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Abstract
A Monte Carlo computer simulation was used to evaluate the effect on the Type I error
rate when the assumption of independence was not met in the two-sample 7 test. It was
shown that when there is a positive correlation within groups the nominal alpha level is
considerably smaller than the probability of the Type I error rate. This study used five

values of p and 19 different v’s, computing 1,000,000 #’s for each of the 95 combinations

used in the empirically generated critical value table provided. The critical values in the

table are derived from distributions with a known p and v. It is believed when the

independence assumption is violated in scientific research, use of empirically generated
critical values that match the characteristics within groups will be more appropriate then
using the 7 table, which is of course based on the assumption of independence.

KEY WORDS: Assumptions of the ¢ test, dependent samples, empirically generated ¢
distribution, experimental unit, independence assumption, Monte Carlo simulations,
nonindependence, robustness of the 7 test, 7 test, unit of analysis, violating assumptions,

intraclass correlation.
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95 Million ¢ tests: The Empirical Findings when the Assumption of
Independence has Been Violated in the Two-Sample ¢ Test

Virtually all areas of scientific research make use of inferential statistical methods
to analyze and make decisions regarding empirically gathered data. These statistical
methods are invaluable for the information that they convey to other researchers as well
as for the conclusions that are drawn from them. What must be carefully considered
when conducting research and making use of inferential statistics are the underlying
assumptions that the tests are built upon.

The Student’s ¢ test is one of the most widely used inferential techniques for
analyzing data from empirical research (Kurita, 1996; Sawilowsky & Blair, 1992;
Zolman, 1993). However, for a given ¢ test to be valid, the data (and the experiment)
should be inspected to insure that the assumptions underlying the ¢ distribution are not
violated. When the assumptions underlying this mathematical model are not violated, the
t test has the difference between two unbiased estimates in the numerator, )?1 minus )_(2,
and the denominator is the square root of an unbiased estimate, the variance of )?1 minus
X>. Further, Sato (1937) showed that when the assumptions of the ¢ test are not violated,
the 7 test is a uniformly most powerful statistical test (as cited in Hsu, 1938). Therefore,
to properly use the ¢ test to infer probabilistically that there is a difference between two
means, the assumptions that must be met are as follows: the observations of the
dependent variable must follow a normal distribution, the population variances for the
two groups must be equal, that is, 6,”= 6,2=07 and the most crucial of the assumptions

is that the observations must be independent (Hays, 1994; Stevens, 1996; Lissitz &
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Chardos, 1975; Zimmerman, Williams & Zumbo, 1992).

Although it is important to carefully consider and follow the assumptions
underlying the ¢ distribution, the 7 test has been found to be robust to moderate violations
of the normality and homogeneity of variance assumptions. The effects of violating these
two assumptions has been extensively studied, and the results are fairly consistent in that
moderately violating these two assumptions has relatively small consequences on the
outcome of the ¢ test, especially if the sample size in the two groups are nearly equal and
not extremely small (Boneau, 1960; Hays, 1994).

Another consistent finding regarding one of the assumptions of the ¢ test is that it
is not robust when the assumption of independence has been violated, that is, when there
is a degree of dependence amongst the observations within a group (Kurita, 1996; Lissitz
& Chardos, 1975; Zimmerman, 1997; Zimmerman & et al. 1992). Studies utilizing
Monte Carlo simulations have suggested that when the observations in a group are
correlated with one another, the nominal alpha level is no longer the Type I error rate.
The amount of discrepancy between the nominal alpha level and the Type I error rate is a
function of the sample size, degree of nonindependence and also whether the correlation
is positive or negative. Lissitz and Chardos (1975) showed that when a positive
correlation is introduced within a group the Type I error rate increases, however if a
negative correlation is an attribute within a group the Type II error rate increases. If there
is a positive correlation within the two groups, the distribution develops into one that is
platykurtic in appearance. That is, the distribution is more “flat” than a normal
probability curve (mesokurtic), and it has a larger variance. On the other hand, if

negative correlations exist amongst the observations within groups, the distribution is
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leptokurtic. This leptokurtic distribution has a smaller variance, the mode is “taller,” and
the tails are shorter, when compared to the # distribution. This presumably leads to an
increase in Type II errors. The greater the degree of correlation amongst the observations
in each group the more platykurtic or leptokurtic the distribution becomes (depending of
course on whether the correlation is positive or negative).

The reason that the assumption of independence is so crucial to understand and
evaluate is because in scientific research nonindependence exists amongst observations
on a consistent basis. Kruskal (1988) states that in “most real cases there is noticeable
dependence between phenomena” and that “independence seems rare in nature” (p. 934).
With this in mind, it is imperative to know and understand what happens to statistical
tests, such as the 7 test, when the independence assumption is violated under specified and
controlled conditions. A better knowledge base of the results obtained under controlled
situations will increase the understanding of actual ¢ tests performed on real data.

In a study of nonindependent samples using the one-sample ¢ test, Zimmerman,
Williams, and Zumbo (1992) suggested a correction term for the denominator of the ¢
test. This correction term approximately returned the Type I error rate back to the
nominal alpha level by making the denominator larger than it otherwise would have been
using the standard one sample 7 test formula. Although this formula appears to help with
the problem of alpha level distortion, this method does not appear to have gained much
acceptance in psychology as of yet.

Independence can be defined as a lack of association between two or more
occurrences. These “occurrences” can be events, variables, people, outcomes or any

other type of observation(s). When these occurrences are independent, knowing
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information about one gives rise to no information about any of the other occurrences.
Thus, when knowing information about one occurrence provides some information about
other occurrences, by definition, the outcomes are not independent of one another
(Yaremko, Harari, Harrison & Lynn, 1986).

Examples of nonindependence in empirical research are easy to conceptualize.
One example from Lissitz & Chardos (1975) that seems fairly common is as follows.
Consider an experiment in which the behavior of participants who have been involved in
some sort of therapy group are to be evaluated for the effect of a certain type of
treatment. The experimenter randomly assigns four therapy groups to treatment “A” and
four to treatment “B.” After the conclusion of the last therapy session the experimenter
uses a ¢ test to evaluate the difference between means from treatment “A” and “B” on
some measure. If the experimenter uses the individual scores from each person within
each treatment to calculate the 7 test, a violation of the crucial assumption of
independence has occurred. Since the same environment, therapist, and the participants
themselves have influenced one another, these people, within each of the four groups
from treatment “A” and “B,” are no longer independent of one another on many
measures, one of course being the end result of the treatment. Therefore, the participants’
scores on the post-therapy test will not be independent of one another. In this example
the correct experimental unit is not each person, but each of the four therapy groups
under treatment “A” and “B.” The reason that the correct unit of analysis is each group
instead of the individual scores is because the groups are presumably independent of one
another, even though the observations within each group are correlated to a certain

degree. The temptation to use each participant’s score instead of each of the eight
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group’s scores as the unit of analysis may seem logical at first, however, it is evident that
the people within each group are no longer independent of one another. Utilizing a ¢ test
in this situation would violate the assumption of independence and as stated previously
would cause the nominal alpha level to be different than the Type I error rate.

An example from Stevens (1996) concerning educational research can occur when
two teaching methods are to be evaluated at the end of the year by some test. Like the
therapy example, the correct unit of analysis is each classroom, not the individual scores
from each of the students within each teaching method. Because of the classroom
environment and the interaction that occurred amongst the students, on many measures
the students would no longer be independent of one another. If the individual scores
from the students were used to calculate the ¢ test, the independence assumption would be
severely violated, since the scores (and the students themselves) are no longer
independent of one another. The proper way to analyze the data in this example would
be to use each of the classroom means as the units of analysis to determine the # ratio.
Thus, the degrees of freedom are the number of classrooms in method “A” plus the
number of classrooms in method “B” minus two. Even careful researchers analyze
experiments similar to this one incorrectly. In a review of the “best” journals since 1980,
Hykle, Stevens, & Markle (1993) found that 80% of analyses of this type of study were
done incorrectly (as cited in Stevens, 1996).

In view of the fact that it is easy to speculate how frequently in psychology or
other social sciences data occur that are not independent, it should be noted that the
natural sciences are by no means immune to violating the assumption of independence.

An example from Zolman (1993) is as follows. Suppose a biologist took tissue samples
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from a few animals in order to experiment on them in various ways. The tissue samples
taken are 40 kidney nephrons (nephrons are the basic unit of the kidney) from four rats
(10 nephrons from each rat). After the kidney nephrons have been randomly assigned to
two conditions (20 nephrons each) for experimental manipulation, a ¢ test is used to
determine if there are significant differences between the two treatment means. The unit
of analysis in this example should not be the number or nephrons, but the number of rats
from which they came. The reason is because kidney nephrons that come from the same
rat are not independent. Since the nephrons came from the same environment, were
subjected to the same lifestyle effects, and were formed from the same organism’s
biological functions, the nephrons from a given rat are, of course, not independent of one
another.

Many more examples could be listed in which observations are somehow related
to one another as a result of an interaction between them or from some natural
process(es). However, for a final example in which the dependency amongst occurrences
may not be so obvious is in common psychological experiments. Consider the students
in an introductory psychology class that must participate in an experiment for course
credit. Ifa participant does Experiment “X,” likes it, then tells his/her friends to sign up
for it because it is easy or fun, a certain degree of dependency can arise. The friends that
were told to sign up for Experiment “X”” may come to the experiment with a certain
mental set that is a function of how the previous participant performed or what the
previous participant told them. This introduces a certain degree of nonindependence into
the study that usually is not known by the researcher(s). Depending on what type of

experiment is being performed, dependency can arise from the effects of the area or
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college campus where the experiments are being conducted, because of a common
teacher and the method or style of teaching used, and also because of the interaction that
students have with one another throughout the class (Lissitz & Chardos (1975). The
amount of dependency is probably not great, but it nonetheless often exists.

Method
A SAS (1996) program was written that allowed for a Monte Carlo simulation of two
separate distributions both having a variance of one and a mean of zero. A specified

population correlation coefficient, p, was a characteristic of the population from which

the samples were randomly drawn. The program generated a multivariate normal
distribution by first randomly selecting one number from a standard normal distribution.
The next step in the program’s functioning generated n random numbers (where 7 is
equal to the group size) that were independent of one another; again from a standard
normal distribution. The n numbers were then combined with the first random number
(derived from the first step) and these numbers were correlated to one another by the
extent specified in the program’s instructions. This procedure was independently
performed again for group two. Using the standard equation for a two-sample ¢ test, a ¢

value was calculated. This procedure was repeated 1,000,000 times for each value of p
and each v. Both groups had an equal number of “subjects” (n, = n,) and p was the same

within each group. However, the observations from group one were independent of the
observations from group two. The variance-covariance matrix (which always had ones in

the principal diagonal, that is 6> = 1) was manipulated by changing the off diagonals to a

specified covariance. Since the variance of both groups had a value of one throughout
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the present study, the term covariance and correlation can be used interchangeably; this is
because p= Oy,/0xOy.
Procedure

A Monte Carlo simulation was conducted that randomly sampled from a specified

distribution which had a predetermined p and degrees of freedom, v. From this
simulation 1,000,000 ¢ tests were performed for each p and v used in the study in order to

obtain the empirically generated critical values of the particular distribution. The
“critical values” as defined here were determined by finding the point that divided the
rejection region from the nonrejection region for both the negative and the positive sides
of the distribution. The mean of the absolute value for the lower value and the upper
value was found, and this mean value is what will be referred to as the empirically
generated critical value in the remainder of the present study. The formula that was used
to calculate the ¢ values was the standard equation for a two-sample ¢ test.

To demonstrate the program’s proper functioning, independent observations were

used within each of the two groups so that p = 0, therefore, the off diagonals in the

variance-covariance matrix were all zero. Because the observations were independent,
the distribution of empirically generated #’s should have distributed as the ¢ distribution

does. Table 1 is a comparison sample using the critical values from four v from the

empirically generated ¢ values compared to the critical values of the ¢ distribution.

Insert Table 1 about here
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As is evident from Table 1, the critical values of the ¢ distribution and those of the
empirically generated distribution are virtually the same. The absolute differences
between the critical values of the ¢ distribution and the empirically generated distribution
displayed in Table 1 ranged from 0 to .047 with a mean of .005 and a standard deviation
of .009. Table 1 demonstrates the program’s capabilities by closely replicating the ¢
distribution when the assumptions of the ¢ test were met.

Results

Table 2 gives the findings of the Monte Carlo simulations for varying degrees of
nonindependence. These data are consistent with previous studies regarding the inflation
of the nominal alpha level when a positive correlation is introduced to the observations
within groups. Located in Table 2 are the critical values for the empirically generated ¢
distributions (as well as the theoretical ¢ distribution for comparative purposes) when

various degrees of nonindependence amongst observations existed within groups.

Insert Table 2 about here

This table reports p of .05, .20, .40, .50, and .80. The v that was used in this table are
even integers from 2-30, 40, 50, 60 and 120 which provided for 760 empirically
generated critical values. The mean difference between the absolute negative ¢ value and
the positive ¢ value obtained for the critical values displayed in Table 2 was .0229 with a
standard deviation of .0764.

Table 2 resembles the results from the Lissitz & Chardos (1975) study when v =

60, the only v used in their study. Lissitz and Chardos also used only 10,000 ¢
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replications whereas the present study used 1,000,000 replications. Accordingly, the
empirical values of Table 1 are closer to the values in the 7 table than are those obtained
by Lissitz and Chardos. Furthermore, their study gave the percent of #’s beyond the
tabled critical values, while Table 2 in the present study gives proposed critical values.
A peculiar relationship was found to exist between the amount of
nonindependence and the degrees of freedom. In a study by Scariano and Davenport
(1987), it was shown that in a one-way analysis of variance having a positive correlation

within groups, the greater v in the F test the more the Type I error rate became inflated

(as cited in Stevens, 1996). However, when the critical values obtained in the present
study were plotted, a surprising curvilinear relationship was found to exist. Figure 1
shows the critical values plotted for the empirically generated ¢ distributions as a function

of sample size and degree of correlation.

Insert Figure 1 about here

Figure 1 shows that for small degrees of freedom the empirical critical values start
off high and fall sharply (note that this is also true of the ¢ distribution as well). Although

the critical values of the ¢ distribution decrease as v increases, the empirically generated
critical values fall for very small v (2 and 4), but they all increase after four, the greatest
increase being for p = .80.

Using 10 and 20 degrees of freedom as an example, the ¢ distribution’s critical

value of o= .05, two-tailed, are 2.228 and 2.086 respectively. Contrast this with the case

that p =.20. Using the same degrees of freedom and significance level, the critical
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values are 3.528 and 4.041. The ¢ distribution’s value drops .142 units but the correlated
distribution’s difference rose by .513 units. This is the case when the proportion of
variance that can be accounted for is a mere four percent. Another example is when eight
and 60 degrees of freedom are compared. Whereas the ¢ distribution’s critical values are
2.306 and 2.000, using the same significance level as before, the critical values drop .306

units. However, when there is a slight correlation amongst observations within groups, p
= .05, the critical values are 2.594 and 3.246. Therefore, when p = .05 (when only one

quarter of a percent of the variance is accounted for), the critical values rise .652 units.
This demonstrates that the greater the degrees of freedom with nonindependent groups,
the less robust the ¢ test is and the more likely there will be a Type I error. Even a

seemingly insignificant degree of nonindependence, such as p = .05, can cause an

inflation of the alpha level and could lead to misleading conclusions.
Discussion
The results of the present computer simulation are consistent with other similar
studies (Lissitz & Chardos, 1975; Zimmerman & et. al., 1992; Zimmerman, 1997).
However, the curvilinear relationships of the critical values plotted as a function of the
number of degrees of freedom and amount of correlation within groups, has not been
previously reported. These curvilinear characteristics of dependent groups show that

unless v < four, the greater the number of degrees of freedom the higher the critical value

must be for the obtained ¢ value to be significant, if in fact there is a degree of correlation
within the groups.
When a researcher thinks that his/her observations are correlated, Stevens (1996)

suggests using a more stringent alpha level. This suggestion by Stevens clearly has some



Independence Assumption 15

validity to it, but what may now be more appropriate is to use the Empirically Generated
Critical Value Table provided in Table 2 of this paper. These values are each based on
1,000,000 sample #’s drawn from specified distributions and are believed to be very
stable with regards to the information that they convey. It is believed that a computed ¢

that is greater than the critical value in Table 2 having the same p and v as is used in the

Empirically Generated Critical Value Table, may be appropriately viewed as statistically
significant under the chosen significance level. That is, if the observations are

nonindependent to the extent of p = .20, two groups of 11 participants each would require

atof4.041 to be significant at the .05 significance level for a two-tailed test. Contrast
this with the ¢ distribution’s critical value of 2.086. This 1.955 difference is substantial
and could increase Type I errors substantially.

Perhaps the most difficult job of researchers is to maintain a bias free study. Box
(1954) suggests using randomisation to control for nonindependence, but he realized that
sometimes “data occur” in which there is no way to control for violating the
independence assumption (p. 484). What many users of statistical tests fail to realize is
just how easy it is to violate assumptions and how such crucial assumptions are often
violated. Scheffé (1959) states that assumptions “can be violated in many more ways
than they can be satisfied” (p. 331). Peckham, like Scheffé, says that assumptions of
statistical tests are seldom met in empirical research (as cited in Papanastasion, 1982).
This knowledge of the difficulty in meeting assumptions, coupled with the results of the
effects of not meeting certain assumptions, as this study has shown, is a bit disturbing.
Many decisions rest upon significant differences between means evaluated by the ¢ test or

related tests. One major assumption that cannot be violated if the ¢ test is to remain valid
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is the assumption of independence. If this assumption is violated, the nominal o level in

the 7 table can be much too small, which of course can lead to claiming significance when
the null hypothesis is true. To use the critical values in the 7 table one must obtain
independent samples, which is not always easy to do, or use a critical value table that
takes into account nonindependence for the ¢ distribution, such as the one provided in
Table 2 of the present study. Use of this table will presumably reduce Type I errors by

requiring a larger ¢ for claiming significance at a given o level and return the Type I error

rate to approximately the nominal o level chosen.
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Table 1
Comparison of the ¢ Distribution’s Critical Values with the Empirically

Generated Critical Values when Observations are Independent (p = 0)



p=0and v=4

p=0andv=20

p=0and v=60

p=0andv=120

1Q= 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.001

2Q= 0.80 0.50 0.20 0.10 0.05 0.02 0.01 0.002

t Distribution 0.271 0.741 1.533 2,132 2.776 3.747 4.604 7.173

Empirically Generated Distribution|  0.271 0.741 1.536 2.136 2.786 3.762 4.617 7.126
Absolute Difference: 0.000 0.000 0.003 0.004 0.010 0.015 0.013 0.047

t Distribution| 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.552

Empirically Generated Distribution| 0.256 0.687 1.329 1.726 2.085 2.529 2.847 3.546
Absolute Difference:] 0.001 0.000 0.004 0.001 0.001 0.001 0.002 0.006

t Distribution| (.254 0.679 1.296 1.671 2.000 2.390 2.660 3.232

Empirically Generated Distribution| 0.254 0.679 1.297 1.671 2.004 2.393 2.663 3.221
Absolute Difference:|  0.000 0.000 0.001 0.000 0.004 0.003 0.003 0.011

t Distribution| (.254 0.677 1.289 1.658 1.980 2.358 2.617 3.160

Empirically Generated Distribution| 0.254 0.678 1.292 1.662 1.984 2.361 2.619 3.161
Absolute Difference:]  0.000 0.001 0.003 0.004 0.004 0.003 0.002 0.001

Absolute differences ranged from 0 to .047 with a mean of .005 and a standard deviation of .009




Table 2

Critical ¢ Values and Empirically Generated Critical ¢ Values for Specified p and v



Table 2

Critical 7 Values and Empirically Generated Critical ¢ Values tor Specitied p and v

1Q= 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.001
2Q= 0.80 0.50 0.20 0.10 0.05 0.02 0.01 0.002
p v Critical Values of the Theoretical t Distribution
0 2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 22.326
0 4 0.271 0.741 1.533 2,132 2.776 3.747 4.604 7.173
0 6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 5.208
0 8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 4.501
0 10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 4.144
0 12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.930
0 14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.787
0 16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.686
0 18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.610
0 20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.552
0 22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.505
0 24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.467
0 26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.435
0 28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.408
0 30 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.396
0 40 0.255 0.681 1.303 1.684 2.021 2423 2.704 3.307
0 50 0.255 0.679 1.299 1.676 2.009 2.403 2.678 3.261
0 60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 3.232
0 120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 3.160
0.05 2 0.304 0.859 1.987 3.077 4.532 7.344 10.485 23.563
0.05 4 0.292 0.798 1.650 2.293 2.986 4.048 4.974 7.740
0.05 6 0.292 0.789 1.583 2.136 2.696 3.457 4.078 5.746
0.05 8 0.295 0.794 1.572 2.091 2.594 3.261 3.780 5.099
0.05 10 0.298 0.802 1.575 2.079 2.559 3.175 3.639 4.760
0.05 12 0.303 0.814 1.586 2.087 2.552 3.139 3.569 4.609
0.05 14 0.307 0.826 1.605 2.102 2.561 3.129 3.543 4.509
0.05 16 0.311 0.837 1.623 2.120 2.575 3.135 3.543 4.491
0.05 18 0.318 0.851 1.646 2.144 2.599 3.157 3.566 4.457
0.05 20 0.323 0.863 1.666 2.167 2.621 3.176 3.580 4.469
0.05 22 0.323 0.875 1.687 2.193 2.650 3.203 3.601 4.476
0.05 24 0.332 0.889 1.712 2.220 2.682 3.239 3.639 4.501
0.05 26 0.336 0.901 1.733 2.246 2.707 3.264 3.660 4.527
0.05 28 0.342 0.915 1.760 2.281 2.744 3.304 3.698 4.576
0.05 30 0.346 0.926 1.781 2.303 2.772 3.335 3.732 4.603
0.05 40 0.371 0.989 1.895 2.447 2.935 3.522 3.933 4.797
0.05 50 0.392 1.045 2.000 2.581 3.094 3.704 4.127 5.016
0.05 60 0.413 1.101 2.104 2.712 3.246 3.880 4.324 5.239
0.05 120 0.521 1.390 2.646 3.408 4.069 4.843 5.381 6.459
0.20 2 0.354 1.002 2312 3.585 5.287 8.543 12.175 27.326
0.20 4 0.357 0.981 2.028 2.821 3.675 4.975 6.092 9.441
0.20 6 0.375 1.014 2.034 2.745 3.459 4.448 5.241 7.382
0.20 8 0.394 1.059 2.097 2.789 3.459 4357 5.058 6.799
0.20 10 0.417 1.108 2.172 2.869 3.528 4376 5.018 6.529
0.20 12 0.431 1.153 2.251 2.961 3.624 4.464 5.079 6.521
0.20 14 0.448 1.200 2.330 3.053 3.718 4.543 5.159 6.579
0.20 16 0.465 1.244 2414 3.147 3.820 4.659 5.265 6.644
0.20 18 0.481 1.289 2.491 3.250 3.941 4.776 5.401 6.753
0.20 20 0.495 1.328 2.566 3.341 4.041 4.896 5.513 6.902
0.20 22 0.512 1.370 2.641 3.434 4.143 5.015 5.64 7.009
0.20 24 0.527 1.411 2.721 3.532 4.260 5.149 5.777 7.179
0.20 26 0.544 1.451 2.793 3.616 4.351 5.247 5.873 7.290
0.20 28 0.555 1.490 2.865 3.715 4.467 5.391 6.035 7.450
0.20 30 0.572 1.528 2.932 3.797 4.571 5.491 6.149 7.595
0.20 40 0.639 1.703 3.262 4.213 5.056 6.070 6.780 8.279
0.20 50 0.697 1.856 3.553 4.593 5.507 6.592 7.350 8.970
0.20 60 0.753 2.005 3.835 4.942 5912 7.077 7.874 9.565
0.20 120 1.022 2.727 5.201 6.689 7.986 8.750 10.559 12.706




Table 2

1Q=[  0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.001
2Q=|  0.80 0.50 0.20 0.10 0.05 0.02 0.01 0.002
p v

040 2 0.441 1.250 2.885 4470 6.586 10.640 15.182 33.941
040 4 0.468 1.284 2.658 3.697 4.821 6.504 7.987 12.350
040 6 0.507 1.372 2753 3.717 4.678 6.016 7.080 9.940
040 8 0.546 1.469 2.909 3.870 4.802 6.046 7.013 9.385
040 10 0.582 1.568 3.073 4.060 4.993 6.167 7.098 9.256
040 12 0.618 1.656 3.229 4252 5.200 6.406 7.306 9.367
040 14 0.648 1.745 3.386 4.430 5.400 6.610 7.499 9.555
040 16 0.681 1.823 3.540 4.619 5.608 6.841 7.727 9.760
040 18 0.711 1.906 3.686 4.809 5.825 7.077 7.984 10.001
040 20 0.737 1.980 3.827 4.978 6.027 7.301 8.227 10.315
040 22 0.769 2.056 3.961 5.147 6.221 7.519 8.466 10.544
040 24 0.796 2.131 4.101 5329 6.428 7.758 8.713 10.822
040 26 0.824 2.200 4228 5.476 6.596 7.943 8.909 11.059
040 28 0.848 2.267 4360 5.654 6.798 8.196 9.181 11.305
040 30 0.873 2334 4.478 5.801 6.978 8.397 9.380 11.577
040 40 0.989 2.637 5.051 6.521 7.832 9.404 10.486 12.825
040 50 1.092 2.902 5.556 7.174 8.609 10.312 11.505 14.047
040 60 1.186 3.154 6.035 7.778 9.308 11.123 12.390 15.078
040 120 1.638 4.368 8.325 10.710 12.787 15.236 16.907 20350
050 2 0.4991 1418 3274 5.067 7.478 12.069 17.242 38.733
050 4 0.541 1.482 3.069 4.270 5.567 7.498 9.226 14.343
050 6 0.592 1.602 3216 4.340 5.462 7.021 8.269 11.635
050 8 0.642 1.729 3.423 4.555 5.651 7.110 8.247 11.027
050 10 0.689 1.856 3.636 4.806 5.907 7.335 8.401 10.940
050 12 0.735 1.968 3.838 5.054 6.177 7.607 8.676 11.146
050 14 0.774 2.079 4.036 5.278 6.436 7.886 8.943 11.406
050 16 0.813 2.187 4233 5.520 6.701 8.176 9.242 11.655
050 18 0.852 2.280 4.416 5.757 6.975 8.485 9.566 11.996
050 20 0.887 2377 4.589 5.972 7.231 8.761 9.872 12.358
050 22 0.923 2.470 4.763 6.187 7.474 9.044 10.168 12.678
050 24 0.958 2.565 4.941 6.413 7.732 9.346 10.483 13.029
0.50 26 0.991 2.652 5.096 6.598 7.945 9.570 10.733 13.313
050 28 1.023 2.735 5.261 6.818 8.201 9.884 11.066 13.651
0.50 30 1.054 2.817 5.408 7.001 8.420 10.132 11.367 13.965
0.50 40 1.198 3.193 6.118 7.899 9.483 11.391 12.701 15.530
0.50 50 1.326 3.522 6.743 8.707 10.445 12.522 13.963 17.049
050 60 1.439 3.836 7.332 9.449 11312 13.516 15.059 18.340
0.50 120 1.999 5328 10.158 13.063 15.601 15.580 20.619 24.832
0.80 2 0.868 2458 5.674 8.770 12.903 20.982 29.85 66.730
0.80 4 0.978 2.673 5.530 7.701 10.032 13.534 16.600 26.037
080 6 1.093 2.954 5.930 8.004 10.073 12.902 15.225 21.391
080 8 1.201 3.236 6.398 8.521 10.575 13.310 15.415 20.578
0.80 10 1.305 3.504 6.873 9.082 11.162 13.855 15.872 20.651
0.80 12 1.402 3.748 7.308 9.616 11.767 14.505 16.518 21.221
0.80 14 1.484 3.979 7.719 10.109 12.322 15.094 17.131 21.799
0.80 16 1.566 4.205 8.143 10.614 12.884 15.732 17.750 22.433
0.80 18 1.645 4.402 8.519 11.112 13.465 16.372 18.485 23.163
0.80 20 1.720 4.604 8.883 11.560 13.993 16.972 19.094 23.986
0.80 22 1.790 4.802 9.253 12.013 14.495 17.558 19.739 24.630
0.80 24 1.866 4.986 9.614 12.471 15.054 18.174 20.388 25.336
0.80 26 1.935 5.173 9.926 12.867 15.487 18.664 20.961 25.945
0.80 28 1.999 5334 10.266 13.311 16.014 19.293 21.593 26.671
0.80 30 2.065 5514 10.575 13.692 16.460 19.805 22.150 27.288
0.80 40 2351 6.275 12.026 15.513 18.636 22377 24.978 30.490
0.80 50 2.610 6.942 13.292 17.163 20.599 24.691 27.537 33.622
0.80 60 2.844 7.581 14.484 18.671 22362 26.692 29.741 36.289
0.80 120 3.968 10.592 20.194 25.959 31.009 36.914 40.967 49.349




Figure 1
Critical # Values Along with the Critical Values of the Empirically

Generated Distributions Plotted as a Functions of p and v
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