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Abstract
Mediation analysis is an important approach for investigating causal pathways. One approach used in
mediation analysis is the test of an indirect effect, which seeks to measure how the effect of an independent
variable impacts an outcome variable through 1 or more mediators. However, in many situations the proposed
tests of indirect effects, including popular confidence interval-based methods, tend to produce poor Type I
error rates when mediation does not occur and, more generally, only allow dichotomous decisions of “not
significant” or “significant” with regards to the statistical conclusion. To remedy these issues, we propose a
new method, a likelihood ratio test (LRT), that uses nonlinear constraints in what we term the model-based
constrained optimization (MBCO) procedure. The MBCO procedure (a) offers a more robust Type I error rate
than existing methods; (b) provides a p value, which serves as a continuous measure of compatibility of data
with the hypothesized null model (not just a dichotomous reject or fail-to-reject decision rule); (c) allows
simple and complex hypotheses about mediation (i.e., 1 or more mediators; different mediational pathways);
and (d) allows the mediation model to use observed or latent variables. The MBCO procedure is based on a
structural equation modeling framework (even if latent variables are not specified) with specialized fitting
routines, namely with the use of nonlinear constraints. We advocate using the MBCO procedure to test
hypotheses about an indirect effect in addition to reporting a confidence interval to capture uncertainty about
the indirect effect because this combination transcends existing methods.

Translational Abstract
Mediation analysis has become one of the most important approaches for investigating causal pathways. One
instrument used in mediation analysis is a test of indirect effects that seeks to measure how the effect of an
independent variable impacts an outcome variable through one or more mediators. However, in many
situations the proposed tests of indirect effects, including popular confidence interval-based methods, tend to
produce too few or too many false positives (Type I errors) and are commonly used to make only dichotomous
decisions about acceptance (“not significant”) or rejection (“significant”) of a null hypothesis. To remedy these
issues, we propose a new procedure to test an indirect effect. We call this new procedure the model-based
constrained optimization (MBCO) procedure. The MBCO procedure (a) more accurately controls the false
positive rate than existing methods; (b) provides a p value, which serves as a continuous measure of
compatibility of data with the hypothesized null model (not just a dichotomous reject or fail-to-reject decision
rule); (c) allows simple and complex hypotheses about mediation (i.e., one or more mediators; different
mediational pathways); and (d) allows the mediation model to use observed or latent variables common in
psychological research. We advocate using the MBCO procedure to test hypotheses about an indirect effect
in addition to reporting a confidence interval to capture uncertainty about the indirect effect.
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Mediation analysis has become one of the most important and
widely used methods to study causal mechanisms in psychology,
management, education, and other related fields (e.g., Ato García,

Vallejo Seco, & Ato Lozano, 2014; Boies, Fiset, & Gill, 2015;
Bulls et al., 2017; Carmeli, McKay, & Kaufman, 2014; Deković,
Asscher, Manders, Prins, & van der Laan, 2012; Ernsting, Knoll,
Schneider, & Schwarzer, 2015; Graça, Calheiros, & Oliveira,
2016; Haslam, Cruwys, Milne, Kan, & Haslam, 2016; Koning,
Maric, MacKinnon, & Vollebergh, 2015; MacKinnon, 2008; Mo-
lina et al., 2014). Researchers have proposed several methods to
test for the presence of mediation (MacKinnon, Lockwood, Hoff-
man, West, & Sheets, 2002), including the widely recommended
(a) Monte Carlo confidence interval (CI; MacKinnon, Lockwood,
& Williams, 2004; Tofighi & MacKinnon, 2016), also known as
parametric bootstrap method (Efron & Tibshirani, 1993); (b) per-
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centile and bias-corrected (BC) bootstrap resampling CI (Bollen &
Stine, 1990; Efron & Tibshirani, 1993; MacKinnon et al., 2004;
Shrout & Bolger, 2002); (c) profile-likelihood CI method (Folmer,
1981; Neale & Miller, 1997; Pawitan, 2001; Pek & Wu, 2015); and
(d) joint significance test (Kenny, Kashy, & Bolger, 1998; MacK-
innon et al., 2002). Henceforth, we will use the term CI-based
methods to emphasize a dual role that CIs have played in the
mediation analysis literature. In addition to providing a range of
plausible values for a population indirect effect, CIs have also
controversially been used to test the null hypothesis of no medi-
ation (i.e., a zero indirect effect) at the � level with a (1-�) 100%
CI. However, testing an indirect effect is complicated because the
indirect effect is the product of the coefficients along the mediation
chain (MacKinnon, 2008). Further, each of the methods mentioned
earlier has key limitations, many of which researchers commonly
encounter. Thus, even though these procedures are currently rec-
ommended, that recommendation in research is questionable.

Many popular testing methods in mediation models are limited
because they lack robustness of the observed Type I error rate.
That is, the empirical probability of falsely rejecting the null
hypothesis about an indirect effect does not equal, and can fre-
quently fall outside of, a robustness interval for the Type I error
rate, such as Bradley’s (1978) liberal interval [0.5�, 1.5�], where
� is the nominal significance level (Biesanz, Falk, & Savalei,
2010; Tofighi & Kelley, 2019). The idea of using .025–.075 as an
acceptable departure from the idealized properties of the statistical
procedures, when � � .05, acknowledges that a null hypothesis
procedure may not work perfectly but is still useful. Bradley’s
(1978) liberal criterion accepts a procedure as robust when violations
of the model’s assumptions are small enough not to fundamentally
change the statistical conclusion. The importance of the conclusion in
the context of mediation, for example, is when sample size is less than
100 and � � .05. Several methods, including widely recommended
CI-based methods, can result in Type I error rates that fall outside of
Bradley’s liberal interval [0.025 .075] (Tofighi & Kelley, 2019) and
are, therefore, unsatisfactory. We propose a method that is more
robust than other procedures because it better satisfies Bradley’s
(1978) liberal criterion and has desirable statistical properties that
allow its wide use, including in situations beyond which existing
methods are applicable.

Currently used methods of testing mediation are limited because
these tests are commonly used to make only dichotomous deci-
sions about acceptance (“not significant”) or rejection (“signifi-
cant”) of a null hypothesis. These dichotomous decisions provide
a false sense of certainty about a model and data and are not
generally recommended (Amrhein, Trafimow, & Greenland, 2019;
Wasserstein, Schirm, & Lazar, 2019). Further, these methods do
not offer either a p value, a continuous measure of compatibility
between data and the null hypothesis (Greenland et al., 2016), or
an additional means of measuring statistical evidence, such as a
likelihood ratio (Blume, 2002). As recommended by Wilkinson
and the Task Force on Statistical Inference, American Psycholog-
ical Association, Science Directorate (1999), reporting exact p
values, CIs, and effect sizes, and not just noting “reject” or
“fail-to-reject” is the ideal for science to progress. None of the
CI-based tests, by their very nature, offers additional ways of
evaluating the strength of evidence against a null hypothesis of no
mediation. A likelihood ratio, however, is a continuous measure
that can compare the goodness of fit of two competing models

under standard assumptions, as measured by the ratio of the
models’ maximized likelihoods. One model, a null model, repre-
sents and satisfies the null hypothesis of no mediation (e.g., zero
indirect effect), and the other model, a full model, shows that
mediation does occur, as posited by a researcher (e.g., the indirect
effect is nonzero). Further, a likelihood value can be used to
compute information fit indices, such as Akaike information cri-
terion (AIC; Akaike, 1974) and Bayesian information criterion
(BIC; Schwarz, 1978); such indices compare the fit of the full and
null models while penalizing each model for a lack of parsimony
(i.e., the number of model parameters).

To address these limitations, we propose a model-based con-
strained optimization (MBCO) method as a new procedure that tests
any function representing an indirect effect1 and that provides a
formal way to recast testing simple and complex hypotheses about an
indirect effect into a model-comparison framework. The MBCO
procedure offers two formal mechanisms to evaluate hypotheses
about indirect effects in the model-comparison framework. First, the
MBCO procedure offers a likelihood ratio test (LRT) statistic, which
we term LRTMBCO, that has a large sample chi-squared distribution
and provides a p value to test hypotheses about an indirect effect.
Second, the MBCO procedure compares the fit of two models in
terms of a likelihood ratio and information fit indices, such as the AIC
and BIC, as well as their generalizations.

In the model-comparison framework, we estimate the null and full
models representing different hypotheses about an indirect effect
under a null and an alternative hypothesis, respectively (see Maxwell,
Delaney, & Kelley, 2018). A null model represents the null hypoth-
esis about the indirect effect. Unlike existing approaches to model
comparisons, the MBCO procedure can estimate the null mediation
model by using nonlinear constraints for testing a null hypothesis in
mediation models. This innovative application of nonlinear con-
straints can be used to test both simple and complex hypotheses in
mediation models. The MBCO procedure also allows the indirect
effect of a full model, posited by a researcher, to be freely estimated.
For example, a full model is a mediation model shown in Figure 1.
Although model comparisons using the likelihood ratio test are com-
mon in techniques such as multilevel modeling (Raudenbush & Bryk,
2002) and structural equation modeling (SEM; Kline, 2016), in almost
all such situations the parameters are subject to linear constraints.
Testing indirect effects is problematic because constraining the indi-
rect effect, H0: �1�2 � 0, is inherently a nonlinear constraint optimi-
zation problem as the constraint is the product of two parameters
(Snyman, 2005).

The MBCO procedure offers several advantages over the exist-
ing, recommended methods. First, the MBCO procedure offers the
test statistic LRTMBCO that has better statistical properties than the
widely recommended approaches in the literature. This test statis-
tic, widely used in statistics, has desirable properties for testing
complex null hypotheses (Cox & Hinkley, 2000). The LRTMBCO

yields more robust Type I error rates than the currently recom-
mended methods when the null hypothesis of no mediation occurs.
Second, the MBCO procedure offers researchers multiple ways of
evaluating a null hypothesis of an indirect effect rather than only

1 More formally, a function of model parameters should be a smooth
function, which is a function that has continuous derivatives up to a desired
order (Weisstein, 2018).
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allowing a dichotomous reject or fail conclusion that has been
criticized by researchers (e.g., Cohen, 1994; Harlow, Mulaik, &
Steiger, 1997; Wasserstein et al., 2019). The MBCO procedure
also allows researchers to test simple and complex hypotheses for
a variety of mediation models involving multiple mediators (ob-
served or latent) in a flexible manner. This flexibility aids re-
searchers interested in complex causal models that are often pos-
ited by theories and can be implemented in an SEM framework.
Such flexibility and desirable statistical performance make the
MBCO procedure a desirable advancement for mediation studies.
To make our proposed method immediately available to research-
ers, we provide detailed instructions along with the necessary R (R
Core Team, 2019) code (see the online supplemental materials).
Nonlinear constraint optimization algorithms to implement the
MBCO procedure and to compute the LRTMBCO are already
implemented in at least one R software package, and we expect
other software packages to soon make such allowances as well.

The Model-Based Constrained Optimization Procedure

We begin by explaining the MBCO procedure conceptually and
then discussing the required steps required to perform this proce-
dure. Without loss of generality, we elaborate on the MBCO
procedure to test the zero indirect effect null hypothesis, H0:
�1�2 � 0, for the single-mediator model example (see Figure 1).
In the Empirical Example of Using the MBCO Procedure on a
Complex Mediation Model section, we discuss extensions of the
MBCO procedure to the more elaborate, parallel two-mediator
model (see Figure 2). In the Simulation Study section, we briefly
extend the MBCO procedure to a sequential two-mediator model
and then compare the performance of the MBCO procedure with
the most commonly used tests of indirect effects for both a single-
mediator model and a sequential two-mediator model.

The MBCO procedure recasts hypotheses about indirect effects
into a model-comparison framework. To illustrate, consider the
single-mediator model (see Figure 1), which can be represented by the
following regression equations:

M � �0M � �1X � εM (1)

Y � �0Y � �2M � �3X � εY, (2)

where �1 is the effect of instruction (X � 1 corresponds to
instruction to use imagery rehearsal; X � 0 corresponds to instruc-
tion to use repetition rehearsal) on the use of imagery (imagery);
�2 is the effect of imagery on the number of words recalled (recall)
controlling for instruction, and �3 is the direct effect of the
instruction on recall controlling for imagery. �0M and �0Y denote
the intercepts while εM and εY are residual terms. The indirect
effect of instruction on recall through imagery is defined as
whether instruction to use imagery increases the use of imagery
and then, in turn, increases the number of words participants
recalled. Under the no-omitted-confounder assumption, which as-
sumes that a variable should not be omitted from the model that
would influence both the mediator and the outcome variables, the
indirect effect equals the product of two coefficients, �1�2 (Imai,
Keele, & Tingley, 2010; Judd & Kenny, 1981; Valeri & Vander-
Weele, 2013; VanderWeele, 2010). Suppose that we are interested
in testing whether the indirect effect of instruction on recall
through imagery is zero. We can use the following null hypothesis
to answer this question:

H0: �1�2 � 0

H1: �1�2 � 0

To recast the hypotheses about the indirect effect into a model-
comparison framework, we estimate two mediation models: a full
(alternative) model and a null (restricted) model (Maxwell et al.,
2018). Which model to estimate first is arbitrary. For our example,
the full model is the single-mediator model in (1)–(2). Note that
the full model does not constrain the value of the indirect effect,
�1�2. Next, for the null model, we estimate a mediation model in
which the indirect effect �1�2 is constrained to equal 0. Both the
full and the null model can be represented by the set of equations
in (1) and (2) with the limitation that �1�2 is constrained to be 0
in the null model. The null model is nested within the full model;

Figure 1. An example of a randomized single-mediator model. Instruction (X) is a random assignment with two
conditions: instruction to use mental imagery rehearsal (X � 1) versus instruction to use repetition (X � 0). Imagery
is a self-reported score of using mental imagery to memorize words, and recall is the number of words out of a total
of 20 words that each student correctly remembered at the end of the experiment. A solid arrow between two variables
indicates a direct effect of the variable on the left on the other variable. Greek letters denote population values, where
�s denote the regression (path) coefficients, with �1 being the treatment effect on imagery, �2 being the partial effect
of imagery on recall controlling for treatment effect, and �3 is the partial effect of instruction on recall controlling for
imagery. Terms εY and εM denote residuals that are assumed to be normally distributed.
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that is, by setting the indirect effect to zero in the full model, we
would obtain the null model.

The final step of the MBCO procedure is to formally compare
the two models. One such approach compares the fit of the two
models by computing LRTMBCO. To compute the LRTMBCO, we
first calculate the deviance, denoted by D, for each model:

D � �2LL, (3)

where (LL) denotes the log-likelihood. The equation proposes that
deviance equals twice the negative of the maximum value of the
log-likelihood (LL) of the corresponding model. Deviance is a
positive number quantifying the “badness” of fit or the “misfit” of
a model. The larger the value of deviance for the same data set, the
worse the fit of the model to that sample data.

Next, we compute the LRTMBCO as the difference between the
deviance for the null and full models. Under the null hypothesis,
LRTMBCO has a large sample chi-squared distribution (Wilks,
1938) as follows:

LRTMBCO � Dnull � Dfull � �2(df), (4)

where the degrees of freedom, df, equal the difference in the number
of the free parameters between the two models. The larger values of
the LRTMBCO indicate that the null model, which estimates no indi-
rect effect, fits the data worse than does the full model in which the
indirect effect is freely estimated. To obtain a p-value for the
LRTMBCO, we calculate the upper tail probability from the chi-
squared distribution (i.e., the area larger than the observed chi-squared
statistic) with the specified degrees of freedom. While using a likeli-
hood ratio test is standard in SEM, the LRTMBCO uses the nonlinear

constraint of �1�2 � 0 that has not been previously explored for
testing the null hypothesis of no indirect effect. The nonlinear con-
straint of �1�2 � 0 is, in fact, much more difficult to implement than
is simply fixing a single parameter to a specified value (such as zero).
Because of this nonlinear constraint of �1�2 � 0, specialized algo-
rithms must be used (discussed below), which at present are not
implemented in all programs.

Additionally, the MBCO procedure can compare the fit of the
null and full models in terms of information fit indices such as the
AIC (Akaike, 1974) or BIC (Schwarz, 1978). Such indices con-
sider the fit of the model (as measured by the maximized values of
likelihood for the model) to the data while penalizing the model for
estimating more parameters. To clarify, consider the formulas for
AIC and BIC:

AIC � D � 2 k (5)

BIC � D � 2 k ln(n), (6)

where k is the number of free parameters (e.g., degrees of freedom)
and n is the sample size in a mediation model. Both the AIC and
the BIC penalize estimating more parameters in a model by adding
the term 2 k (for AIC) and 2 k ln(n) (for BIC) to deviance. If two
models have the same deviance, the AIC favors the model with
fewer free parameters (i.e., the more parsimonious model). For the
BIC, if two models have the same deviance and sample size, the
BIC favors the more parsimonious model. A lower AIC or BIC
value indicates a better fit.

The MBCO procedure and LRTMBCO have not previously been
explored for testing the null hypothesis of no mediation for a few
reasons. First, the nonlinear constraints require a sophisticated
optimization algorithm (e.g., Zahery, Maes, & Neale, 2017). To
our knowledge, the only structural equation modeling programs
that are equipped to implement the nonlinear constraint are
OpenMx (Boker et al., 2011; Neale et al., 2016) and SAS PROC
CALIS (SAS Institute Inc., 2016). Second, researchers commonly
rely on the CI-based tests because other researchers recommend
them (e.g., MacKinnon et al., 2004; Preacher & Hayes, 2008;
Shrout & Bolger, 2002). Third, few researchers have realized the
infinite number of ways to realize and test the null hypothesis of no
indirect effect, such as H0: �1�2 � 0. For example, �1 can be zero
but �2 may take on any value; �2 can be zero but �1 may take on
any value; or �1 and �2 are both zero. Thus, in an infinite number
of ways, mediation does not happen. The MBCO procedure offers
flexibility in testing and improvement in evaluating simple and
complex hypotheses about indirect effects, which we demonstrate
next using an empirical example.

Empirical Example of Using the MBCO Procedure on
a Complex Mediation Model

The MBCO procedure can be applied to a mediation model with
two parallel mediators; in fact, the MBCO procedure can test a
variety of simple and complex hypotheses about indirect effects
and can offer flexibility in testing and improvement in evaluating
these hypotheses. Using R (R Core Team, 2019) and the OpenMx
(Boker et al., 2011; Neale et al., 2016) package, we apply and
illustrate parts of the code and output to a sample problem. Full
descriptions of the OpenMx code and output are given in the
online supplemental materials.

Figure 2. A randomized parallel (covarying) two-mediator model. In-
struction (X) is a random assignment with two conditions: instruction to use
mental imagery rehearsal (X � 1) versus instruction to use repetition (X �
0). Repetition is a self-reported score of using a repetition rehearsal to
memorize words. Imagery is a self-reported score of using mental imagery
to memorize words. Recall is the number of words out of a total of 20
words that each student correctly remembered at the end of the experiment
and is the outcome variable of interest. A solid arrow from one variable to
another indicates a direct effect of the variable on the other variable. The
curved double-headed arrow shows covariance between two residual terms
associated with the mediators, εM1 and εM2. The numbers next to each
arrow denote regression (path) coefficient estimates while the numbers in
parentheses denote the respective standard errors. The ε terms denote
residuals, which we assume are normally distributed.
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MacKinnon, Valente, and Wurpts (2018) discussed a study
on using mental imagery to improve the memorization of
words. Table 1 shows descriptive statistics for this empirical
example. Oliver, Bays, and Zabrucky (2016) showed individu-
als who are instructed to create mental images of words appear
to recall more of them than do individuals who were simply
instructed to remember the words. MacKinnon et al. (2018)
conducted another study to test the mediation hypothesis that
instructions to participants to create mental images of words
would increase their using mental imagery and, in turn, would
increase the number of words participants recalled (see Figure
2). The study was replicated eight times, each with a different
group of undergraduate students enrolled in introductory psy-
chology courses; the sample sizes were 77, 43, 24, 79, 22, 45,
35, and 44. At the beginning of each assessment, the instructor
informed the students that they would hear a number of words
and that they were to memorize the words using techniques
described in the instructional sheets that they would receive.
The students then were randomly assigned to receive instruc-
tions on one of two different memorization techniques: repeti-
tion or imagery rehearsal. The students who received repetition
instructions were asked to memorize each word by repeating it
to themselves. The students who received imagery instructions
were asked to memorize each word by forming a mental image
of the word along with other words they had heard during the
experiment. For example, upon hearing the word camel and
after hearing the word women, they might imagine a woman
riding a camel. The students listened to 20 words with a 10-s
interval to rehearse each word. Ten seconds after hearing the
last word, the students were asked to write down as many words
as they remembered. Next, the students were all asked to (a)
rate the degree to which they formed images of the words in
order to memorize the words using a scale of 1 � not at all to
9 � absolutely; and (b) rate the degree to which they memo-
rized each word by repetition on a scale of 1 � not at all to 9 �
absolutely.

For this mediation model, we were interested in testing the
following hypotheses:

Research Question 1: Does the instruction to create mental
images of words increase use of mental imagery that, in turn,
increases the number of words recalled?

Research Question 2: Does the instruction to repeat words
increase use of repetition to memorize the words that, in turn,

increases the number of words recalled over and above using
mental imagery?

Research Question 3: Is the indirect effect of instruction to
create mental images on the number of words recalled through
use of mental imagery greater than the indirect effect of
instruction to repeat words on the number of words recalled
through use of repetition?

To answer each research question, we implemented the MBCO
procedure in three steps:

Step 1: Specify and estimate the full mediation model.
Step 2: Specify and estimate the null mediation model.
Step 3: Compare fit of the full and null models using the MBCO

procedure.
For Research Question 1, we briefly explain OpenMx (Boker et

al., 2011; Neale et al., 2016) syntax for conducting the MBCO
procedure and provide the relevant part of OpenMx code and
output. For Research Questions 2 and 3, we summarize the MBCO
procedure statistical results.2

Research Question 1

Because we were interested in testing whether the indirect effect
of instruction of recall through imagery is different from zero, we
answered this question by using the single-mediator model (see
Figure 1). We briefly introduced the key parts of OpenMx code
(Boker et al., 2011; Neale et al., 2016) and R (R Core Team, 2019)
and then followed the three steps outlined in the article to imple-
ment the MBCO procedure.

Before reporting the formal modeling process, we show a glimpse
of the data set and its structure using the glimpse function from the
dplyr package (Wickham, François, Henry, & Müller, 2019):

2 All OpenMx scripts for the model along with a detailed explanation are
provided in the online supplemental materials, which can also be found at
https://github.com/quantPsych/mbco. For a comprehensive list of resources
about the OpenMx software, we encourage readers to visit the project
website https://openmx.ssri.psu.edu. For a detailed document on each
function within R, use the help() function. For example, type help
(mxModel) within the R console.

Table 1
Means, Standard Deviations, and Correlations With Confidence Intervals

Variable M SD 1 2 3

1. Repetition 6.08 2.84
2. Recall 12.07 3.4 �.28 [�.37, �.19]
3. Imagery 5.66 2.96 �.56 [�.63, �.49] .51 [.43, .58]
4. Instruction 0.51 0.5 �.67 [�.72, �.61] .32 [.22, .41] .62 [.55, .68]

Note. M and SD are used to represent mean and standard deviation, respectively. Instruction (X) is a random
assignment with two conditions: instruction to use mental imagery rehearsal (X � 1) versus instruction to use
repetition (X � 0). Repetition is a self-reported score of using a repetition rehearsal to memorize words. Imagery
is a self-reported score of using mental imagery to memorize words. Recall is the number of words out of a total
of 20 words that each student correctly remembered at the end of the experiment and is the outcome variable of
interest. Values in square brackets indicate the 95% confidence interval for each correlation.
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Step 1
The MBCO procedure begins by specifying the full single-mediator model (see Figure 1). We fit the full single-mediator model using

the code shown below:
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In the first two lines of the script above, before specifying the
model parts with mxModel, we can simplify the process by
grouping the names of variables as a vector that will be used in
model specification. For example, we specified a vector of the
names of observed variables and saved them as maniVar. Then,
we specified a vector of the names of endogenous variables and
saved them as endVar. Next, we specified the full single-
mediator model.

The main command to specify an SEM is mxModel. The
arguments provided to the mxModel function specified all the
elements of the mediation model. For the single-mediator example,
we specified the manifest (observed) variables, the paths (regres-
sion coefficients), the indirect effect to be tested (or any function
of model parameters), the constraint distinguishing the full and
null models, and the variances and covariances among the vari-
ables. The first argument to mxModel is single_med_full,
which is a name we chose for the single-mediator model. The next
argument, type="RAM", specifies that OpenMx uses the retic-
ular action model (RAM; McArdle & McDonald, 1984), a sym-
bolic algebraic notation to specify an SEM. In the argument
manifestVars, we introduced the vector of the names of the
observed (manifest) variables. The variable names must match the
names in the data set memory_df, as shown earlier in the output
from the glimpse function.

Next, we specified the paths between the variables using
mxPath, a function that corresponds to the graphical representa-
tion of paths in an SEM such as the model in Figure 1. For
example, we used mxPath to indicate a path (coefficient) corre-
sponding to an arrow between the two variables specified in the
arguments from (predictors) and to (response variables) in Fig-
ure 1. The argument arrows=1 indicates a unidirectional arrow
that starts from the variable in the argument from and ends at the
variable specified in the argument as to. The argument
arrows=2 indicates a bidirectional arrow representing a covari-
ance between the two variables. The argument free=TRUE
indicates that the parameter is freely estimated; otherwise,

free=FALSE indicates that the parameter is fixed at the values
set by the argument values. If the parameter is freely estimated,
the argument values would provide starting values. The argu-
ment labels provides labels for the coefficients. Because we
specified more than one coefficient in the arguments to and
from, we could provide a vector of labels corresponding to the
stated order of the coefficients. For our example, b1 is the coef-
ficient for X ¡ imagery and b3 is the coefficient for X ¡ recall.

We used the function mxAlgebra to define the indirect effect
that, in general, is a function of model parameters. A function may
include combinations of mathematical operations, such as �, �, �,
and / (e.g., b1�b2/(b1�b2+b3)), exponentials (e.g., exp), and
logarithms (e.g., log). The first argument to mxAlgebra was the
product of two coefficients, b1�b2, in which b1 and b2 had been
defined in mxPath. The argument name="ind" named the indirect
effect. Next, we specified the data set for the model. The mxData
identified the data set to be analyzed. The argument observed=
memory_df specified the name of the data set in R. The second
argument, type="raw," indicated that the data set was in the raw
format, which meant that the data set included observations on the
participants as opposed to being a summary statistic such as a cova-
riance matrix.

Finally, we ran the model using mxRun, where the first argument
was the name of the mxModel that was then saved as fit_single_
med_full. Because we received a warning (not shown here) from
the optimizer that the convergence criterion was not satisfied, we used
the function mxTryHard. This function would either run the model
multiple times until an acceptable solution, according to the conver-
gence criterion set by the estimation algorithm, was found or it would
run a preset maximum number of times until an acceptable solution
was reached. In the subsequent analysis, we first used mxRun and, if
the model had convergence issues, we then used mxTryHard. We
used the function summary to save or print the summary of the
results. We saved the summary of the results as stat_single_
med_full and then printed the summary. Below, is the relevant part
of the summary results.

Below the title Model Statistics, the row that starts with
Model gives the pertinent information for the full model. The output
showed that the full single-mediator model had eight free parameters,
with dfFull � 1099 and DFull � 4305.727. Under Information
Criteria, we present the estimates of the information indices. The
information indices that match the formulas in (5) and (6) are under
the Parameters Penalty column. For the full model, the infor-
mation fit indices were AICFull � 4321.727 and BICFull � 4353.013.

Before proceeding, after fitting a mediation model, we checked
the degree to which the statistical assumptions about normality of
the residuals and the presence of outliers to ensure that the esti-

mates were unbiased and the inference about the parameters was
valid (Cohen, Cohen, West, & Aiken, 2003). We checked for
normality of the residuals using QQ plots, which indicated that the
normality assumption for the residuals was reasonable. Using the
methods described by Fox (2016), we did not find any outliers that
would change the results.

Step 2

We ran the null model (code below), which is the single-mediator
model in which the indirect effect of instruction on recall through
imagery is constrained to zero, �1�2 � 0.
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Instead of specifying all parts of the null mediation model using
MxModel in the above code, we modified the full model
single_med_full, as specified in the argument model. Next,
we specified the nonlinear constraint for the indirect effect through
mxConstraint. The first argument, ind = = 0, constrains the

indirect effect defined in the mxAlgebra statement to zero. The
argument name assigns a name to the constraint. Finally, we saved
the null model to single_med_null. Next, we ran the null
model and saved the results to fit_single_med_null. Rele-
vant parts of the summary of the model results are shown below:

For the null model, dfNull � 1100 and DNull � 4481.493, and the
information fit indices were AICNull � 4497.493 and BICNull �
4528.779.

Step 3

We compared the full and null model both in terms of
the LRTMBCO and the information fit indices to evaluate H0:
�1�2 � 0. The LRTMBCO equals the difference between the

deviance of the two models: LRTMBCO � DNull � DFull �
4481.493 � 4305.727 � 175.766. The degrees of freedom for the
LRTMBCO equal the difference in the degrees of freedom associ-
ated with each model; that is, dfLRT � dfNull � dfFull � 1100 �
1099 � 1. Given that the LRTMBCO has a large sample �2

distribution with dfLRT � 1, we have the p-value � Pr(�2(1) �
175.766) � 4.073738E � 40. More conveniently, we computed
the LRTMBCO using the mxCompare or anova function where
the arguments are the names of the full and null models:

The first row of the above output shows the results for the full
model, which is the single-mediator model in Figure 1. The col-
umns ep, minus2LL, df, and AIC show the number of estimated
parameters, deviance, degrees of freedom, and AIC, respectively.
The columns diffLL, diffdf, and p represent the difference in
deviance (not the log-likelihoods), the difference in degrees of
freedom, and p-value for the two models being compared. The
second row shows the results for the null model under the columns
ep, minus2LL, df, and AIC. The results of comparing the null
and full model are shown under the columns diffLL, diffdf,

and p. The value for the test statistic LRTMBCO � 175.766 is
located under the column diffLL. The degrees of freedom are
dfLRT � 1 and the p-value � 4.073738E � 40; these amounts are
located under the columns diffdf and p, respectively.

We used the following commands to compute the Monte Carlo
CI for the indirect effect. First, we used the functions coef and
vcov to extract the path coefficients and covariance matrix of the
coefficients, respectively. Next, we used the ci function in the
RMediation package (Tofighi & MacKinnon, 2011, 2016) to com-
pute the Monte Carlo CI. The first argument mu to this function is

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

503IMPROVED INFERENCE IN MEDIATION ANALYSIS



a vector of the coefficient estimates, and the second argument
Sigma is a covariance matrix of the coefficient estimates. The

argument quant accepts a formula for the indirect effect that starts
with the symbol “	”.

The numbers below 2.5% and 97.5% show the lower and upper
limits of the 95% CI, [1.6, 2.682]; the numbers below Estimate
and SE show the estimates of indirect effect and its standard error,
�̂1�̂2 � 2.121 and SE � 0.276, respectively.

We next obtained R2 for the endogenous variables of the full and
null models using the rsq function available in the online sup-
plemental materials.

The first argument model to rsq specifies an OpenMx
model, and the second argument name specifies names of
endogenous variables (i.e., variables in which a single-headed
arrow enters; namely those that are a function of another
variable).

To summarize, the LRTMBCO result showed that the indirect
effect of instruction on recall through imagery appeared to be
greater than zero, �̂1�̂2 � 2.121 (SE � 0.276), 95% Monte
Carlo CI [1.6, 2.682], LRTMBCO � 175.766, dfLRT � 1, p �
4.073738E � 40. We recommend researchers compute the
difference in R2s between the full and null models and then
examine the change in the effect sizes that occurs as a result of
the indirect effect through imagery. For recall, R2 remained
unchanged to four decimal places while for imagery 
R2 �
.3779. Further, the information fit indices supported the asser-
tion that the indirect effect was greater than zero because the
AIC and the BIC for the full single-mediator model were
smaller than those of the null single-mediator model. This result
indicates that constraining the indirect effect to zero worsens
the fit of the full single-mediator model. On average, the
instruction to students to use mental imagery increased use of
mental imagery that, in turn, increased the number of words
they recalled by approximately two words. We have inferential
support that mediation occurred. Note these results are valid if
the no-omitted confounder assumption is met. That is, an omit-
ted variable may not exist that influences the relations between
instruction, imagery, and recall.

Research Question 2

Here, we were interested in whether the instruction to use
repetition increased the use of repetition to memorize the words
that, in turn, improved participants’ memory over and above the
indirect effect of instruction on recall through imagery. In other
words, we wanted to test H0: �4�5 � 0 for the parallel two-
mediator model in Figure 2. We again applied the three-step
MBCO procedure.

Step 1

We estimated the model with two parallel mediators in Figure 2,
which is the full model for this research question. For this model,
the two specific indirect effects associated with imagery and
repetition were freely estimated. Below are the regression equa-
tions for the full parallel two-mediator model:

M1 � �0,M1 � �1X � εM1 (7)

M2 � �0,M2 � �4X � εM2 (8)

Y � �0,Y � �3X � �2M1 � �5M2 � εY, (9)

where �1 is the effect of the instruction (X) on imagery (M1), �4 is
the effect of the instruction on repetition (M2), �3 is the direct
effect of the instruction on recall (Y), �2 is the effect of imagery on
recall controlling for the instruction and repetition, and �5 is the
effect of repetition on recall controlling for instruction and imag-
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ery; �0,M1, �0,M2, �0,Y are the intercepts; εM1, εM2, and εY are the
residuals.

We fitted the full two-mediator model within OpenMx. The
results showed that the full two-mediator model had 13 free
parameters, with dfFull � 1463 and DFull � 5874.685. For the full
model, the results were that AICFull � 5900.685 and BICFull �
5951.526; the effect sizes were RImagery

2 � .38, RRepetition
2 � .45, and

RRecall
2 � .26. We computed the specific indirect effects through

imagery and repetition and the 95% CI for each specific indirect
effect using the ci function in the RMediation package. The
results showed that the specific indirect effect through imagery
was �̂1 �̂2 � 2.139 (SE � 0.284), 95% Monte Carlo CI [1.602,
2.716], and the specific indirect effect through repetition was
�̂4 �̂5 � �0.082 (SE � 0.285), 95% Monte Carlo CI [�0.643,
0.477].

Step 2

Recall that we were interested in whether instruction to use
repetition increased the use of repetition to improve memory over
and above the indirect effect of instruction on recall through
imagery. Thus, in the null parallel two-mediator model, we con-
strained the specific indirect effect through repetition to zero while
letting the specific indirect effect through imagery be freely esti-
mated. The null parallel two-mediator model was estimated by
fitting the equations in (7)–(9) subject to the null hypothesis
constraint H0: �4�5 � 0, which fixed the specific indirect effect
through repetition to zero. In OpenMx, we specified the null model
by adding the nonlinear constraint �4 �5 � 0 to the full model in
Step 1. The results showed that the null parallel two-mediator
model had dfNull � 1464 and DNull � 5874.768. The information
fit indices for the null two-mediator model were AICNull �
5900.768 and BICNull � 5951.609. The effect sizes were RImagery

2 �
.38, RRepetition

2 � .45, and RRecall
2 � .26.

Step 3

We compared the two models and computed LRTMBCO. The
results showed that LRTMBCO � 0.083, dfLRT � 1, and p � .773.
The specific indirect effect through Repetition was, therefore, not
different from zero, �̂4�̂5 � � 0.08 (SE � 0.29), 95% Monte Carlo
CI [�0.64, 0.48]. Further, the R2 for imagery, repetition, and recall
remained unchanged to three decimal places, and the information
fit indices between the two models were roughly the same. These
results indicate that the specific indirect effect through repetition
above and beyond the specific indirect effect through Imagery
does not appear to be different from zero.

Research Question 3

For this question, we were interested in comparing the sizes of
the two specific indirect effects: the indirect effect of instruction
on recall through imagery (i.e., �1�2) and the indirect effect of
instruction on recall through repetition (i.e., �4�5). The null hy-
pothesis for this research question is:

H0: �1�2 � �4�5 (10)

To test this null hypothesis, we again employed the three-step
MBCO procedure.

Step 1

The full model for this research question was the same as the
full model in Research Question 2; that is, they matched the
parallel two-mediator model in (7)–(9). Thus, we used the results
(i.e., the vector of the coefficient estimates, the covariance matrix
of the coefficient estimate, R2, indirect effects estimates, AIC, and
BIC) of the full parallel two-mediator model from Research Ques-
tion 2.

Step 2

The null model was the parallel two-mediator model in (7)–(9)
subject to the null hypothesis constraint in (10). That is, we
estimated the two-mediator model while we constrained the two
specific indirect effects to be equal. Alternatively, we could spec-
ify the contrast of the two specific indirect effects to zero. We fitted
the new null model in OpenMx. The results showed that the null
model had dfNull � 1464 and DNull � 5900.514. The information fit
indices for the null model were AICNull � 5926.514 and BICNull �
5977.354. The effect sizes were RImagery

2 � .38, RRepetition
2 � .45, and

RRecall
2 � .21.

Step 3

We compared the full parallel two-mediator model in Step 1 and
the null parallel two-mediator model in Step 2. We computed the
LRTMBCO as well as the 95% Monte Carlo CI for the contrast of
the two indirect effects using the ci function in the RMediation
package. The results of the MBCO procedure showed that
LRTMBCO � 25.828, dfLRT � 1, and p � 3.731857E � 07. These
outcomes indicate that the indirect effect through imagery ap-
peared to be larger than the indirect effect through repetition by
�̂1�̂2 � �̂4�̂5 � 2.222 (SE � 0.445) words, 95% Monte Carlo CI
[1.364, 3.11]. In comparing the R2s for the endogenous variables
obtained from Step 1 and 2 for imagery and repetition, R2s re-
mained unchanged to three decimal places while for recall 
R2 �
.05. Comparing the information fit indices of the null model with
the full model also supported the conclusion that the full model
fitted the data better than did the null model.

Comparing Methods of Testing Indirect Effect Via
Monte Carlo Simulations

In this section, we describe simulation studies assessing the
Type I error rates and the statistical power of the LRTMBCO of our
proposed MBCO procedure; we then compare the Type I error
rates and power of LRTMBCO to those of the currently recom-
mended methods of testing indirect effects. Monte Carlo simula-
tion studies are necessary because there are no known ways of
assessing the performance via mathematical proofs or derivations.
In our simulations, we generated data from known population
models, fitted the same models to the data, repeated this process
many times, and assessed the properties of the different methods of
testing indirect effects.

The simulation studies were designed to answer the following
questions:

1. Does the LRTMBCO provide more robust Type I error
rates than the recommended methods? In particular,
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would the LRTMBCO remain robust across the combina-
tion of the parameter values for smaller sample sizes?

2. Is the LRTMBCO as powerful as, if not more powerful
than, the currently recommended methods across differ-
ent effect sizes, sample sizes, and other types of media-
tion models?

To answer these questions, we compared the Type I error rate
and power of the LRTMBCO to five currently recommended meth-
ods of testing indirect effects: (a) the percentile bootstrap CI
(Bollen & Stine, 1990; Efron & Tibshirani, 1993; MacKinnon et
al., 2004); (b) the bias-corrected (BC) bootstrap CI (Bollen &
Stine, 1990; Efron & Tibshirani, 1993; MacKinnon et al., 2004);
(c) the Monte Carlo CI (MacKinnon et al., 2004; Tofighi &
MacKinnon, 2016); (d) the profile-likelihood CI (Folmer, 1981;
Neale & Miller, 1997; Pawitan, 2001; Pek & Wu, 2015); and (e)
the joint significance test (Kenny et al., 1998; MacKinnon et al.,
2002). We describe these methods in the next section.3

For a two-path indirect effect, we did not separately consider
distribution of the product CI because its performance is similar to
that of the Monte Carlo CI (MacKinnon et al., 2004). We also did
not study the Wald (1943) (multivariate delta) z or the causal steps
test because research has shown that these two tests are overly
conservative and do not provide adequate power in smaller sample
sizes and effect sizes (MacKinnon et al., 2002). For completeness
of the simulation study and because of its popularity and endorse-
ments (MacKinnon et al., 2004; Preacher & Hayes, 2008; Shrout
& Bolger, 2002), we studied the bias-corrected (BC) bootstrap CI.
However, we do not recommend using the BC bootstrap CI to test
an indirect effect because it shows inflated Type I error rates for
both small and large samples (Falk & Biesanz, 2015; Koopman,
Howe, Hollenbeck, & Sin, 2015).

In the simulation studies, we considered two types of indirect
effects commonly found in empirical research as well as in sim-
ulation studies (Tofighi & Kelley, 2019): (a) a two-path indirect
effect (e.g., �1�2), which is the product of two coefficients for a

single-mediator chain, X ¡

�1
M ¡

�2
Y; and (b) a three-path indirect

effect (e.g., �1�2�3), which is the product of three coefficients for

a sequential two-mediator chain, X ¡

�1
M1 ¡

�2
M2 ¡

�3
Y. We chose

these two population models because they have been extensively
discussed in both substantive and methodological literature (To-
fighi & Kelley, 2019).

Percentile and Bias-Corrected Bootstrap CI

We now discuss two methods of computing a CI for nonpara-
metric bootstrap (Bollen & Stine, 1990; Efron & Tibshirani, 1993).
In this technique, many samples (e.g., R � 1,000) with replace-
ment were drawn from the sample data. The hypothesized medi-
ation model was fit to each resampled data set, and indirect effects
were computed for each model. This process resulted in R esti-
mates of indirect effects, which is called the bootstrap sampling
distribution of the indirect effects. To compute a CI, we obtained
quantiles corresponding to 1 � �/2 and �/2 percentiles of the
bootstrap sampling distribution, resulting in what is called a per-
centile CI. As a modified version of the percentile bootstrap, the
BC bootstrap uses adjusted percentiles 1 � �=/2 and �=/2 to obtain
the upper and lower limits of the CI, where �= is computed to

correct for potential bias due to skewness (Efron, 1987). Although
not in the context of mediation analysis, Efron (1987) argued that,
for smaller sample sizes, the BC bootstrap CI yields a more
accurate coverage (i.e., the proportion of times a CI contains true
values of the parameter is closer to the nominal coverage of 1 �
�) than does the percentile CI.

Monte Carlo CI

The Monte Carlo method, also known as the parametric boot-
strap (Efron & Tibshirani, 1993), is another sampling-based tech-
nique used to compute a CI for indirect effects (MacKinnon et al.,
2004; Tofighi & MacKinnon, 2016). In this method, the sampling
distribution for each parameter is estimated by drawing R random
samples from a multivariate normal distribution where the mean of
the distribution is the vector of the coefficient estimates and the
covariance matrix of the distribution is the covariance matrix of
the coefficient estimates. The Monte Carlo method is based on the
theory that the maximum likelihood (ML) estimates of the coef-
ficients in an SEM asymptotically have a multivariate normal
distribution (Bollen, 1989). The population parameters (i.e., mean
vector and covariance matrix) for this multivariate normal distri-
bution are the parameter estimates from the estimated model. The
number of Monte Carlo samples, R, should be large, typically
1,000 or more. The indirect effect is estimated within each sample,
resulting in a total of R estimates. The mean and standard deviation
of the R indirect effect estimates are then used to estimate the
indirect effect and its standard error, respectively. To compute a
(1 � �)100% CI, we obtained the �/2 and 1 � �/2 quantiles of the
Monte Carlo sample of the indirect effects.

Profile Likelihood CI

In its simplest form, the profile-likelihood approach produces a
CI for a single parameter using a profile-likelihood function (Fol-
mer, 1981; Neale & Miller, 1997; Pawitan, 2001). In mediation
analysis, the profile-likelihood method has been extended to pro-
duce a CI for the indirect effect in a single-mediator chain
(Cheung, 2007; Pek & Wu, 2015). Let � be a vector of all the free
parameters in a single-mediator model. The profile-likelihood
function for a single-mediator model, L(� | �1�2), is computed by
assuming that the indirect effect, �1�2, is a known value. Next, the
profile-likelihood function is maximized. In practice, the indirect
effect takes on different values, and the profile-likelihood function
is maximized while the indirect effect is fixed at specific values.

Next, we compared the deviance of the maximized profile-
likelihood function and the deviance of the maximized likelihood
function, where deviance equals negative twice the maximized
log-likelihood function as shown in (3). Asymptotically, the dif-
ference in the deviance of the two functions had a chi-squared
distribution with degrees of freedom equaling the difference in the
number of free parameters between the profile likelihood and
likelihood function for the model (Pawitan, 2001). For the indirect
effect, in general, this difference asymptotically had a chi-squared
distribution with one degree of freedom. The lower and upper

3 We do not name all the existing methods for single-mediator models
because they are considered elsewhere (e.g., Falk & Biesanz, 2015; Mac-
Kinnon et al., 2002).
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limits for the 100 (1 � �)% profile-likelihood CI corresponded to
the minimum and maximum of all values of the indirect effect that
satisfied the following equality:

D(�̂prof | �1�2) � D(�̂) � ��
2(1) (11)

where �̂prof is the ML estimate of the model parameters given that
the indirect effect is fixed and ��

2(1) denotes upper-tail � critical
value of the chi-squared distribution with one degree of freedom.
For a specific mediation model, the values of D��̂� (computed by
estimating the mediation model) and the critical value of the
chi-squared distribution (e.g., �.05

2 (1) � 3.84) were known. A 95%
profile-likelihood CI was computed by solving the expression in
(11) for two values of �1�2 corresponding to the upper and lower
limits.

Joint Significance Test

For a single-mediator model, MacKinnon, Lockwood, Hoffman,
West, and Sheets (2002) proposed a joint significance test to
describe a variation of the causal steps test (Kenny et al., 1998).
This method declares an indirect effect to be significantly different
from zero if every coefficient in the indirect effect is significantly
different from zero. The joint significance test does not produce a
robust Type I error rate for smaller sample sizes, a CI, or a p value
for the indirect effect (MacKinnon et al., 2002). While the joint
significance test can be extended to test indirect effects that are the
products of two or more coefficients in a mediational chain, the
method cannot be used to test a complex function of indirect
effects such as a contrast of two indirect effects (e.g., H0: �1�2 �
�3�4 � 0). The joint significance test has been recommended to
test indirect effects in single-mediator and two-mediator sequential
chains (Falk & Biesanz, 2015; Taylor, MacKinnon, & Tein, 2008;
Yzerbyt, Muller, Batailler, & Judd, 2018).

Simulation Design and Population Values

In the simulation studies, we manipulated three factors: (a)
effect size R2, which quantifies how well the predictors account
for the variance in the endogenous variables; (b) sample size;
and (c) the method of testing the indirect effect(s). Previous
work showed that sample size and the effect size R2 influence
the Type I error and the power of the existing tests of the
indirect effect for single-mediator and sequential two-mediator
chains (MacKinnon et al., 2002, 2004; Williams & MacKinnon,
2008). Based on Cohen’s (1988) guidelines, we specified the
population effect sizes in the simulation to be R2 � .02, .13, and
.26, which leads to the corresponding nonzero population re-
gression coefficients of 0.14, 0.39, and 0.59, respectively (see
the method described by Thoemmes, MacKinnon, & Reiser,
2010, which we used).

Sample size took on the following values: N � 50, 75, 100,
and 200. We chose these values to cover a range of sample sizes
reported in the applied literature of psychology, in related
disciplines, and in the simulation studies of mediation effects
(e.g., MacKinnon et al., 2002; Tofighi & Kelley, 2019). The
smallest sample size we considered, 50, might not be viewed as
a best practice in the SEM literature, and a sample size of 200
is roughly equal to the median sample size in an SEM (Jaccard
& Wan, 1995; MacCallum & Austin, 2000). However, the

studies with a sample size of 50 do appear in the applied
literature (Tofighi & Kelley, 2019). We do not report results
from a sample size greater than 200 because our preliminary
simulation study for the LRTMBCO as well as the previous
simulation studies for the existing methods (e.g., MacKinnon et
al., 2002, 2004; Taylor et al., 2008; Williams & MacKinnon,
2008) found that the performance of the tests did not differ
between methods at larger sample sizes. In these large samples,
all the methods (which are based on large sample theory)
worked effectively.

The method conditions included six commonly used tests of
indirect effects for both the Type I error and power study. These
conditions resulted in 168 conditions for the Type I error and 216
conditions for the power study for the single-mediator model; and
240 conditions for the Type I error and 648 conditions for the
power study for the sequential two-mediator model. We used a
mixed full factorial design for each simulation study where the
factors effect size and sample size were between-subjects factors
and the method was a within-subjects factor.

Data Generation

We generated 5,000 independent data sets for each combina-
tion of the between-subjects factors using a known population

model, either X ¡

�1
M ¡

�2
Y for the single-mediator model or

X ¡

�1
M1 ¡

�2
M2 ¡

�3
Y for the sequential two-mediator model. The

variables X, M1, M2, and Y were observed. Without loss of gen-
erality, the population values for the intercepts were fixed at zero
but were estimated in the simulation study. Values for X were
sampled from a binomial distribution with .5 probability of two
categories (i.e., treatment vs. control). Data for each residual term
were generated from the standard normal distribution.

We chose � � .05 to test the indirect effects, as is commonly
done in psychology and related areas. We used OpenMx Version
2.9.6 (Boker et al., 2011; Neale et al., 2016) to conduct the
LRTMBCO as well as the profile-likelihood CI.4 For the Monte
Carlo, percentile and BC bootstrap CI, and for the joint signifi-
cance test, we estimated the model using lavaan package Version
0.5–23 (Rosseel, 2012). We then used the model estimates and ci()
function in the RMediation package Version 1.1.4 (Tofighi &
MacKinnon, 2011, 2016) to compute a Monte Carlo CI; both

4 We studied the software manual and references for the optimization
techniques implemented in OpenMx (Boker et al., 2011; Neale et al., 2016;
Zahery et al., 2017), communicated with the authors/programmers, and
conducted an extensive simulation study to examine whether the LRTMBCO

can be implemented using different optimization methods in OpenMx. In
addition, we examined whether the software packages lavaan Version
0.5-23.1097, Mplus Version 8.0, and PROC CALIS (SAS Institute Inc.,
2016) allowed nonlinear constraints to estimate the LRTMBCO. We also
communicated with the authors/programmers of Mplus and lavaan. Based
on our communications, at the time of writing, Mplus and lavaan do not
guarantee obtaining optimal results for the mediation models with nonlin-
ear constraints in the form of null hypothesis about the indirect effect. We
chose the NPSOL (Gill, Murray, Saunders, & Wright, 1986) optimizer
instead of the default CSOLNP (Zahery et al., 2017) optimizer in OpenMx
because the CSOLNP showed convergence problems in our preliminary
simulation studies. Based on our personal communication with OpenMx
developers, they suggested that the SLSQP (Snyman, 2005) optimizer may
be successful as well. However, we did not formally evaluate this option
because it is beyond the scope of the current article.
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percentile and BC bootstrap CI were estimated using the facilities
provided in the lavaan package. For the joint significance test, we
used the z test to examine the joint significance of the coefficients
of the indirect effects.5

Results

For the simulation studies assessing the robustness of the Type
I error, the empirical Type I error rate is the proportion of times out
of 5,000 replications that a test incorrectly rejects the null hypoth-
esis of zero indirect effect. For the statistical power studies, the
empirical power is the proportion of times out of 5,000 replications
that a test correctly rejects the null hypothesis of zero indirect
effect. The large sample size of 5,000 within each condition
precluded the use of repeated measures ANOVA for the simulation
results. To determine if a test was robust, as discussed, we used
Bradley’s (1978) liberal interval of .025 and .075 to determine a
Type I error rate that was “good enough” for practical purposes.
We considered a test robust (i.e., good enough) according to
Bradley’s (1978) criteria if its empirical Type I error rate fell
within the robustness interval. Otherwise, a test was considered
conservative or liberal depending on whether the Type I error rate
was smaller or greater than Bradley’s lower or upper bound,
respectively.

Type I error. To facilitate comparison of the Type I error
rates across different combinations of the sample sizes and effect
sizes, we created graphs showing the empirical Type I error rate as
a function of sample size and size of nonzero coefficients. To save
space, we only present a few graphs (Figures 3–6). More graphs
can be found in the online supplemental materials. For the two-
path indirect effect where both coefficients were zero (see Figure
3), the empirical Type I error rate for the LRTMBCO was robust as
it fell within Bradley’s (1978) robustness interval. The other five
methods were not robust across all sample sizes; that is, their
empirical Type I error rates were consistently below .01. The
LRTMBCO produced more robust Type I error rates because it
estimated the null mediation model and the sampling distribution
of the indirect effect under the null hypothesis.

As can be seen in Figure 4, when one of the coefficients was
zero, the LRTMBCO was the most robust method across all com-
binations of the nonzero coefficients and sample sizes; its Type I
error rate remained close to the nominal .05 value and stayed
within the limits of Bradley’s (1978) robustness interval. The BC
bootstrap showed conservative Type I error rates or inflated Type
I error rates in certain conditions. For example, when �2 � 0.59
and N � 50, and �2 � 0.39 and N � 100, the BC bootstrap showed
an inflated Type I error rate; when �2 � 0.14 and N � 75, the BC
bootstrap showed a conservative Type I error rate. In general, the
Type I error rates for the percentile bootstrap, Monte Carlo,
profile-likelihood, and joint significance methods were all robust
except when one of the nonzero coefficients was small (i.e., 0.14).
More specifically, when the magnitude of the coefficient was small
and the sample size was 	100, all four methods showed a con-
servative Type I error rate. The results for CI-based and joint
significance tests, when one of the coefficients was zero, essen-
tially matched the results from previous studies (Biesanz et al.,
2010; Falk & Biesanz, 2015), as would be expected. Finally, which
coefficient was zero did not appear to change the overall conclu-
sion about the Type I error rate robustness of the methods.

For the sequential two-mediator model, the LRTMBCO was the
most robust test across the combinations of the sample sizes and
effect sizes. When all three coefficients were zero (see Figure 5) or
when two of the coefficients were zero (see Figure 6), the
LRTMBCO’s Type I error rate remained robust within the Bradley’s
(1978) limits. The five other methods showed conservative Type I
error rates. Finally, which coefficient was zero did not appear to
change the Type I error rates.

Power. The simulation study showed that the LRTMBCO was
as powerful as the other methods, except for the BC bootstrap
method, for both two-path and three-path indirect effects. The BC
bootstrap method showed slightly more power although that power
was at the expense of yielding inflated Type I error rates. This
result is consistent with previous research (Biesanz et al., 2010;
Falk & Biesanz, 2015; Taylor et al., 2008). The results of power
simulation studies were similar between the single-mediator model
and the sequential two-mediator model. We explain the similar
power between the CI-based methods and the LRTMBCO in the
next section.

Summary

One explanation for why the simulation studies showed that the
LRTMBCO produces more robust empirical Type I error rates than
other CI-based methods is that the sampling distribution of the
indirect effect tends to differ from the null sampling distribution of
the indirect effect estimate. In the null sampling distribution, the
population value of the indirect effect is fixed to zero. The sam-
pling distribution used by the CI-based methods is likely to reflect
an alternative hypothesis of a nonzero population indirect effect
rather than the null hypothesis of zero population indirect effect.
As a result, the CI-based methods tend to produce nonrobust
empirical Type I error rates, especially for smaller sample sizes.
However, the LRTMBCO uses both the null and the full models to
test an indirect effect and, thus, more appropriately maps the
statistical method onto the question of interest when seeking to
determine if a hypothesized mediator mediates the relationship
between X and Y. Hence, the LRTMBCO appears more appropriate
than other methods that have been recommended in the literature
in the conditions we studied.

The simulation results also showed that the LRTMBCO is as
powerful as the other recommended tests except for the BC boot-
strap method; however, we do not recommend the BC bootstrap
because of its inflated Type I error rate. On the other hand, the
CI-based tests have adequate power when the null hypothesis is
false (i.e., nonzero indirect effect) and the sampling distribution is
computed under an estimated alternative hypothesis in which the
indirect effect is nonzero. In other words, the estimated alternative
sampling distribution of CI-based methods is more accurate when
the null hypothesis is false as opposed to when the null hypothesis
is true. In these cases, the CI-based tests and LRTMBCO appear to
exhibit similar power.

5 The simulation study code scripts can be found at https://github.com/
quantPsych/mbco.
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Limitations

In our simulations, we made a few common assumptions for
estimating a mediation model. The data for the simulation studies
were generated assuming that residuals associated with the medi-
ators and outcome variable had a multivariate normal distribution
and that the correct model was fit (e.g., the variables were not
nonlinearly related and there were no omitted confounders).
Though assessing the effectiveness of the LRTMBCO under the
multivariate normality of the simulated data is a limitation, using
the multivariate normal data is necessary to compare performance
of the LRTMBCO to other commonly used methods of testing
mediation in known conditions. Therefore, the results of the sim-
ulation studies apply to situations in which these assumptions are
reasonably met. Assessing the performance of the LRTMBCO for
non-normally distributed residuals remains a topic for future re-
search. We also assumed the simulation study included correct
functional forms of the relationships between the posited variables.

For the empirical study, we evaluated if there were outliers (and
we did not find any in the sample data), and we assumed that no

common method biasing effect of measuring the endogenous vari-
ables existed (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003).
Moreover, we assumed that the observed mediator and outcome
variables were measured without error (Dwyer, 1983; Fritz,
Kenny, & MacKinnon, 2016); otherwise, the results could be
misleading (Cole & Preacher, 2014). In addition, one of the more
stringent of these assumptions, which is untestable, is the no-
omitted-confounder assumption (Imai et al., 2010; Judd & Kenny,
1981; Valeri & VanderWeele, 2013; VanderWeele, 2010). That is,
no variable should be omitted from the model that would affect
both the mediator and the outcome variables, given the indepen-
dent variable (X) and covariates (if they exist and are included in
the model). Even when participants are randomly assigned to a
treatment or control group, making causal claims about an indirect
effect requires the no-omitted-confounder assumption. If research-
ers believe that not all confounders are included in the model, then
the claims about the magnitude and existence of an indirect effect
need to be relaxed. We recommend that researchers conduct a
sensitivity analysis to investigate the biasing impact of a potential

Figure 3. Point and 95% CI estimate of the Type I error rate for six methods of testing a two-path indirect
effect, �1�2, where both parameters were fixed at zero. Horizontal solid lines show the limits of the Bradley’s
(1978) liberal interval of .025 and .075 for � � .05. A test is robust according to a Bradley’s (1978) criterion
if its Type I error rate falls within the criterion’s interval. MBCO � model-based constrained optimization
(LRTMBCO); Percentile � percentile bootstrap; BC � bias-corrected bootstrap; JS � joint significance test;
Profile � profile-likelihood CI. See the online article for the color version of this figure.
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confounder on the indirect effect point and interval estimate (Cox,
Kisbu-Sakarya, Miočević, & MacKinnon, 2013; Tofighi et al.,
2019; Tofighi & Kelley, 2016). MacKinnon and Pirlott (2015)
provide an excellent discussion of different approaches to sensi-
tivity analyses in mediation analysis. Sensitivity analyses for cer-
tain mediation models can also be conducted in an SEM frame-
work in Mplus software, which may include observed and latent
variables (Muthén & Asparouhov, 2015; Muthén & Muthén,
2018). Conducting sensitivity analyses using the LRTMBCO also
remains a topic for future study.

One requirement of our proposed LRTMBCO and the profile-
likelihood method is that the mediation model be estimated within
the SEM (or other appropriate multivariate) framework. That is,
the equations for the mediation model must be simultaneously
estimated. These methods do not work when using OLS regression
to separately estimate the equations representing a mediation

model, which is the classical way of testing mediation (Baron &
Kenny, 1986).

We discussed applying the LRTMBCO to the models when the
independent variable and mediator do not interact and when
the mediator and outcome are continuous. For such models,
both the SEM and causal inference methods provide the same
estimate of the indirect effect (Muthén & Asparouhov, 2015);
thus, the LRTMBCO can be used to test an indirect effect.
However, when the independent variable and a mediator inter-
act or when either a mediator or the outcome variable is a
categorical variable, researchers need to use the potential out-
come framework to correctly estimate the indirect effect
(VanderWeele, 2015). Extension of the MBCO procedure and
LRTMBCO to the causal inference framework for these scenarios
remains a topic for future study. Finally, we did not discuss
application of the MBCO procedure to multilevel mediation

Figure 4. Point and 95% CI estimate of the Type I error rate for six methods of testing a two-path indirect
effect, �1�2, where only �1 was fixed at zero. The nonzero parameters take on the values: 0.14, 0.39, and 0.59.
The x-axis shows the parameter values. Horizontal solid lines show the limits of the Bradley’s (1978) liberal
interval of .025 and .075 for � � .05. A test is robust according to a Bradley’s (1978) criterion if its Type I error
rate falls within the criterion’s interval. MBCO � model-based constrained optimization (LRTMBCO); Percen-
tile � percentile bootstrap; BC � bias-corrected bootstrap; JS � joint significance test; Profile � profile-
likelihood CI. See the online article for the color version of this figure.
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analysis (Krull & MacKinnon, 2001; Tofighi, West, & MacK-
innon, 2013), where the data have a multilevel (i.e., clustered,
repeated measures) structure (Snijders & Bosker, 2012). Ex-
tending the MBCO procedure to multilevel data also remains a
topic for future study.

Discussion

This article proposed an MBCO procedure that uses a model-
comparison approach to make inferences about any function rep-
resenting an indirect effect in mediation analysis. An innovation of
our proposed MBCO procedure is using a nonlinear constraint to
test a variety of simple and complex hypotheses about indirect
effects in a model-comparison framework. The MBCO procedure
offers the following advantages compared with the existing meth-
ods. First, the MBCO procedure produces a likelihood ratio test,

termed LRTMBCO, to formally evaluate simple and complex hy-
potheses about indirect effects and produces a p value, a continu-
ous measure of compatibility between data and the null hypothe-
ses. Second, through the model-comparison framework, the
MBCO procedure computes a likelihood ratio, a continuous mea-
sure of comparing goodness of fit of the null and full models. It
also computes information fit indices such as AIC and BIC, used
to compare the null and full models based on both goodness fit and
parsimony.

To assess robustness of the LRTMBCO and the five most rec-
ommended methods of testing indirect effects in a single-mediator
or in a sequential two-mediator model, we conducted a Monte
Carlo simulation study. The results showed that the LRTMBCO is
more robust in terms of the empirical Type I error rate (i.e., it was
within Bradley’s, 1978 liberal interval of .025 and .075 for � �

Figure 5. Point and 95% CI estimates of the Type I error rate for six methods of testing a three-path indirect
effect, �1�2�3, where all three parameters were zero. Horizontal solid lines show the limits of the Bradley’s
(1978) liberal interval of .025 and .075 for � � .05. A test is robust according to a Bradley’s criterion if its Type
I error rate falls within the criterion’s interval. MBCO � model-based constrained optimization (LRTMBCO);
Percentile � percentile bootstrap; BC � bias-corrected bootstrap; JS � joint significance test; Profile �
profile-likelihood CI. See the online article for the color version of this figure.
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.05) than the other methods when the residuals were generated
under an ideal condition of the multivariate normality. In addition,
the LRTMBCO is as powerful as the currently used tests (except for
the BC bootstrap) and offers more robust empirical Type I error
rates in situations typical of psychology and related fields.

In addition, the MBCO procedure provides a model-comparison
framework to compare one or more alternative mediation models.
This important new feature relieves researchers of the restriction to
test a null hypothesis with a single hypothesized model. Research-
ers can test multiple competing models in addition to fitting a

Figure 6. Point and 95% CI estimate of the Type I error rate for six methods of testing a three-path indirect
effect, �1�2�3, where two out of the three parameters were fixed at zero. The nonzero parameter took on the
values: 0.14, 0.39, and 0.59. The x-axis shows the values of the nonzero parameter. Horizontal solid lines show
the limits of the Bradley’s (1978) liberal interval of .025 and .075 for � � .05. A test is robust according to a
Bradley’s (1978) criterion if its Type I error rate falls within the criterion’s interval. MBCO � model-based
constrained optimization (LRTMBCO); Percentile � percentile bootstrap; BC � bias-corrected bootstrap; JS �
joint significance test; Profile � profile-likelihood CI. See the online article for the color version of this figure.
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single hypothesized model and can focus on testing and comparing
one or more indirect effects. More than a significance testing
framework, a model-comparison framework allows researchers to
compare one null model to one or more alternative models. These
comparisons also can address the significance of indirect effects,
the effect sizes associated with the mediators and outcome vari-
ables, and the overall fit and complexity of the models as measured
by various fit indices such as the AIC (Akaike, 1974) and the BIC
(Schwarz, 1978).

We applied the MBCO procedure to an empirical example. The
accompanying computer code in OpenMx (Boker et al., 2011;
Neale et al., 2016), the data set, and detailed analysis results are in
the online supplemental materials. As the empirical example
shows, after conducting the MBCO procedure, researchers should
report the resulting LRTMBCO, exact p value as well as the CIs for
the indirect effects calculated using the Monte Carlo, profile-
likelihood, or percentile bootstrap method. A p value should be
interpreted as a measure of compatibility of a null model with the
sample data and should not be used to make dichotomous deci-
sions about the significance of a null hypothesis. Further, research-
ers should report R2 effect sizes associated with mediators and the
outcome variable and compute differences in the respective R2s
between the competing models. Computing differences in R2s
allows researchers to gauge potential changes in the effect sizes
between the competing models, changes that could be a result of
nonzero indirect effects. In addition, researchers should report the
information fit indices AIC or BIC. Although using CI-based
methods to test the existence of an indirect effect or to make
dichotomous decisions about significance of the indirect effect is
not recommended, researchers should report a CI to convey a
range of plausible values for an indirect effect estimate. These
recommendations are consistent with and enhance the APA rec-
ommendations (APA Publication Manual, 2010; Appelbaum et al.,
2018; Wilkinson & Task Force on Statistical Inference, American
Psychological Association, Science Directorate, 1999) for report-
ing statistical analysis results.

In conclusion, we believe that our proposed MBCO procedure
provides multiple ways to evaluate hypotheses about mediation
effects beyond the methods widely recommended in the literature
(e.g., CI-based approaches). We believe that work using the
MBCO procedure will advance the rich literature on testing and
interpreting mediation models.
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