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ABSTRACT
Complex mediation models, such as a two-mediator sequential model, have become more
prevalent in the literature. To test an indirect effect in a two-mediator model, we con-
ducted a large-scale Monte Carlo simulation study of the Type I error, statistical power,
and confidence interval coverage rates of 10 frequentist and Bayesian confidence/credible
intervals (CIs) for normally and nonnormally distributed data. The simulation included
never-studied methods and conditions (e.g., Bayesian CI with flat and weakly informative
prior methods, two model-based bootstrap methods, and two nonnormality conditions) as
well as understudied methods (e.g., profile-likelihood, Monte Carlo with maximum likeli-
hood standard error [MC-ML] and robust standard error [MC-Robust]). The popular BC
bootstrap showed inflated Type I error rates and CI under-coverage. We recommend differ-
ent methods depending on the purpose of the analysis. For testing the null hypothesis of
no mediation, we recommend MC-ML, profile-likelihood, and two Bayesian methods. To
report a CI, if data has a multivariate normal distribution, we recommend MC-ML, profile-
likelihood, and the two Bayesian methods; otherwise, for multivariate nonnormal data we
recommend the percentile bootstrap. We argue that the best method for testing hypothe-
ses is not necessarily the best method for CI construction, which is consistent with the
findings we present.
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Theories hypothesizing and studies testing sequential
mediation chains, in which two or more mediators
are sequentially measured over time, have become
prevalent across a variety of areas in psychology (e.g.,
Ato Garc!ıa, Vallejo Seco, & Ato Lozano, 2014;
Bernier, McMahon, & Perrier, 2017; Dekovi!c, Asscher,
Manders, Prins, & van der Laan, 2012; Koning, Maric,
MacKinnon, & Vollebergh, 2015; Reh, Tr€oster, & Van
Quaquebeke, 2018). We focus on the mediation model
in Figure 1, which illustrates a sequential two-medi-
ator chain. In particular, Figure 1 shows an empirical
example in which there is a random assignment to
drink-refusal training (X), which is hypothesized to
improve resistance skills (M1), which is then hypothe-
sized to reduce intention to drink alcohol (M2), which
ultimately leads to reduced drinking following treat-
ment (Y). Under a set of correct specification assump-
tions, including the assumption that there are no
omitted variables that influence the posited variables
in the mediation model and the mediators and out-
come variable are continuously distributed, the magni-
tude of the specific indirect effect of X on Y through

M1 and M2 is the product of the regression (path)
coefficients, b1! b2 ! b3 (VanderWeele, 2015).

Two important outcomes of conducting a sequen-
tial mediation analysis are (a) the test of the null
hypothesis of no indirect effect and (b) the confi-
dence/credible interval (CI) for the population indirect
effect. To evaluate the types of methods used to test
indirect effects in sequential mediation analysis, we
conducted a survey of published literature in several
areas of psychology from 2017 to 2018 to investigate
methods currently used and recommended (see the
supplemental materials for details). In addition, we
reviewed methodological journal articles and books
(e.g., Falk & Biesanz, 2014; Fritz, Taylor, &
MacKinnon, 2012; Hayes, 2013; MacKinnon, 2008;
Preacher & Hayes, 2008; Shrout & Bolger, 2002;
Taylor, MacKinnon, & Tein, 2008; Williams &
MacKinnon, 2008) that advocate specific tests of
indirect effects in sequential mediation analysis. Our
survey identified several critical issues that have not
been thoroughly addressed in the literature, concern-
ing the test of an indirect effect in a sequential
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two-mediator model and CI formation for the popula-
tion value of the indirect effect.

Among other things, our review highlighted a lack
of comprehensive Monte Carlo simulation studies to
evaluate six promising, but understudied methods of
CI formation and for testing an indirect effect in
sequential mediation model, single-mediator model,
or both. These methods include two variations of
Bayesian credible interval (Muth!en & Asparouhov,
2012; Yuan & MacKinnon, 2009), one with flat priors
(Bayes-Flat; noninformative, uninformative) and one
with weakly informative (Bayes-Weak) priors for
regression coefficients (note that this is the default
specification in the rstanarm package; Muth, Oravecz,
& Gabry, 2018; Stan Development Team, 2018).
Additionally, we evaluate other methods from the fre-
quentist approach, such as (a) the profile-likelihood
method (Neale & Miller, 1997; Pawitan, 2001; Pek &
Wu, 2015), (b) the Monte Carlo CI with maximum
likelihood (ML) standard errors method (MC-ML;
MacKinnon, Lockwood, & Williams, 2004; Preacher &
Selig, 2012; Tofighi & MacKinnon, 2016), (c) the
robust Monte Carlo (MC-Robust) CI method, which
is an extension of the MC-ML,1 (d) a semi-parametric

(model-based) bootstrap using Bollen-Stine bootstrap
(BS; 1992), and (e) another semi-parametric bootstrap
using the Yuan, Hayashi, and Yanagihara (YHY,
2007) method. To our knowledge, no Monte Carlo
simulation study to date has examined the Bayes-
Weak, BS, and YHY methods for any single-mediator
or sequential mediation model. Previous Monte Carlo
simulation studies have examined profile-likelihood
CI, MC-Robust, and Bayes-Flat (Chen, Choi, Weiss, &
Stapleton, 2014; Cheung, 2007; Falk, 2018; Falk &
Biesanz, 2014) for single-mediator models; however,
there is no published work for these methods in the
context of a sequential mediation model.

The shape of the sampling distribution of the indir-
ect effect in a sequential two-mediator model is differ-
ent from that of the indirect effect in a single-
mediator model. Recall that the indirect effect of a
sequential two-mediator model is the product of three
coefficients, whereas the indirect effect for a single-
mediator model is the product of two coefficients.
Because the performance of the methods to form an
interval estimate depends on the shape of the sam-
pling distribution of indirect effect, as well as the size
of the parameters, and sample size, generalization of
the statistical evaluation of these methods from a sin-
gle-mediator to a sequential mediation model is pre-
mature. For example, Williams and MacKinnon
(2008) concluded that the percentile, BC bootstrap,
and MC-ML methods showed worse Type I error and
coverage in a sequential two-mediator model than in
a single-mediator model. Thus, because of the grow-
ing importance of sequential mediation, it is impera-
tive to have a formal evaluation of the competing
methods so that recommendations can be made to
researchers.

In addition to the complications enumerated, the
assumption of the normality of the residual terms,
henceforth simply referred to as the assumption of
normality, is often violated in psychological science
data (Cain, Zhang, & Yuan, 2017; Micceri, 1989).
When the assumption of normality is violated, ML
estimates in large samples remain consistent, but are
less efficient (Andreassen, Lorentzen, & Olsson, 2006;
Olsson, Foss, Troye, & Howell, 2000). The standard
errors for the model parameters and indirect effect
estimates tend to be inconsistently estimated (Finch,
West, & MacKinnon, 1997), and methods such as
bias-corrected and accelerated (BCa) CI tend to show
inconsistent coverage and inflated Type I error rate
(Biesanz, Falk, & Savalei, 2010). Further, the likeli-
hood-ratio test statistic might not have a chi-squared
distribution for a smaller sample size, thus adversely

Figure 1. A two-mediator sequential mediation chain in which
the mediators are sequentially related. The model has one
antecedent (independent) variable, X (drink refusal training),
two sequential mediators, M1 (resistance skills) and M2 (inten-
tion to drink alcohol), and one outcome variable, Y (number of
drinks per week). Rectangles show observed variables. An
arrow between two variables indicates a linear regression
effect of the variable on the left, on the other variable. Term b
denotes a population coefficient (path) for a linear regression
in which a dependent (endogenous) variable (e.g., an outcome
variable or a mediator) is predicted by another endogenous
variable or an independent (exogenous) variable. Term e
denotes a residual term for each dependent (endogenous)
variable. Under the no-omitted-confounder assumption, a spe-
cific indirect effect of X on Y through M1 and M2 equals b1
b2 b3.

1We will use the MC-Robust CI with Huber-White (Huber, 1967; White,
1980) standard errors (and robust covariance of the parameter
estimates) to adjust for the potential non-normality of data; however,
Falk (2018) used MC-Robust with robust Satorra-Bentler (2010)
standard error correction.
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impacting the performance of the chi-squared-based
methods such as profile-likelihood CI and fit indices
(West, Finch, & Curran, 1995). Even when the
assumption of normality of residuals holds, the sam-
pling distribution of an indirect effect is not normally
distributed especially in smaller sample sizes and
effect sizes (Craig, 1936; Springer & Thompson,
1966). All previous studies of sequential mediation
model have evaluated the performance of tests of
indirect effects with normal data (Taylor et al., 2008;
Tofighi & MacKinnon, 2016; Williams & MacKinnon,
2008). For a single-mediator model, Finch et al.
(1997) studied impact of various degrees of nonnor-
mality, “moderate” (skewness ¼ 2, kurtosis ¼ 7) and
“extreme” (skewness ¼ 3, kurtosis ¼ 21), on standard
error and bias of indirect effect, but not on CI cover-
age. Biesanz et al. (2010) studied the effect of moder-
ate nonnormality (skewness ¼ 2, kurtosis ¼ 7) of the
outcome variable (Y), not the mediator (M), using the
percentile and BCa bootstrap CI for performing a test
of the null hypothesis. Using the latent mediator and
outcome model, Falk (2018) studied the effect of non-
normality (skewness ¼ 1.98, kurtosis ¼ 9.59, which is
close to what the two previous studies considered
“moderate” nonnormality) of the indicators for the
latent variables on the Type I error, power, and cover-
age of the percentile, BC, MC-ML, MC-Robust, and
profile-likelihood methods. For a single-mediator
model, the effect of nonnormality on the following
methods has not been considered: Bayes-Weak, Bayes-
Flat, BS, and YHY.

The purpose of this article is to address these crit-
ical issues and to provide a solid foundation for mak-
ing recommendations to researchers when interest
concerns testing the null hypothesis of no sequential
mediation and reporting a CI for the population
indirect effect. To begin, we review 10 recently devel-
oped and existing methods for constructing a CI and
testing indirect effects: (a) Bayesian credible interval
with flat prior (Bayes-Flat), (b) Bayesian credible
interval with weakly informative prior (Bayes-Weak),
(c) Monte Carlo (parametric bootstrap) CI with ML
standard error (MC-ML; MacKinnon et al., 2004;
Preacher & Selig, 2012; Tofighi & MacKinnon, 2016),
(d) robust Monte Carlo CI with Huber-White (Huber,
1967; White, 1980) standard errors (MC-Robust), (e)
Bollen and Stine (BS; 1992) semi-parametric (model-
based) bootstrap, (f) Yuan, Hayashi, and Yanagihara
(YHY, 2007) semi-parametric (model-based) boot-
strap, (g) profile likelihood (Neale & Miller, 1997;
Pawitan, 2001; Pek & Wu, 2015), (h) percentile non-
parametric bootstrap methods (Bollen & Stine, 1990;

MacKinnon et al., 2004), (i) bias-corrected (BC) non-
parametric bootstrap (Efron, 1987; MacKinnon et al.,
2004; Shrout & Bolger, 2002), and (j) bias-corrected
and accelerated (BCa) nonparametric bootstrap (Efron
& Tibshirani, 1993). We then conduct a large-scale
Monte Carlo simulation study examining the Type I
error when there is no mediation, statistical power
when mediation exists, and CI coverage for the 10
methods across combinations of sample sizes and val-
ues of regression coefficients for both multivariate
normal and nonnormal data. We focus on the two-
mediator sequential model in Figure 1. Finally, we
present an empirical example illustrating the applica-
tion of the recommended frequentist methods. The
empirical example is from a study by Sanchez et al.
(2017) for which all materials and data are publicly
available through Open Science Framework and can
be accessed at (https://osf.io/g5fvw/). The code and
detailed analysis results for the example is available in
the supplemental materials. As mentioned earlier, not
all these methods have been thoroughly examined in
testing indirect effects in two-mediator sequential
mediation chains for both multivariate normal and
nonnormal data. The results of the simulation study
should help guide best practices for applications of
sequential mediation models. We believe that this is
one of the largest and most comprehensive Monte
Carlo simulation studies evaluating sequential medi-
ation models.

Tests of indirect effects in sequential
mediation models

Nonparametric bootstrap

To compute a (1 # a)100% CI for an indirect effect,
denoted by h¼b1 b2 b3, the nonparametric bootstrap
draws R repeated samples (i.e., bootstrap samples;
R$ 1,000 is recommended, Shrout & Bolger, 2002)
with replacement from the original data set (Bollen &
Stine, 1990; Efron & Tibshirani, 1993). A mediation
model is fitted to the original data to provide an esti-
mate of the indirect effect, where ĥ ¼ b̂1b̂2b̂3 denotes
the ML estimate of the original sample. The indirect
effect is also computed for each bootstrap sample
resulting in h%1;h

%
2;:::; h

%
R; where h%r denotes the indirect

effect estimate for the rth bootstrap sample, to
approximate the sampling distribution of the esti-
mated indirect effect and to compute a (1 # a) 100%
CI for the population indirect effect. The percentile
method uses a/2 and 1 # a/2 quantiles of the boot-
strap samples to obtain the confidence limits.
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Efron (1987) also proposed the bias-corrected (BC)
bootstrap procedure to account for the median bias
(difference between median and mean) of the boot-
strap samples. In addition, bias-corrected and acceler-
ated (BCa) bootstrap was proposed to correct for
skewness and to yield more accurate coverage for
smaller sample sizes (Chernick & LaBudde, 2011;
Davison & Hinkley, 1997). Both methods compute
adjusted percentiles a01 and a02 instead of a/2 and 1 #
a/2. The adjusted percentiles a01 and a02 are then used
to compute new confidence limits from the bootstrap
sample. In both methods, the first step is to calculate
the proportion of the bootstrap indirect effect esti-
mates, denoted by p%; that are less than the original

sample estimate ĥ: Then, p% and a/2 quantiles of the
standard normal distribution are obtained, and z0 ¼
U#1ðp%Þ; za=2¼ U#1ða=2Þ, and z1#a=2 ¼ #za=2; are
computed, where U#1denotes the inverse of the
cumulative standard normal distribution function
(e.g., ¼ U#1 :025ð Þ ¼ #1:96). Note that z0 is an esti-
mate of bias. Next, adjusted percentiles a01 and a02 are
computed for each method. For the BC interval, the
adjusted percentiles for the lower and upper CI

limit are as follows: a'1 ¼ Uð2z0 þ za=2Þ and a02 ¼
Uð2z0 þ z1#a=2Þ; where U is the cumulative standard
normal distribution function. For the BCa interval,

the adjusted percentiles are a01 ¼ Uðz0 þ
z0þza=2

1#aðz0þza=2ÞÞ

and a02 ¼ Uðz0 þ
z0þz1#a=2

1#a z0þz1#a=2ð ÞÞ; where a is an

“acceleration” constant that can be estimated during
the bootstrapping process or using a jackknife method
and adjusts for skewness (Davison & Hinkley, 1997).

Parametric (Monte Carlo) bootstrap

The MC-ML method, also known as the parametric
bootstrap (Efron & Tibshirani, 1993), is a flexible
method that can be extended to estimate CIs to test
sequential mediation models (Tofighi & MacKinnon,
2016). To implement MC-ML, first the posited medi-
ation model is estimated using the ML method. Then,
R ($ 1,000) random samples are drawn from a multi-
variate normal distribution whose mean equals the
ML coefficient estimates from the fitted model and its
covariance matrix equals the ML estimate covariance
matrix of the coefficients. Monte Carlo sample of the
indirect effect equals the product of the Monte Carlo
sample of the coefficients that comprise the indirect
effect. The limits of a (1 – a)100% CI are the a/2 and
1 – a/2 quantiles of the Monte Carlo sample of the
indirect effects.

One variation of the Monte Carlo method that has
not been studied for a two-mediator sequential model
is MC-Robust (Falk, 2018). We will study the MC-
Robust CI with robust Huber-White (Huber, 1967;
White, 1980) standard errors (and robust covariance
of the parameter estimates) to adjust for the potential
nonnormality of data. Falk (2018) studied MC-Robust
with robust Satorra and Bentler (2010) standard error
correction for single mediator model. The difference
between MC-ML and robust MC-Robust is that the
latter uses the robust estimates of standard errors
(and covariances) of the parameter estimates rather
than the default ML standard errors. “Robust standard
errors are estimates of standard errors that are sup-
posedly robust against nonnormality.” (Kline, 2016,
p. 238). To obtain the robust estimate of the standard
errors, the ML estimate of the covariance of the par-
ameter estimates is adjusted using Huber-White sand-
wich estimator to correct for potential nonnormality.
In the sandwich estimator, the “meat” is the correc-
tion matrix that is pre- and post-multiplied by the
“bread,” which is the ML estimate of the covariance
matrix (Huber, 1967; Savalei, 2014; White, 1980). As
Freedman (2006) explains, “the sandwich algorithm,
under stringent regularity conditions, yields variances
for the MLE [maximum likelihood estimators] that
are asymptotically correct even when the specifica-
tion—and hence the likelihood function—are
incorrect” (p. 302). Thus, it can be quite a useful way
to approximate something that otherwise is unknown.

Model-based (semi-parametric) bootstrap

One potential issue with the nonparametric bootstrap
techniques is that the bootstrap samples are drawn
from raw data without any consideration for the
hypothesized mediation model. Bollen and Stine
(1990) proposed a semi-parametric, model-based
bootstrap, which is also known as Bollen-Stine (BS)
bootstrap. In BS bootstrap, first the sample data is
transformed to mimic the population data. Next,
bootstrap samples are drawn from the transformed
sample data. Then, each sample is used to estimate
the model and obtain R bootstrap samples of the
quantity of interest. Finally, a CI is obtained by find-
ing the lower and upper quantiles of the boot-
strap sample.

To discuss the transformation more specifically, let
yi denote the p! 1 vector of observations for person i,
let S be the sample covariance matrix, let R be the
hypothesized “population” covariance matrix implied
by the mediation model, and let R̂ be the ML estimate
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of the hypothesized covariance matrix. The BS boot-
strap data is transformed before resampling as follows:
zi ¼ R̂

1=2
S#1=2yi; the superscript –1 denotes the

inverse matrix and superscript 1=2 denotes a
square root of the positive definite matrix, M, such
that (M1/2)T M1/2¼M. Note that the transformation is
performed to ensure that the covariance matrix of the
transformed data equals that of the estimated
hypothesized population: cov zið Þ ¼ R̂: As a result, the
transformation assumes an “exact” fit of data to the
hypothesized population.

YHY method (Yuan et al., 2007), an extension of
BS bootstrap, was developed to accommodate an
approximate fit between the sample and the hypothe-
sized population model. That is, instead of using R̂ to
transform data, YHY method uses the following
covariance matrix Sa ¼ a Sþ 1#að ÞR̂; 0 < a < 1;
where a is a constant that is estimated through a
numerical algorithm. Sa can be thought of as a
weighted average between the sample covariance
matrix and estimated population matrix. Data is trans-
formed as follows: zi ¼ S1=2a S#1=2yi: YHY method
resamples the transformed data to achieve an approxi-
mate fit between the sample and hypothesized covari-
ance matrix instead of the exact fit between the two.

Profile likelihood

The profile-likelihood approach (Cheung, 2007;
Meeker & Escobar, 1995; Pawitan, 2001; Pek & Wu,
2015) produces a CI using the likelihood function,
which is the product of the likelihoods for each data
point given a specified probability distribution. To
compute a profile-likelihood CI, the maximum likeli-
hood estimates are obtained, which is done by maxi-
mizing the logarithm of the likelihood function for the
model (software does this). Let the vector h contain
the hypothesized mediation model parameters and
LðhÞ denote the likelihood function. The log-likelihood
function is defined as LL hð Þ ¼ logLðhÞ and the max-
imum of the log-likelihood function is denoted by LL1,

LL1 ¼ max LL hð Þ ¼ LL ĥ
! "

;

where ĥ is the ML estimator of h.
Next, the profile log-likelihood is formed by first

assuming that the magnitude of the indirect effect is
known, LL w j IEð Þ; where IE¼b1 b2 b3 stands for
indirect effect; and then the profile log-likelihood
function is maximized over the unknown “nuisance”
parameters denoted by w:

LL0 IEð Þ ¼ max LL w j IEð Þ ¼ LL ŵ0 j IE
# $

;

where the nuisance parameters are the other parame-
ters in the models that are not presented in comput-
ing the indirect effect quantities (e.g., b4 and b5). The
function LL0 IEð Þ; is a profile log-likelihood function
that depends on the fixed, but unknown values of IE.
Note that the ML estimate ŵ0 depends on fixed but
unknown values of IE. The profile log-likelihood func-
tion can be treated as any log-likelihood function. For
example, one can compare the profile log-likelihood
function to the original log-likelihood function, LL.
The parameter space in a profile log-likelihood func-
tion is a subset of the original model parameter space
because the value of indirect effect was assumed to be
fixed. Asymptotically, the following expression has a
chi-squared distribution with one degree of freedom
(Cox & Hinkley, 2000):

#2 LL0 IEð Þ#LL1ð Þ ) v2 1ð Þ:

Finally, the lower and upper bounds for the pro-
file-likelihood (1 – a)100% CI correspond to the min-
imum and maximum of the indirect effect that satisfy
the following inequality: #2 LL0 IEð Þ#LL1ð Þ * v2að1Þ;
where v2að1Þ denotes upper a critical value of the chi-
squared distribution with one degree of freedom.

Bayesian approach

The Bayesian approach yields a credible interval for
the product of coefficients using the posterior distri-
bution of the indirect effect (Muth!en & Asparouhov,
2012; Yuan & MacKinnon, 2009). Each parameter has
a prior distribution, which is the researcher’s belief
about the distribution of the parameter before data
collection. If there are prior estimates of the coeffi-
cients from previous studies (e.g., a meta-analysis),
the estimates may be used to form prior distributions
(called an informative prior). If there is no informa-
tion available, one may use a distribution that carries
vague or general information about the parameters
(called a noninformative, uninformative, flat, or dif-
fuse prior).2 A weakly informative (regularizing) prior
is used to improve computational stability and infer-
ence about a parameter (McElreath, 2016). The
Bayesian approach combines model parameter esti-
mates from the current study with the prior distribu-
tions to estimate the posterior distribution of all
model parameters. A posterior distribution is a

2Although the terms “diffuse” or “uninformative” might be more
appropriate in referring to a noninformative prior in our context, we
use the term “flat” prior to be consistent with the terminology used in
the rstanarm package. In our context, a flat prior for a regression
coefficient does not mean a uniform prior, but it is a normal
distribution with the mean of 0 and standard deviation of 10.
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conditional probability distribution that combines the
prior distribution with the likelihood from the
observed data. Posterior distribution of the parameter
is used to compute an interval estimate for each of
the parameters. The mechanism of combining the
prior distribution and the observed data is known as
Bayes’ theorem.

When an analytic approach to estimating a poster-
ior distribution of the parameters is not available, the
Bayesian approach simulates a random sample from
the posterior distribution using Markov Chain Monte
Carlo procedures (MCMC; Gilks, Richardson, &
Spiegelhalter, 1998; Metropolis & Ulam, 1949).
Consider the use of the Bayesian method to estimate
the sequential mediation model shown in Figure 1.
Random draws (usually in the thousands) from the
posterior distribution of all the parameters in the
sequential mediation chain are taken. The product of
the corresponding coefficients in the indirect effect is
computed for each random draw. To create a (1 –
a)100% credible interval, the quantiles that correspond
to the lower and upper a/2 of the draws from the pos-
terior distribution of the indirect effect are located.
Note that MCMC describes a general family of techni-
ques used to draw random samples from a posterior
distribution. A few specific MCMC algorithms include
Metropolis-Hastings (MH; Hastings, 1970; Metropolis
& Ulam, 1949), Gibbs sampling (Geman & Geman,
1984), and Hamiltonian Monte Carlo (Duane,
Kennedy, Pendleton, & Roweth, 1987; Neal, 2011).
For our simulation study, we use the rstanarm pack-
age (Stan Development Team, 2018) within R, which
implements Hamiltonian Monte Carlo algorithm. One
advantage of Hamiltonian Monte Carlo compared to
MH and Gibbs sampling algorithms is that it requires
a fewer number of draws from the posterior distribu-
tion (McElreath, 2016).

In the simulation study, we consider two sets of
priors for the coefficients that are available in rsta-
narm to estimate the Bayesian 95% credible interval: a
weakly informative prior and a flat (noninformative)
prior. A weakly informative prior is designed to
“provide some information on the relative a priori
plausibility of the possible parameter values, for
example when we know enough about the variables in
our model that we can essentially rule out extreme
positive or negative values.” (Muth et al., 2018,
p. 150). Weakly informative priors have been recom-
mended because they could provide computational
stability by regulating the range of the parameter val-
ues to prevent extreme values (McElreath, 2016; Stan
Development Team, 2018). We assume the priors to

be independent for each coefficient of the indirect
effect such that p(b1, b2, b3) ¼ p(b1) p(b2) p(b3),
where p(b1, b2, b3) is the joint prior distribution. The
weakly informative prior for each coefficient is a nor-
mal distribution with the mean of 0 and standard
deviation of 2.5, N(0, 2.52), which is the default prior
in rstanarm package. The standard deviation of the
prior is automatically adjusted based on the actual
range of the dependent variables to ensure that the
rescaled prior is weakly informative (Gabry &
Goodrich, 2018). We also considered a flat (noninfor-
mative) prior for the regression coefficients that
assumes a wide range of positive and negative values
to be equally likely for the coefficients. In rstanarm,
the default flat prior for regression coefficients is a
normal distribution with the mean of 0 and standard
deviation of 10, N(0, 102); rstanarm rescales the stand-
ard deviation based on the actual range of the
dependent variables in the model to ensure that the
rescaled prior covers a wide range of parameter values
(Gabry & Goodrich, 2018). Because of the large vari-
ance, the density over the most likely parameter values
is approximately flat; this distribution presumably
conveys little information about the coefficients and
can be thought of as noninformative. For the residual
standard deviations of the residual terms (rM1 ; rM2 ; &
rY), we used the exponential distribution, denoted by
exp(k¼ 1), where k is a rate parameter that equals
one. Note that this is a default weakly informative
prior in rstanarm. The parameter k is also automatic-
ally rescaled based on the range of the depend-
ent variables.

Simulation

The purpose of the Monte Carlo simulation study was
to empirically assess the Type I error rate, statistical
power, and coverage rates of 10 methods of construct-
ing a 95% CI to test the indirect effect (H0: b1 b2 b3
¼ 0) for the two-mediator sequential model shown in
Figure 1. Based on the review of previous simulation
studies of mediation models, we manipulated the fol-
lowing four factors in a fully factorial design: (a) dis-
tribution, (b) coefficients, (c) sample size, and (d)
method of testing (i.e., the 10 tests) the indirect effect.
We describe the levels of each factor below.

Distribution

Based on the previous simulation studies of different
levels of nonnormality, we considered three multivari-
ate distributions in which we generated multivariate
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data to obtain three levels of skewness and kurtosis
for each variable (Curran, West, & Finch, 1996; Finch
et al., 1997; Nevitt & Hancock, 2001). We first consid-
ered a multivariate normal distribution that implies
skewness¼ kurtosis ¼ 0 for each variable, which rep-
resents an ideal condition in which all the methods
are expected to show their optimal statistical proper-
ties. The second condition represents a “moderate”
multivariate nonnormal distribution with the marginal
univariate skewness of 2 and kurtosis of 7 for each
variable. The third condition corresponds to an
“extreme” multivariate nonnormal distribution with
the univariate skewness of 3 and kurtosis of 21.

Coefficients

The second factor manipulated in the Monte Carlo
simulation study was the combination of three coeffi-
cients, b1, b2, and b3, which were computed using
effect size values of semi-partial R2 for values of the
endogenous variables (mediators and outcome varia-
bles). For the two- mediator model in Figure 1, there
are three semi-partial R2s for the endogenous varia-
bles: R2

M1; R
2
M2; and R2

Y : Following Thoemmes et al.
(2010), we used these effect sizes to compute the cor-
responding population values of the b coefficients
used to compute the indirect effects (i.e., b1 b2 b3).
Previous simulation studies (e.g., Biesanz et al., 2010;
Taylor et al., 2008) used Cohen’s (1988) guidelines on
R2 effect sizes: 0.02 (small), 0.13 (medium), and 0.23
(large). In addition, our review of the effect sizes of
mediation studies in the literature reported semi-par-
tial R2 larger than 0.23, for example, 0.334
(Adamczyk, 2018) and 0.439 (Huertas-Valdivia,
Llorens-Montes, & Ruiz-Moreno, 2018). Thus, we
chose the following values for the coefficients: 0, 0.14,
0.36, 0.48, and 0.6. Note that to study the empirical
Type I error, one or more of the b coefficients was set
to zero while for the power study, none of the coeffi-
cients were zero. More specifically, for the Type I
error simulation studies, we considered three condi-
tions for the b coefficients: one coefficient equals zero
where b1 6¼ 0, b2 6¼ 0, and b3 ¼ 0; two coefficients
equal zero where b1 6¼ 0 and b2 ¼ b3 ¼ 0; and all
coefficients equal zero where b1 ¼ b2 ¼ b3 ¼ 0. We
did not consider other possible combinations such
that one coefficient equals zero or two coefficients
equal zero because our preliminary simulation studies
indicated the results did not depend on the order of
the coefficient being zero. For example, for the condi-
tion where one coefficient equals zero, preliminary
simulation results were virtually the same for the

following conditions: b1 6¼ 0 and b2 ¼ b3 ¼ 0, b2 6¼ 0
and b1 ¼ b3 ¼ 0, and b3 6¼ 0 and b1 ¼ b2 ¼ 0.

Sample size

The third factor manipulated in the Monte Carlo
simulation study was sample size (N), which took on
the following values: 50, 100, 200, and 500 across all
the other manipulated factors. These values of sample
size bracket the most commonly used values of sam-
ple size seen in empirical studies in psychology and
other behavioral sciences. The median, first quartile,
and third quartile of the sample sizes from our litera-
ture were 209, 110.5, and 359, respectively. A sample
size of 50 is generally too small to provide an
adequate test of mediation. We used a sample size
value of 50 as one of the smaller sizes found in our
literature review (e.g., Graham, Martin Ginis, & Bray,
2017). A sample size of 200 roughly equals the median
sample size used in the behavioral sciences in studies
of regression and SEM (Jaccard & Wan, 1995;
MacCallum & Austin, 2000), which is also close to the
median sample size of 209 in our literature review.
We chose N¼ 500, which was the 85th percentile of
the sample sizes in our literature review, as the upper
limit because our preliminary simulation study results
showed that sample sizes larger than 500 did not pro-
vide additional insight about the performance of
the methods.

Method

The fourth factor manipulated in the Monte Carlo
simulation study, method, was the 10 methods of cal-
culating a 95% CI test of an indirect effect.

Study designs and data generation

The outcomes of simulation study were the Type I
error rate, statistical power, and CI coverage. The
Type I error rate was measured as the proportion of
times the CI does not include zero and hence falsely
rejects the null hypothesis of zero indirect effects,
when the population value of the indirect effect is in
fact zero. Statistical power was measured as the pro-
portion of times a test correctly rejected the null
hypothesis of zero indirect effect when the population
value of the indirect effect is in fact non-zero. CI
coverage is the portion of times the CI included the
population value for the indirect effect. For the Type I
error rate assessment, at least one of the coefficients
must be zero (i.e., no mediation), which resulted in
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studying a total of 6,120 conditions. For statistical
power, none of the three coefficients are zero, which
resulted in 7,680 combinations of non-zero coeffi-
cients, distribution, sample size, and method. For the
coverage study, we thus considered all 13,800 condi-
tions. We know of no other Monte Carlo simulation
study on mediation that examined as many condi-
tions. Thus, the findings we report are the most com-
prehensive that we are aware of.

Consistent with previous simulation studies of a
two-mediator sequential model (e.g., Cheung, 2007),
we chose a model in which the relationship between
the independent variable on the outcome variable
was fully mediated through both M1 and M2; we
assumed the following coefficients to be zero in
Figure 1, b4 ¼ b5 ¼ b6 ¼ 0. Because we use semi-
partial R2 to generate data, zero versus non-zero val-
ues of the coefficients b4, b5, and b6 do not change
the results in terms of the statistical properties of the
tests of indirect effect (Williams & MacKinnon,
2008), which also were supported by our pilot simu-
lation study. We generated data using the population
model in Figure 1 based on the combinations of the
b coefficients, sample sizes, and skewness and kur-
tosis values as mentioned earlier. We used
simulateData function in the lavaan (Version 0.6-1)
package (Rosseel, 2012) to generate multivariate nor-
mal and nonnormal data such that each variable has
the specified skewness and kurtosis value (Vale &
Maurelli, 1983). The independent variable (X) had a
standard normal distribution. The intercepts (not
depicted in Figure 1) were all set to zero. For each
combination of factors (i.e., Distribution!b ! N !
Method), 1,000 independent replication datasets
were generated.

For each replication dataset, we estimated the two-
mediator model in Figure 1 in which b4, b5, and b6
were constrained to zero. For percentile, BC, BS, and
YHY bootstrap, we used lavaan built-in functions
with 1,000 bootstrap samples as recommended by
Shrout and Bolger (2002). For BCa method, we first
estimated 1,000 bootstrap samples in lavaan and then
used the boot package (Canty & Ripley, 2017) in R to
compute the confidence limits. To calculate MC-ML
and MC-Robust CIs, we first estimated the mediation
model in lavaan and OpenMx with regular ML stand-
ard error and robust Huber-White standard error,
respectively. The parameter estimates and their covari-
ance matrices (ML and Huber-White method) from
the estimated mediation models were input into the ci
function in the RMediation (Version 1.1.4) package.
We used R¼ 100,000 Monte Carlo samples to

compute the Monte Carlo CIs, which assured a min-
imum desired accuracy of 0.00001.3 OpenMx (Version
2.9.6) was used to compute a profile-likelihood CI for
the indirect effects (Neale et al., 2016).

For Bayesian credible intervals, we used two sets of
priors for the regression coefficients that are available
in rstanarm (Stan Development Team, 2018): Bayes-
Weak, where the weakly informative prior is N(0,
2.52), and Bayes-Flat where the flat prior is N(0, 102).
Then, as previously noted, rstanarm rescales the
standard deviations based on the actual range of val-
ues of the endogenous variables to ensure that the
rescaled prior is weakly informative and noninforma-
tive, respectively (Gabry & Goodrich, 2018). For the
standard deviations of the residual terms we used the
default weakly informative prior, which is the expo-
nential distribution, exp(k¼ 1), in rstanarm; the rate
parameter k is automatically rescaled based on the
range of the endogenous variables to make the prior
weakly informative.

Results

Because of the large number of conditions, to save
space we only show a subset of the results. More
tables and figures are shown in the supplemental
materials. Nevertheless, the results we present are
indicative of the general set of results.

Type I error rate and accuracy

Multivariate normal distribution
Table 1 shows the Type I error rates for a subset of
parameters b1¼b2, and b3 ¼ 0 (see the supplemental
materials for more tables as well as the trellis plots
showing trend in the Type I error rate for different
sample sizes). To assess the accuracy of the Type I
error rates, we use Bradley’s (1978) liberal criterion,
.025 and .075. The darkest shade of gray shows the
inflated Type I error rate above Bradley’s upper limit,
whereas the lightest shade of gray shows the conserva-
tive Type I error rate below Bradley’s lower limit.
Medium gray shade (between light and dark gray)
shows the accurate Type I error rate within the limit.
It appears that except for BC and BCa, all the other
methods exhibit comparable Type I error rates. BC
and BCa showed inconsistent Type I error rates with

3To our knowledge, there is no established guideline for the number of
the Monte Carlo samples in mediation analysis. We used RMediation to
calculate the desired precision of the estimates of the standard errors
of the indirect effect. We then conducted preliminary analyses to
decide on the number of Monte Carlo samples, conservatively choosing
100,000 Monte Carlo samples to insure stable results.
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multiple instances below and above Bradley’s criteria
for N* 200. For N¼ 500, BC and BCa both showed
inflated Type I error rates for smaller values of non-
zero bs. All other methods tend to become more
accurate as the sample size and magnitude of non-
zero bs increases. The stacked bar-graph in Figure 2
provides the proportion of times a method showed
inflated, accurate, and conservative Type I error rates
according to Bradley’s criterion. Except for BC and
BCa, all the other eight methods provide comparable
performance in terms of the highest proportion of
accurate Type I error rates and the lowest proportion
of inflated Type I error rates. As the sample size and
magnitude of non-zero coefficients increased, the
eight methods tend to become more accurate and less
conservative. For N¼ 50, the BC (BCa) bootstrap
showed the worst performance with the highest infla-
tion rate of 31% (50%) and lowest accuracy of 38%

(25%) compared to the other methods. For N¼ 100,
200, and 500, the BC (BCa) bootstrap method showed
inflated Type I error percentages of 38% (44%), 12%
(38%), and 19% (38%), respectively. When two of the
coefficients were zero with another coefficient non-
zero, such as when b2 ¼ 0, b3 ¼ 0, and b1 6¼ 0, all 10
methods were conservative (e.g., empirical Type I
error rate around .0025 instead of the nominal Type I
error rate of .05), showing the Type I error rate below
the lower limit of Bradley’s interval.

Multivariate nonnormal distribution
For a subset of conditions, Table 1 also shows the
Type I error rate for the moderate multivariate non-
normality condition (skewness ¼ 2, kurtosis ¼ 7) and
extreme nonnormality condition (skewness ¼ 3, kur-
tosis ¼ 21), respectively (see the supplemental materi-
als for additional tables and graphs). Compared to the

Figure 2. Stacked bar graphs showing accuracy of the Type I Error rate proportions to test an indirect effect, b1 b2 b3, where
b3 ¼ 0. Marginal proportions are calculated for each combination method and sample size averaging across all combinations of
non-zero bs factors (4! 4 ! 1,000 replications). Using Bradley’s (1978) robustness interval for a ¼.05, [.025, .075], marginal pro-
portion of inflated Type I errors is the proportion of the simulation replications for each combination of method and sample size
that exceeds 0.075. Marginal proportion of accurate Type I errors is the proportion of the replications that fall within Bradley’s
interval. Marginal proportion of conservative Type I errors is the proportion of the replications that are less than.025. Bayes-
F¼ Bayesian credible interval with flat (noninformative) prior; Bayes-W¼ Bayesian credible interval with weakly informative prior;
BC¼ Bias corrected bootstrap; BCa¼ Bias corrected and accelerated bootstrap; BS¼ Bollen-Stine semi-parametric bootstrap; MC-
ML¼Monte Carlo with ML standard errors; MC-Rob¼Monte Carlo with robust standard errors; Percentile¼ Percentile bootstrap;
Profile¼ Profile-likelihood; YHY¼ Yuan-Hayashi-Yanagihara semi-parametric bootstrap.
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normal condition results, BC and BCa showed more
instances of inflated Type I error rates for the moder-
ate multivariate normality condition, which got worse
for the extreme normality condition. For the moderate
multivariate nonnormality condition, MC-Robust, per-
centile, BS, and YHY methods showed multiple
instances of inflated Type I error rates; the frequency
of the inflated Type I error rate increased for the
extreme nonnormality condition. The rest of the

methods provided comparable Type I error rates
across the conditions. As the sample size and magni-
tude of non-zero coefficients increased, all methods
except for BC and BCa tend to become more accurate.
Similar to the multivariate normal condition results,
when two of the coefficients were zero, b2 ¼ b3 ¼ 0
and b1 6¼ 0, all 10 methods were conservative, show-
ing a Type I error rate below the lower limit of
Bradley’s (1978) interval.

Type I Error Rates for a Subset of Conditions where b1 ¼ b2 and b3 ¼ 0.
b1 ¼ b2 N Bayes-F Bayes-W BC BCa BS MC-ML MC-Rob Percentile Profile YHY

Normality Condition
0.14 50 0.001 0.002 0.008 0.010 0.000 0.002 0.002 0.000 0.001 0.001

100 0.001 0.003 0.011 0.018 0.001 0.005 0.004 0.003 0.001 0.004
200 0.005 0.006 0.036 0.054 0.010 0.004 0.008 0.009 0.015 0.007
500 0.037 0.028 0.095 0.089 0.027 0.038 0.031 0.023 0.039 0.026

0.36 50 0.010 0.021 0.067 0.100 0.025 0.020 0.056 0.023 0.046 0.025
100 0.031 0.033 0.092 0.116 0.046 0.037 0.046 0.042 0.038 0.057
200 0.056 0.053 0.061 0.100 0.046 0.057 0.038 0.057 0.053 0.045
500 0.063 0.065 0.074 0.055 0.045 0.056 0.054 0.050 0.048 0.057

0.48 50 0.038 0.042 0.090 0.126 0.044 0.054 0.067 0.042 0.046 0.047
100 0.060 0.050 0.071 0.086 0.061 0.067 0.060 0.049 0.054 0.050
200 0.040 0.053 0.068 0.080 0.052 0.051 0.056 0.056 0.046 0.053
500 0.060 0.060 0.045 0.061 0.061 0.048 0.052 0.059 0.060 0.060

0.62 50 0.035 0.056 0.086 0.100 0.072 0.058 0.071 0.052 0.062 0.068
100 0.057 0.039 0.068 0.056 0.050 0.061 0.038 0.054 0.045 0.052
200 0.058 0.049 0.053 0.052 0.051 0.060 0.052 0.051 0.053 0.057
500 0.045 0.035 0.052 0.055 0.051 0.053 0.060 0.042 0.048 0.054

Moderate Non-normality Condition (skewness ¼ 2, kurtosis ¼ 7)
0.14 50 0.001 0.001 0.004 0.009 0.001 0.000 0.000 0.004 0.005 0.002

100 0.002 0.003 0.024 0.010 0.002 0.007 0.000 0.001 0.006 0.002
200 0.006 0.004 0.048 0.058 0.009 0.006 0.006 0.008 0.016 0.006
500 0.034 0.025 0.107 0.097 0.034 0.026 0.031 0.033 0.026 0.054

0.36 50 0.011 0.016 0.075 0.096 0.030 0.026 0.029 0.038 0.034 0.043
100 0.038 0.039 0.114 0.104 0.065 0.031 0.046 0.059 0.055 0.057
200 0.062 0.049 0.074 0.096 0.063 0.052 0.058 0.061 0.050 0.072
500 0.057 0.049 0.069 0.075 0.051 0.039 0.075 0.055 0.056 0.061

0.48 50 0.036 0.033 0.085 0.127 0.070 0.041 0.058 0.071 0.049 0.069
100 0.043 0.040 0.094 0.116 0.077 0.067 0.079 0.058 0.061 0.066
200 0.035 0.048 0.076 0.079 0.077 0.061 0.060 0.064 0.046 0.068
500 0.049 0.052 0.066 0.096 0.053 0.048 0.071 0.069 0.050 0.048

0.62 50 0.053 0.045 0.072 0.091 0.073 0.047 0.063 0.078 0.055 0.079
100 0.050 0.050 0.071 0.089 0.075 0.040 0.071 0.061 0.054 0.073
200 0.046 0.049 0.070 0.086 0.065 0.044 0.081 0.067 0.045 0.060
500 0.066 0.051 0.058 0.072 0.066 0.061 0.048 0.056 0.053 0.065

Extreme Non-normality Condition (skewness ¼ 3, kurtosis ¼ 21)
0.14 50 0.000 0.003 0.010 0.014 0.002 0.002 0.000 0.001 0.005 0.001

100 0.003 0.005 0.026 0.027 0.007 0.002 0.000 0.005 0.006 0.003
200 0.007 0.008 0.048 0.085 0.010 0.010 0.008 0.009 0.014 0.021
500 0.030 0.027 0.108 0.125 0.047 0.027 0.033 0.046 0.048 0.054

0.36 50 0.023 0.022 0.078 0.093 0.045 0.034 0.019 0.051 0.034 0.061
100 0.036 0.053 0.116 0.132 0.069 0.045 0.048 0.059 0.056 0.073
200 0.067 0.058 0.096 0.110 0.068 0.046 0.063 0.071 0.053 0.085
500 0.058 0.051 0.072 0.097 0.055 0.052 0.060 0.074 0.047 0.067

0.48 50 0.042 0.046 0.104 0.124 0.084 0.043 0.073 0.073 0.056 0.079
100 0.058 0.046 0.082 0.120 0.072 0.050 0.063 0.080 0.044 0.088
200 0.047 0.046 0.096 0.117 0.102 0.058 0.058 0.071 0.064 0.070
500 0.037 0.051 0.080 0.086 0.047 0.047 0.075 0.068 0.049 0.067

0.62 50 0.061 0.050 0.092 0.102 0.071 0.060 0.071 0.077 0.060 0.077
100 0.056 0.053 0.073 0.114 0.085 0.062 0.056 0.085 0.043 0.090
200 0.043 0.055 0.087 0.086 0.076 0.040 0.058 0.061 0.057 0.090
500 0.053 0.063 0.079 0.088 0.069 0.034 0.048 0.070 0.054 0.073

Note. Darkest shade of gray shows the inflate Type I error rate above Bradley’s (1978) upper limit (.075) while the lightest shade of gray shows the con-
servative Type I error rate below Bradley’s lower limit (.025). Medium gray (between light and dark gray) shows the accurate Type I error rate within
the limit, [.025, .075].

Bayes-F¼ Bayesian credible interval with flat (noninformative) prior; Bayes-W¼ Bayesian credible interval with weakly informative prior; BC¼ Bias cor-
rected bootstrap; BCa¼ Bias corrected and accelerated bootstrap; BS¼ Bollen-Stine semi-parametric bootstrap; MC-ML¼Monte Carlo with ML standard
errors; MC-Rob¼Monte Carlo with robust standard errors; Percentile¼ Percentile bootstrap; Profile¼ Profile-likelihood; YHY¼ Yuan-Hayashi-Yanagihara
semi-parametric bootstrap.
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Statistical power

We present power results for a subset of conditions
where b1 ¼ b2 ¼ b3 in Table 2 with horizontal data
bars. Data bars are similar to a bar chart in that each
bar represents a relative height equal to the power

value in a cell (see the supplemental materials for
more results). Data bars make it easier to compare
ranges of values. We do not discuss BC and BCa
bootstrap further in the power study because they did
not meet the necessary condition of showing an

Table 2. Power to detect indirect effect for a subset of conditions, where b1 ¼ b2 ¼ b3.

Note. Bayes-F¼ Bayesian credible interval with flat (noninformative) prior; Bayes-W¼ Bayesian credible interval with weakly informative prior; BC¼ Bias
corrected bootstrap; BCa¼ Bias corrected and accelerated bootstrap; BS¼ Bollen-Stine semi-parametric bootstrap; MC-ML¼Monte Carlo with ML stand-
ard errors; MC-Rob¼Monte Carlo with robust standard errors; Percentile¼ Percentile bootstrap; Profile¼ Profile-likelihood; YHY¼ Yuan-Hayashi-
Yanagihara semi-parametric bootstrap.
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accurate Type I error rate when the null hypothesis
was true, thus violating the principles of statistical
hypothesis testing (Davison, 2003; Lehmann &
Romano, 2005).

Multivariate normal distribution
For N$ 200 and bs $ .36, the power for all eight
methods exceeded .96. In addition, as the sample size
and size of the indirect effect increased, power for all
methods appeared to increase or to remain the same
(note that there is a ceiling effect for power). Also, for
larger sample sizes and effect sizes, difference in
power between the methods tended to decrease. For
the small effect size (b1 ¼ b2 ¼ b3 ¼ 0.14), one needs
at least 500 observations to achieve a minimum power
of .64 with either of the Bayesian methods and a max-
imum power of .70 with the profile-likelihood
method; maximum power for N¼ 200 was .14 with
the profile-likelihood method. The difference between
the eight methods did not exceed .09. The maximum
difference of .09 occurred for the medium effect size
(b1 ¼ b2 ¼ b3 ¼ 0.36) and N¼ 50 with the maximum
of .46 for the profile-likelihood method and the min-
imum of .37 for the two Bayesian methods and
BS bootstrap.

Multivariate nonnormal distribution
For the moderate multivariate nonnormality condition
(skewness ¼ 2 and kurtosis ¼ 7), the largest differ-
ence in power between the eight methods was .14,
which occurred for medium effect size (b1 ¼ b2 ¼ b3
¼ 0.36) and N¼ 50; for this condition, the profile-
likelihood method had a maximum power of .42 and
the MC-ML method had a minimum power of .28.
The second largest power difference was .13, which
occurred for N¼ 100 and the medium effect sizes; for
this condition, the MC-ML method had a minimum
power of .76 while the percentile bootstrap, BS, and
YHY methods had a maximum power of .88. For the
extreme nonnormality condition (skewness ¼ 3 and
kurtosis ¼ 21), the difference in power between the
methods increased compared to moderate multivariate
nonnormality and normality conditions. The largest
power difference was .33, which occurred for medium
effect size and N¼ 100; the MC-ML had a minimum
power of .61 and the percentile and YHY methods
had a maximum power of .93.

Coverage

Table 3 shows coverage values for the 10 methods for
a subset of values for b-coefficients (b1 ¼ b2 ¼ b3)

and sample sizes for multivariate normality, moderate
multivariate nonnormality, and extreme multivariate
nonnormality conditions, respectively. To facilitate
interpretation, we use Bradley’s (1978) criterion to
identify under-coverage (<.925), over-coverage
(>.975), and accurate coverage (between .925 and
.975). Cells with an upward pointing arrow indicate
over-coverage while a downward pointing arrow indi-
cates under-coverage; cells with no arrows indicate
accurate coverage. Also, Figures 3–5 show jittered dot
plots of coverage values for all 10 methods as a func-
tion of sample sizes, which are collapsed (averaged)
across coefficients values, for multivariate normality,
moderate multivariate nonnormality, and extreme
multivariate nonnormality conditions, respectively.
The dot plots show the distribution of the coverage
values and facilitate understanding of how coverage
values are distributed in relation to the Bradley’s
interval, whose limits are drawn with solid lines in
each plot. In discussing coverage, under-coverage is
considered the less ideal outcome compared to over-
coverage (Falk & Biesanz, 2014). Thus, ideally, confi-
dence/credible interval must show empirical coverage
that equals or exceeds the nominal value of 1 – a
(.95) while exhibiting low frequency of under-cover-
age. Also, there are different degrees of under-cover-
age in terms of how far coverage falls below the lower
limit of Bradley’s (1978) criterion.

Multivariate normal distribution
As shown in Table 3 and Figure 3, when N¼ 50, the
profile likelihood and both Bayesian methods showed
the best coverage in terms of accuracy and no under-
coverage while BC and BCa frequently showed
under-coverage with coverage values of .90 and .89,
respectively. For N¼ 100, the profile-likelihood, MC-
ML, and both Bayesian methods showed the best
coverage followed closely by the percentile, BS, and
YHY bootstrap. BC and BCa showed under-coverage,
with the lowest coverage of .89 and .87, respectively;
however, compared to N¼ 50, the occurrence of
under-coverage was less frequent. For N¼ 200, all 10
methods exhibited comparably accurate coverage.
Overall, for normal condition, the profile-likelihood
and Bayesian methods showed the best coverage fol-
lowed by the MC-ML, percentile, BS, and YHY meth-
ods. We do not recommend BC and BCa, especially
for N* 100.

Multivariate nonnormal distribution
For both multivariate nonnormality conditions (Table
3 and Figures 4 and 5), we arranged the methods into
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three groups sorted from best to worst coverage: (a)
percentile bootstrap, YHY, and BS method; (b) BC,
BCa, and MC-Robust; (c) profile-likelihood, MC-ML
and two Bayesian methods. For both multivariate
nonnormality conditions, the methods in the first
group showed the best coverage although coverage
was worse compared to the normality condition for
N¼ 50 and 100. These three methods showed com-
parable coverage within and across the multivariate
nonnormality conditions. The minimum coverage for
the percentile, YHY, and BC method ranged from .89
to .90 for both multivariate nonnormality conditions.
In the second-best group, for moderate multivariate
nonnormality condition, all three methods showed
comparable coverage that tended to improve as sam-
ple size, size of the indirect effect, or both increased.
The minimum coverage for the methods ranged from
.85 to .86. For the extreme multivariate nonnormality
condition, the coverage for BC and BCa remained the
same. However, coverage of the MC-Robust degraded
by 3% on average. In the third group, all four meth-
ods showed the lowest coverage. For the moderate

multivariate nonnormality condition, the minimum
coverage ranged from .81 to .82; for the extreme
multivariate nonnormality condition, the minimum
coverage ranged from .67 to .68. Poorer performance
could be because these four methods rely more heav-
ily on multivariate normality distribution of the coeffi-
cient estimates without any adjustment for
nonnormality. In addition, an interesting result was
that coverage for these methods got worse for the
larger sizes of indirect effect, sample size, or both; one
possible explanation for the poor coverage could be as
the sample size increased, the standard errors
decreased, and CIs became narrower, thus cover-
age worsened.

Empirical example

The empirical example is part of a study by Sanchez
et al. (2017), for which all of the data and study mate-
rials are available to the public via the Open Science
Framework (please follow the link https://osf.io/g5fvw/
to access the materials). Sanchez et al. conducted five

Figure 3. Jittered dotplot of coverage for multivariate normal condition. Bayes-F¼ Bayesian credible interval with flat (non-
informative) prior; Bayes-W¼ Bayesian credible interval with weakly informative prior; BC¼ Bias corrected bootstrap;
BCa¼ Bias corrected and accelerated bootstrap; BS¼ Bollen-Stine semi-parametric bootstrap; MC-ML¼Monte Carlo with ML
standard errors; MC-Rob¼Monte Carlo with robust standard errors; Percentile¼ Percentile bootstrap; Profile¼ Profile-
likelihood; YHY¼ Yuan-Hayashi-Yanagihara semi-parametric bootstrap. Solid horizontal lines show the limits of Bradley’s
(1978) interval, [.925, .975].
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studies of stigma by transfer with different stigmatized
group (e.g., White women). Stigma by transfer means
that a member of the stigmatized group is more likely
to view racists as sexists and vice versa. We focus on
one of the mediation models in Study 1 (there are five
studies), in which the authors examined indirect
effects of viewing the profiles of racist individuals
(Treatment¼Racist profile vs control) on gender
identity threat (Gender Stigma) via the two sequential
mediators (a) perceived social dominance orientation
(Perceived SDO) and (b) perceived sexism (Perceived
Sexism), as shown in Figure 6.

The data from Study 1 consists of a subset of par-
ticipants, where Study 1 uses only the Females partici-
pants (N¼ 100). The female participants were
randomly assigned to view responses to the Modern
Racism Scale and the Old Fashioned Racism Scale
(McConahay, 1986) from an individual with evidence
of a “moderate” racist attitude (Racism condition) and
to the neutral profile (e.g., with responses to personal-
ity measures) with no evidence of a sexist or a racist
attitude (Control condition). To measure Perceived

Sexism, participants responded to question on a
5-item scale (e.g., “How likely is it that this person
treats women fairly?”) to evaluate the profiled person,
in which 1 indicated “very slightly or not at all” and 5
indicated “extremely or a lot” (a ¼ .967).

To measure Perceived SDO, the participants com-
pleted a 16-item SDO scale (Pratto, Sidanius,
Stallworth, & Malle, 1994) as the profiled person
would have done (a ¼ .979). Response to each item
(e.g., “Some groups of people are simply inferior to
other groups.”) ranged from 1 (very negative or
strongly disagree) to 7 (very positive or strongly
agree). To measure Gender Stigma (a¼ .974),
respondents answered the question about the profile
person, “How much would you be concerned that this
person would judge you based on the following char-
acteristics?”, where the characteristics were “My gen-
der”, “My sex”, and “My being a woman”. The
answers ranged from 1 indicating “not at all” to 7
indicating “a great deal”. Finally, to measure Liking, a
3-item scale was used, with an example question, “If
you were in a room with this person, would you have

Figure 4. Jittered dotplot of coverage for the moderate multivariate nonnormality condition (skewness ¼ 2, kurtosis ¼ 7). Bayes-
F¼ Bayesian credible interval with flat (noninformative) prior; Bayes-W¼ Bayesian credible interval with weakly informative prior;
BC¼ Bias corrected bootstrap; BCa¼ Bias corrected and accelerated bootstrap; BS¼ Bollen-Stine semi-parametric bootstrap; MC-
ML¼Monte Carlo with ML standard errors; MC-Rob¼Monte Carlo with robust standard errors; Percentile¼ Percentile bootstrap;
Profile¼ Profile-likelihood; YHY¼ Yuan-Hayashi-Yanagihara semi-parametric bootstrap. Solid horizontal lines show the limits of
Bradley’s (1978) interval, [.925, .975].
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a lot of things to talk about?” (a¼ .778). The answers
ranged from 1 indicating “very slightly or not at all”
to 5 indicating “extremely or a lot”. For Perceived
SDO, Perceived Sexism, and Liking, composite
scores of the respected scales were used in the
final analysis.

We fit three ordinary least-squares (OLS) regres-
sion equations corresponding to the dependent varia-
bles (two mediators and one outcome variable) in
Figure 6. The OLS regression allows us to compute
case residuals,4 which we examined using plots (e.g.,
qq plot) as well as testing for multivariate normality
using Henze and Zirkler (HZ; 1990) method, which
has been recommended in the literature (Mecklin &
Mundfrom, 2005). We also check for univariate nor-
mality of the residuals because it is a necessary con-
dition for multivariate normality. Case residuals can

also be used to check for outliers using t-test with
Bonferroni adjusted p-value (Cohen, Cohen, West, &
Aiken, 2003; Fox, 2016). Skewness (kurtosis) for
residuals associated with SDO, Perceived Sexism, and
Gender Stigma was –0.9 (1.7), 0.2 (0.2), and –1.1
(3.9), respectively. Mardia’s (1970) multivariate meas-
ures of skewness and kurtosis for the residuals were
2.57 and 21, respectively. The result of the HZ test,
statistic¼ 1.307, p ¼.001 indicates that we reject the
hypothesis of multivariate normality because the p-
value is very small. We flagged two observations as
outliers using t-test of the studentized residuals for
observation 35, Bonferroni p <.001, and observation
19, Bonferroni p ¼.036. We removed the two obser-
vations from the data and refit the regression equa-
tions.5 Skewness (kurtosis) for the new residuals
associated with SDO, Perceived Sexism, and Gender
Stigma was –0.7 (1.4), 0.3 (0.2), and 0.02 (–0.3),

Figure 5. Jittered dotplot of coverage for the extreme multivariate nonnormality condition (skewness, 3, kurtosis, 21). Bayes-
F¼ Bayesian credible interval with flat (noninformative) prior; Bayes-W¼ Bayesian credible interval with weakly informative prior;
BC¼ Bias corrected bootstrap; BCa¼ Bias corrected and accelerated bootstrap; BS¼ Bollen-Stine semi-parametric bootstrap; MC-
ML¼Monte Carlo with ML standard errors; MC-Rob¼Monte Carlo with robust standard errors; Percentile¼ Percentile bootstrap;
Profile¼ Profile-likelihood; YHY¼ Yuan-Hayashi-Yanagihara semi-parametric bootstrap. Solid horizontal lines show the limits of
Bradley’s (1978) interval, [.925, .975].

4To our knowledge, software packages such as OpenMx and lavaan do
not have built-in functions to produce case residuals. Instead, these
packages compute a variety of the residuals that are a function of the
difference between the sample and model implied covariance between
the dependent (endogenous) variables in the model.

5Generally, we do not recommend removing outliers when robust
estimators that down weight the outliers are available. To date,
OpenMx and lavaan do not have an estimator robust to outliers.
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respectively. As can be seen, removing the outliers
helped reduce (the absolute value of) skewness and
kurtosis of the residuals for Gender Stigma. Outliers
can be one reason for nonnormality. The result of
the HZ test, a test statistic ¼ 1.042, p¼ 0.03, indi-
cated we reject the hypothesis of multivariate nor-
mality. Examining the skewness and kurtosis values,
as well as looking at the qq plots of residuals along
with p-value ¼ .03, it is unclear if the evidence

against violation of the multivariate normality is as
strong as before when the two cases were included.
As a result, in conducting mediation analysis, we
would consider two scenarios: one scenario where
the multivariate normality seems reasonable (i.e.,
where we did not reject that null hypothesis of
normality) and one scenario where the multivariate
normality is violated (i.e., where we reject the null
hypothesis of normality).

Table 3. Coverage of 95% intervals for a subset of conditions, where b1 ¼ b2 ¼ b3.

Coefficients
Method to compute 95% confidence/credible interval

b1 ¼ b2 ¼ b3 N Bayes-F Bayes-W BC BCa BS MC-ML MC-Rob Percentile Profile YHY

Normality condition
0.14 50 *0.999 *1.000 0.927 +0.920 *0.998 *0.998 *1.000 *0.999 *0.996 *1.000

100 *0.984 *0.976 +0.892 +0.874 0.966 *0.980 0.963 0.960 *0.978 0.968
200 0.930 0.941 0.937 +0.923 +0.917 0.934 0.935 0.934 0.956 +0.921
500 0.929 0.940 0.959 *0.976 0.942 0.929 0.940 0.931 0.939 0.943

0.36 50 0.950 0.935 0.956 0.953 +0.916 +0.915 +0.921 +0.915 0.949 0.934
100 0.933 0.959 0.953 0.950 +0.923 0.954 0.935 0.947 0.947 0.940
200 0.937 0.941 0.940 0.956 0.951 0.948 0.952 0.945 0.935 0.938
500 0.947 0.934 0.951 0.950 0.951 0.949 0.952 0.969 0.956 0.946

0.48 50 0.956 0.947 0.954 0.957 0.927 0.942 0.938 0.925 0.959 0.932
100 0.954 0.958 0.928 0.950 0.939 0.959 0.929 0.934 0.949 0.933
200 0.944 0.961 0.926 0.940 0.938 0.950 0.933 0.943 0.951 0.935
500 0.954 0.951 0.949 0.948 0.936 0.946 0.940 0.941 0.953 0.943

0.62 50 0.957 0.951 0.929 0.952 0.933 0.945 +0.921 0.935 0.948 0.933
100 0.949 0.950 0.932 0.957 +0.921 0.951 +0.923 0.930 0.946 0.946
200 0.949 0.943 0.936 0.940 0.942 0.954 0.935 0.940 0.954 0.946
500 0.948 0.945 0.948 0.956 0.946 0.951 0.956 0.955 0.954 0.942

Moderate nonnormality condition (skewness ¼ 2, kurtosis ¼ 7)
0.14 50 *0.998 *0.998 +0.888 +0.903 *0.993 *0.998 *0.985 *0.990 *0.995 *0.994

100 0.962 0.965 +0.863 +0.854 0.929 0.968 0.929 0.933 0.967 +0.920
200 +0.915 +0.922 0.927 +0.906 +0.909 +0.918 +0.921 +0.886 0.942 +0.899
500 +0.919 0.931 0.955 0.942 +0.922 +0.924 +0.896 0.935 0.934 +0.913

0.36 50 +0.915 +0.904 0.934 0.932 +0.920 +0.897 +0.894 +0.914 0.926 +0.900
100 +0.912 +0.914 0.927 0.929 0.928 +0.888 +0.908 0.929 +0.901 0.926
200 +0.892 +0.886 0.927 +0.924 0.927 +0.890 0.944 0.930 +0.912 +0.921
500 +0.887 +0.863 0.942 0.950 0.948 +0.880 0.931 0.939 +0.896 0.930

0.48 50 +0.883 +0.893 +0.923 +0.922 +0.920 +0.878 +0.879 0.928 +0.895 +0.923
100 +0.879 +0.890 0.938 +0.920 +0.924 +0.880 +0.896 0.926 +0.869 +0.918
200 +0.867 +0.842 0.935 +0.921 +0.922 +0.837 +0.923 0.933 +0.856 0.936
500 +0.850 +0.854 0.934 0.930 0.938 +0.861 0.935 0.948 +0.851 0.939

0.62 50 +0.865 +0.863 +0.892 +0.906 +0.909 +0.844 +0.865 +0.911 +0.846 0.925
100 +0.842 +0.842 +0.902 +0.922 +0.923 +0.828 +0.917 +0.922 +0.827 +0.920
200 +0.822 +0.823 +0.923 +0.905 +0.923 +0.825 0.931 +0.923 +0.817 0.935
500 +0.813 +0.812 0.938 0.926 0.930 +0.823 0.933 0.936 +0.836 0.944

Extreme nonnormality condition (skewness ¼ 3, kurtosis ¼ 21)
0.14 50 *0.998 *0.998 +0.853 +0.839 0.973 *0.995 +0.915 0.969 *0.984 0.969

100 0.965 0.959 +0.871 +0.848 +0.894 0.966 +0.869 +0.900 0.965 +0.903
200 +0.905 +0.920 0.928 +0.923 +0.900 0.934 +0.883 +0.896 0.940 +0.906
500 +0.917 +0.902 0.954 0.928 +0.921 +0.887 +0.919 0.926 +0.915 0.926

0.36 50 +0.896 +0.869 +0.924 +0.906 +0.907 +0.868 +0.854 +0.908 +0.883 +0.919
100 +0.864 +0.825 +0.906 +0.899 +0.915 +0.862 +0.865 +0.915 +0.846 0.929
200 +0.811 +0.827 +0.908 +0.904 0.925 +0.811 +0.915 0.927 +0.831 +0.911
500 +0.783 +0.809 0.932 +0.910 0.929 +0.795 +0.923 0.939 +0.775 0.941

0.48 50 +0.845 +0.837 +0.895 +0.909 +0.904 +0.816 +0.852 0.935 +0.839 +0.920
100 +0.785 +0.791 +0.921 +0.894 +0.905 +0.804 +0.879 0.941 +0.777 +0.923
200 +0.778 +0.755 0.931 +0.913 +0.917 +0.753 +0.869 +0.921 +0.762 +0.921
500 +0.746 +0.742 0.932 +0.904 0.932 +0.731 0.938 0.940 +0.737 0.931

0.62 50 +0.775 +0.801 +0.897 +0.893 +0.905 +0.753 +0.833 +0.908 +0.765 +0.923
100 +0.737 +0.734 +0.900 +0.902 +0.906 +0.735 +0.900 +0.922 +0.701 0.928
200 +0.678 +0.689 +0.892 +0.888 +0.916 +0.674 +0.906 +0.924 +0.709 0.931
500 +0.674 +0.679 +0.924 +0.916 0.932 +0.675 0.929 0.929 +0.681 0.936

Note. Upward arrow and italic font show over-coverage (> .975); downward arrow and bold font show under-coverage (< .925).
Bayes-F¼ Bayesian credible interval with flat (noninformative) prior; Bayes-W¼ Bayesian credible interval with weakly informative prior; BC¼ Bias cor-
rected bootstrap; BCa¼ Bias corrected and accelerated bootstrap; BS¼ Bollen-Stine semi-parametric bootstrap; MC-ML¼Monte Carlo with ML standard
errors; MC-Rob¼Monte Carlo with robust standard errors; Percentile¼ Percentile bootstrap; Profile¼ Profile-likelihood; YHY¼ Yuan-Hayashi-Yanagihara
semi-parametric bootstrap.
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To compute the 95% CIs for the model in Figure 6,
we use lavaan and OpenMx, each of which have built-
in functions to estimate bootstrap and profile-likeli-
hood for an indirect effect, respectively. The results are
shown in Table 4. To conduct mediation analysis, our
recommendation is based on the purpose (significance
testing, reporting an interval estimate, and reporting a
model fit) of the mediation analysis and the assumption
about the distribution of data (see the Discussion sec-
tion for additional detail). If one were to assume that
the assumption of multivariate normality is not vio-
lated, we would use the profile-likelihood, MC-ML,
Bayes-Flat or Bayes-Weak methods to conduct both sig-
nificance testing and to compute CI. We compute the
profile likelihood 95% CI: [0.25 0.88] and MC-ML 95%
CI: [0.24, 0.87]). Based on the CIs, it appears that indirect
effect is different from zero at a ¼ .05. Also, it appears
that the indirect effect ranges from 0.24 to 0.87 using the
MC-ML CI. However, if a researcher were to err on the
side of caution and assume violation of the multivariate
normality, she would use the profile-likelihood or MC-
ML method for significance testing, but the percentile

bootstrap 95% CI [0.23, 0.90] for the interval estimate. In
this case, it appears that the indirect effect ranges from
.24 to 0.87. Note that the percentile bootstrap CI is wider
than either profile-likelihood or MC-ML method because
it is nonparametric and thus does not assume a specific
distribution about the data or the residuals.

Discussion

We conducted a large-scale, comprehensive simulation
study to evaluate the Type I error rate, statistical
power, and coverage of 10 emerging and existing con-
fidence/credible intervals to test an indirect effect in a
two-mediator sequential model: (a) Bayesian credible
interval with flat prior (Bayes-Flat), (b) Bayesian cred-
ible interval with weakly informative prior (Bayes-
Weak), (c) Monte Carlo CI with the ML standard
errors (MC-ML), (d) Monte Carlo CI with robust
Huber-White (Huber, 1967; White, 1980) standard
errors (MC-Robust), (e) Bollen and Stine (BS) boot-
strap, (f) Yuan, Hayashi, and Yanagihara (YHY) boot-
strap, (g) profile likelihood, (h) percentile bootstrap,

Figure 6. A sequential two-mediator model. The independent variable, Treatment, denotes a random assignment that takes on 1
(Racism), or 0 (Control). The two sequential mediators are perceived social dominance orientation (SDO) and Perceived Sexism. The
dependent (outcome) variable is Gender Stigma. The variable Liking is a covariate. The quantity of interest is the indirect effect of
Treatment on Gender Stigma that sequentially transmits through both Perceived SDO and Perceived Sexism controlling for the
effect of Liking. Under the no-omitted-confounder assumption, the specific indirect effect of Treatment on Gender Stigma through
Perceived SDO and Perceived Sexism equals the product of three coefficients, b1b2b3:

Table 4. Estimates for the two-mediator sequential model of the empirical example (N¼ 100).
Variables 95% CI

Dependent Predictor Estimate SE z p LL UL Semi-partial R2

Perceived SDO
Treatment 1.51 (b1) 0.27 5.50 <.001 0.97 2.04 0.162
Liking –0.71 0.15 –4.88 <.001 –1.00 –0.43 0.128

Perceived sexism
Perceived SDO 0.26 (b2) 0.06 4.64 <.001 0.15 0.37 0.086
Treatment 0.11 (b4) 0.17 0.66 0.51 –0.23 0.45 0.002
Liking –0.52 0.09 –5.80 <.001 –0.69 –0.34 0.135

Gender stigma
Perceived Sexism 1.31 (b3) 0.18 7.48 <.001 0.97 1.65 0.194
Perceived SDO 0.05 (b5) 0.11 0.51 0.61 –0.16 0.26 0.001
Treatment 0.18 (b6) 0.30 0.59 0.56 –0.41 0.77 0.001
Liking –0.17 0.18 –0.94 0.35 –0.52 0.18 0.003

Note. LL¼ lower limit; SDO¼ social dominance orientation; Treatment ¼ 1 (racism), 0 (control); UL¼ upper limit.
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(i) bias-corrected (BC) bootstrap, and (j) bias-cor-
rected and accelerated (BCa) bootstrap. A wide range
of conditions including sample sizes, size of regression
coefficients, and multivariate normal and nonnormal
data based on our survey of the published literature
were examined in the Monte Carlo simulation study.

For ideal conditions, when the data had a multi-
variate normal distribution, one key finding was that
when N¼ 50, the profile likelihood and both Bayesian
methods showed the best coverage and accurate Type
I error rates while for N$ 100 all methods except for
BC and BCa bootstrap showed comparable perform-
ance. Popular BC and BCa bootstrap methods fre-
quently showed under-coverage and inflated Type I
error rates for tests of indirect effects, especially for
smaller sample sizes. The BCa bootstrap reached the
maximum Type I error rate of 12.6% when b1 ¼ b2 ¼
0.48, b3 ¼ 0, and N¼ 50 while the BC bootstrap
showed the maximum Type I error rate of 9.8% when
b1 ¼ 0.48, b2 ¼ 0.62, b3 ¼0, and N¼ 50. The lowest
coverage for BC and BCa was 87.4%, which occurred
when b1 ¼ 0.36, b2 ¼ 0.62, b3 ¼ 0.14, and N¼ 50 for
BC and b1 ¼ b2 ¼ b3 ¼ 0.14, and N¼ 100 for BCa.
All methods except for BC and BCa showed compar-
able power across conditions. We also considered two
multivariate nonnormality conditions: moderate
multivariate nonnormality (skewness ¼ 2, kurtosis ¼
7) and extreme multivariate nonnormality (skewness
¼ 3, kurtosis ¼ 7). For both multivariate nonnormal-
ity conditions, profile-likelihood method, MC-ML,
Bayes-Flat, and Bayes-Weak showed the most accurate
Type I error rate followed by MC-Robust, percentile
bootstrap, YHY, and BC, which showed multiple
instances of inflated Type I error rate; power for all
methods was comparable across conditions. In terms
of coverage, however, the best performing methods
were the percentile bootstrap, YHY, and BS method,
followed by BC, BCa, and MC-Robust method. The
profile-likelihood, MC-ML, and both Bayesian meth-
ods showed under-coverage for moderate multivariate
nonnormality condition that worsened for extreme
multivariate nonnormality condition.

The results of our simulation study complement
previous studies. Because of the inflated Type I error
rates and under-coverage, we do not recommend BC
and BCa. Our recommendation is consistent with the
recent studies of BC and BCa for a single-mediator
model (Biesanz et al., 2010; Falk, 2018; Falk &
Biesanz, 2014; Hayes & Scharkow, 2013). For example,
Hayes and Scharkow’s (2013) recommended the per-
centile bootstrap as a compromise between liberal BC
bootstrap when mediation occurs and the MC-ML or

the distribution-of-the-product approach (MacKinnon,
Lockwood, Hoffman, West, & Sheets, 2002) when
mediation does not occur. Of course, knowing when
mediation occurs or not is not straightforward.
However, our recommendation is inconsistent with
the recommendation from the previous studies of
sequential two-mediator model. Williams and
MacKinnon (2008) and Taylor et al. (2008) studied
the BC bootstrap CI for normally distributed data,
and recommended BC bootstrap; however, these two
studies averaged the Type I error rate and coverage
across several conditions. The Type I error rates and
coverage for specific combination of factors (that were
not averaged or aggregated), such as the maximum
Type I error rates and the minimum coverage rate,
were not reported. Thus, the severity of the inflated
Type I error rate and under-coverage rate were not
fully explored. For example, for N¼ 50, Taylor et al.
reported the highest mean (average across conditions)
Type I error rate for BC to be .074, which is within
Bradley’s interval, while in our simulation study the
maximum Type I error rate for N¼ 50 was .098,
which is outside of Bradley’s interval. Similarly, when
only one of the coefficients was zero, Williams and
MacKinnon reported mean Type I error rates, aver-
aged across coefficient values, to be .08093 (N¼ 50),
.07820 (N¼ 100), and .07860 (N¼ 200). By compari-
son, the maximum Type I error rates in our simula-
tion study were .098 (N¼ 50), .092 (N¼ 100), and
.089 (N¼ 200). Had we used the average Type I error
rate, then BC and BCa would have shown accurate
Type I errors across sample sizes. However, the aver-
age Type I error rates mask the severity of inflation of
the Type I error rates as well as frequency of the infla-
tion of the Type I error rates, as shown in Figure 2.

One important consideration regarding the
Bayesian methods considered in the current study is
that both likelihood and priors were based on multi-
variate/univariate normal distributions. Although not
in the context of mediation models, according to
Zhang (2016), one possible reason that the Bayesian
methods did not perform well under multivariate
nonnormality conditions is that both likelihood and
prior distributions were multivariate/univariate nor-
mal distributions. Zhang showed that using a nonnor-
mal distribution to model error terms in latent
growth curve models would improve efficiency of
standard error estimates for the model parameters.
Future studies are needed to further study the effect
of using univariate/multivariate nonnormal distribu-
tions on the performance of the Bayesian credible
intervals for indirect effect.
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Unlike previous studies of tests of indirect effect in
mediation models, our recommendation is based on
the purpose (significance testing, reporting an interval
estimate, and reporting a model fit, although model
fit was not included in our simulation study) of the
mediation analysis and the assumption about the dis-
tribution of data. If multivariate normality can be
assumed, then one may use (a) profile likelihood, (b)
MC-ML, (c) Bayes-Flat, or (d) Bayes-Weak to com-
pute a CI and to conduct significance testing. For
multivariate nonnormality conditions, however, we
recommend that researchers use different methods to
conduct significance testing and to report a CI. For
significance testing, we recommend the (a) profile
likelihood, (b) MC-ML, (c) Bayes-Flat, or (d) Bayes-
Weak method. If the goal is to build a CI without
testing for a model fit, then we recommend the per-
centile bootstrap. Moreover, if one would like to be
practical in not choosing the best method in a certain
condition but seeking a compromise in choosing only
one method for both significance testing and comput-
ing a CI, regardless of the distribution of the data, we
recommend the percentile bootstrap CI. The percent-
ile bootstrap offers overall accurate (not the most
accurate) Type I error, comparable power, and good
coverage across conditions. If the researcher’ goal is to
build a CI for the fit indices that are based on likeli-
hood-ratio chi-squared tests, we recommend using the
YHY bootstrap, or with a caveat, the BS bootstrap.
Our caveat is that for smaller sample sizes (N< 200),
BS appeared to produce large standard errors for the
coefficients under nonnormality conditions, and many
fitted models had convergence problems (Nevitt &
Hancock, 2001); note that, however, our simulation
study did not find these problems with the two-medi-
ator sequential mediation model. On the other hand,
YHY has been recommended for testing a model fit
(Zhang & Savalei, 2016). To illustrate the application
of the recommended methods we presented an empir-
ical example from a study by Sanchez et al. (2017)
whose materials and data are publicly available at
(https://osf.io/g5fvw/). We provided code for medi-
ation analysis of the example in the supplemen-
tal materials.

We made several simplifying assumptions in
designing our simulation studies. First, we considered
a single sequential mediation chain. However, the
sequential mediation chain could be part of a larger
model with inclusion of covariates. Inclusion of the
additional covariates may improve the estimates of
the parameters and their standard errors needed to
calculate a CI for an indirect effect. The results of

our simulation study are still applicable to such mod-
els, that is, the models with covariates and with
non-zero b4, b5, and b6 paths in Figure 1. For such
models one could, for example, use semi-partial R2

for endogenous variables and then look up corre-
sponding power in the tabulated power results. We
also assumed that the variables, most importantly the
mediators, were measured without error. Although
this is a common assumption, in practice it will often
be violated. In the two-mediator sequential models
considered here, measurement errors could attenuate
(decrease) the magnitude of indirect effects and
inflate (increase) their standard errors (Cohen et al.,
2003). We surmise that the results of our simulation
studies hold for structural equation models with
latent variables used to model measurement errors,
assuming the model is correctly specified and appro-
priately fitting. In addition, we used Vale and
Maurelli’s (1983) approach to generate multivariate
nonnormal data. Vale and Maurelli’s approach has
been criticized in the literature for underestimating
values of skewness and kurtosis in smaller sample
sizes (Astivia & Zumbo, 2015), and thus our recom-
mendations regarding the values of skewness and kur-
tosis should be considered with some degree of
caution (particularly in small samples). Nevertheless,
the Vale and Maurelli’s approach has been widely
used in methodological research, and to the extent
the method may not produce perfectly defined levels
of nonnormality, we are confident that our conclu-
sions hold. Finally, we assumed that the population
model in Figure 1 is correctly specified. This assump-
tion implies that the model correctly represents the
true causal order of the variables, there are no omit-
ted confounders in the model, and the functional
form of the causal relationships is linear. The validity
of such assumptions in practice is unknown.
Researchers should make attempts to evaluate the
effects of violations of the assumptions on their
results (Cox et al., 2013; Holland, 1988; Imai et al.,
2010; MacKinnon & Pirlott, 2015; Tofighi et al., 2019;
Tofighi & Kelley, 2016).

A strength of the simulation studies was that we
studied both frequentist and two Bayesian intervals
(Bayes-Flat and Bayes-Weak) across a wide range of
effect sizes as well as multivariate normality and non-
normality conditions for a more complex mediation
model that has two sequential mediators compared to
a single mediator. We hope our work helps research-
ers make more informed decisions regarding how to
test for sequential mediation, a method that is
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becoming more important in psychology and related
disciplines.
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