would still be likely to contain bias—WB-MEM and
FEMs primarily address endogeneity introduced from omission
of Level 2 variables. For endogeneity of this type, researchers
could condition on covariates (e.g., ANCOVA), use propensity
score methods, or use instrumental variables to accommodate
the endogeneity present in the variables themselves. Consistent
with the overall theme of this article, the instrumental variables
approach is another method that is well known by researchers
trained in the econometric tradition but is not used by many
researchers with backgrounds in psychology. The details con-
comitant with instrumental variables is beyond the scope of this
article, so we will not address this method here—for more
information, see DeMaris (2014) or Foster and McLanahan
(1996) for studies grounded in psychology. For more general
treatments, see Angrist and Krueger (2001), Greenland (2000),
or Heckman (1997).

In conclusion, both MEMs and FEMs have advantages that
can provide unique benefits in the context of modeling clustered
data, whereas the WB-MEM specification is an option that can
often capitalize on advantages of both methods. Our goal has
not been to show either method in a negative light but rather to
bridge the two methods together to show how they can com-
plement each other. As the line distinguishing psychology from
economics continues to be blurred, it is beneficial for both types
of researchers to leverage the best methodologies available
across both fields. Different disciplines often emphasize differ-
ent aspects of the same type of analyses, so integrating these
different perspectives can only serve to strengthen analyses in
all disciplines. Sometimes, the lack of awareness to a certain
approach is not because it is not appropriate but simply because
it is not discussed in key training materials. We hope this article
helps to facilitate more understanding and awareness of the
available models.
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