
Applying genetic algorithms to selected topics commonly
encountered in engineering practice

K. Matou�s, M. Lep�s, J. Zeman, M. �Sejnoha *

Department of Structural Mechanics, Faculty of Civil Engineering, Czech Technical University, Th�akurova 7,

166 29 Prague 6, Czech Republic

Received 15 October 1999

Abstract

A carefully selected group of optimization problems is addressed to advocate application of genetic algorithms in various engi-

neering optimization domains. Each topic introduced in the present paper serves as a representative of a larger class of interesting

problems that arise frequently in many applications such as design tasks, functional optimization associated with various variational

formulations, or a number of problems linked to image evaluation. No particular preferences are given to any version of genetic

algorithms, but rather lessons learnt up-to-date are e�ectively combined to show the power of the genetic algorithm in e�ective search

for the desired solution over a broad class of optimization problems discussed herein. Ó 2000 Elsevier Science B.V. All rights reserved.

Keywords: Optimization; Genetic algorithm; Reinforced beam; Energy functional; Unit cell

1. Introduction

The search for a better, or rather an `optimal' solution to a number of tasks that man has to face
throughout his life is perhaps as old as mankind itself. Such peculiar competition aiming to outperform the
others is quite similar to what nature does best through features like reproduction and self-adapting, so
natural for each species striving for survival in a continuously changing environment. When accepting this
common link we should not marvel at the immense problem-solving systems based on principles of
evolution, that help to guide human decisions towards the `best' alternative in a space of potential
solutions.

A variety of evolution programs have been developed in the last few decades. For thorough discussion on
this subject, we refer the interested reader to [3,4,9]. Here, we do not attempt to provide any major break-
through in evolutionary programming but rather effectively exploit up-to-date knowledge to attain the goal
we set. The main objective of this contribution is to manifest the robustness of evolution programs when
applied to manifold optimization problems in engineering. We show that even a simple genetic algorithm
can ®nd its applicability in the design of engineering structures, where traditional gradient schemes become
unacceptably expensive as they require an execution for a large number of different points to increase the
chance in locating the global optimum, or cannot be used at all due to discontinuous nature of the objective
function.

In keeping with the title of this paper, we address three speci®c problem areas of optimization. Section 2
outlines application of genetic algorithms (GAs) to a class of optimization problems associated with various

www.elsevier.com/locate/cma
Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650

* Corresponding author. Tel.: +420-2-2435-4475; fax: +420-2-2431-0775.

E-mail address: sejnom@power1.fsv.cvut.cz (M. SÏejnoha).

0045-7825/00/$ - see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 0 0 4 5 - 7 8 2 5 (0 0) 0 0 1 9 2 - 4

design tasks. In particular, we attempt to minimize a cost of a steel-reinforced concrete beam. We search for
a con®guration characterized by a minimum price, which yet satis®es all strength and serviceability re-
quirements for a given level of the applied load.

An application to a world of quadratic objective functionals polluted by various constraints appears in
Section 3. The problem of interest represents a class of optimization tasks targeted at improving the overall
performance of composite structures. As an example, we investigate the e�ect of the initial ®ber pre-stress
on both the local and overall response of the laminated plate. We wish to ®nd an optimal distribution of the
initial ®ber pre-stress through the laminate thickness, which substantially increases the load-bearing ca-
pacity of laminates as well as reduces their maximum de¯ection. While the above problems are solved with
the help of a binary version of genetic algorithms, Section 4 provides an example of ¯oating-point repre-
sentation of searched parameters.

The topic introduced in Section 4 falls into a category of image analyses. From the practical standpoint
we address a community of researches interested in the ®eld of random composites. Our objective is to
generate a certain material representative volume element in terms of a periodic unit cell, which possesses
similar statistical properties as the real composite. In this particular example the solution systems based on
evolution strategies ®nd its full potential, since the objective function is far from clean but rather noisy and
discontinuous with a number of local valleys.

We realize that a reader not familiar with evolutionary programming might ®nd himself trapped in
meaningless pseudo-codes without properly rephrasing the vocabulary and essential features of genetic
algorithms. However, instead of providing a general description of genetic algorithms in separate sections,
we shall expose their peculiarities with a direct link to search parameters when studying individual prob-
lems.

2. Design of steel-reinforced concrete beam

A wide range of concrete materials in structural engineering in recent decades has led to many di�erent
optimization problems improving the design and overall performance of concrete structures. In most ap-
plications the aim has been at ®nding an optimum weight of a structure for given design conditions. To
further enhance our problem, we add the total price of a structure into the gambling pool. Therefore, a
standard task of designing structures for their maximum strength/weight ratio becomes a part of a more
general picture.

To introduce the subject, consider a steel-reinforced concrete beam. The steel is usually characterized by
its high strength and ductility, while concrete marks out by an advantageous pressure/strength ratio and
price. When combining these two materials in a proper way a comparatively inexpensive structure can be
obtained. Thus, we are after the less-expensive con®guration that yet satis®es all strength and serviceability
requirements.

When carefully examining this problem it becomes evident that an e�cient and robust algorithm capable
of handling a number of variable functions with discontinuities and nonlinearities is required. To tackle
such a problem we may now rely on various stochastic algorithms with a genetic algorithm occupying an
important place among them.

2.1. Objective function

Before proceeding with the actual description of a simple genetic algorithm and its modi®cations, we
®rst formulate the desired objective function including penalty terms for incorporating various con-
straints.

One of the key quantities each design engineer takes into consideration is the price of a structure. Since
an e�ective design of a structure can substantially reduce this quantity, we selected price as the objective
function

f �X� � VcPc � WsPs �1�

1630 K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650

subjected to following constraints:

di6 dlim � l
250

; �2�

MSd 6MRd : �3�
In Eq. (1) Vc is the volume of concrete and Ws is the weight of steel; Pc and Ps are the price of concrete per
unit volume and steel per kilogram, respectively. Inequalities (2) and (3) express selected design criteria
according to EURODODE 2 standard (EC2) [12] for reinforced concrete (RC) structures. In particular,
inequality (2) represents the serviceability requirement, where l is the span and dlim is the maximum per-
missible de¯ection of a beam. Condition for the cross-section bearing capacity, inequality (3), given in terms
of moments deserves more attention.

Consider a representative cross-section of reinforced concrete beam shown in Fig. 1 with given di-
mensions b and h. Internal forces acting on the cross-section, which are necessary for the design, are usually
obtained using the ®nite element method.

According to [12] the required steel area is provided by

AS � bd
afcd

fyd
1

ÿ

�����������������������
1ÿ 2MSd

bd2afcd

s !
; �4�

where MSd is the moment of internal forces. The ultimate moment MRd is then given by

MRd � ASfyd�d ÿ 0:416x�; x � ASfyd

0:81bafcd
: �5�

To handle inequalities (2) and (3) one may adopt a standard approach based on the penalty method. In
such a case the original objective function (1) is augmented by including penalties for all constraints vio-
lations

f �X� � VcPc � WsPs �
X2

i�1

pfi: �6�

In our present approach the penalty functions pfi assume, in general, the following form:

Fi6 Fi;max; pfi � jFij
Fi max � A

� �B

; �7�

where A and B are the user-de®ned parameters of the proposed penalty function. Usually a large number is
assigned to the parameter B, whereas A approaches zero.

At this point, however, we should warn the reader against perceiving the above approach as a general
one for solving a constrained media problem. Although for a moderate number of constraints the

Fig. 1. RC beam with lower reinforcement.

K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650 1631

approach, which includes penalties in the function evaluation, may prove to be reliable and e�cient, the
same might not be true when the number of constraints increases. In case of a larger number of constraints
(shear strength requirements, and various other design criteria recommended by standards) it appears
reasonable to follow, for example, an approach outlined in [9].

2.2. Optimization techniques

When designing an evolutionary program, one has ®rst to square up to the principle question: Binary or
¯oat-point representation of searched variables. To shed light on this subject, we point out that most of the
search variables in the above problem are either directly represented by integer numbers or as pointers to
components of a discrete set of real numbers. Consequently, a binary alphabet appears as a natural choice
for our representation space. Mapping between the representation and search spaces is described in the next
section.

2.2.1. Data coding
To clearly understand the binary coding devised for this problem we ®rst introduce the data structure for

individual design parameters. From the genetic algorithm (GA) point of view, the only real-valued design
parameters are the cross-sectional dimensions of a beam displayed in Fig. 2, where h and b represent the
height and width of the cross-section, respectively. Table 1 lists the upper and lower bounds for each di-
mension together with the desirable precision. When implementing the GA we further assume that each
dimension can either acquire discrete values spread 0.025 m apart or it can change continuously.

To introduce additional design variables recall Eq. (1) suggesting that steel reinforcement should be
considered as important as concrete when attempting to reduce the cost of a structure. Table 2 stores the
remaining 10 parameters selected to control an amount and location of the bending steel reinforcement.
Note that all variables are treated as integer numbers.

In Table 2, pru and prb represent upper and lower reinforcement along the whole span of a beam, see
Fig. 3. Parameters nbI±nbIII then correspond to the number of steel reinforcement bars located at the bottom
of the beam cross-section within individual sections and nuI±nuIII stand for the number of bars located at the
top of a beam, Fig. 3. For the design purpose, the beam is subdivided into a certain number of elements,
where the internal forces are presumed to be constant. Parameters lI and lII are then associated with the

Fig. 2. Beam cross-section.

Table 1

Dimensions of the cross-section

Variable Units Minimum Maximum Precision Comment

h (m) 0.15 0.85 0.025 Discrete values

0.15 0.85 0.001 Continuous values

b (m) 0.15 0.45 0.025 Discrete values

0.15 0.45 0.001 Continuous values

1632 K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650

number of elements derived for sections I and II. lIII follows from a simple algebra. The above parameters
can be stored in vector X , Eq. (1), which in our particular case represents a vector of 12 variables.

We now proceed to construct a general mapping between the representation space and the search space,
common for both integer and real numbers. In general, we consider a function f �X� � f �x1; x2; . . . ; xn�,
where X is a vector of n variables, integer or real numbers xi, de®ned on a closed interval

min
i
6 xi6 max

i
; �8�

where mini and maxi are bounds assigned to each variable xi taken from a domain Di of either real or
integer numbers. Further assume that each variable xi is represented with some required precision pi, de-
®ned as the smallest unit the number xi can attain. Suppose that ®ve decimal points for the real variable's
precision are desirable, then pi � 0:00001. If Di � N0 (integer numbers including zero) then pi � 1. Provided
that pi � 2, the integer number xi acquires either even or odd number depending on a given minimum, see
Eq. (10). Each variable xi can be transformed into a non-negative integer number yi 2 N0 as

yi � xi ÿmini

pi

� �
: �9�

An inverse transformation is given by

xi � yi pi �min
i
: �10�

Ultimately, the number yi is represented as a binary string of length k such that

maxiÿmini

pi
6 2k: �11�

An integer number k is provided by

k �
ln maxi ÿmini

pi

� �
ln 2

24 35; �12�

where operator �z� denotes the integer part of z. It can be easily recognized that the length of a binary string
depends quite substantially on the required precision. For example, coding a high-precision real number
may lead to binary strings of size which essentially prevents the GA from successful implementation. In our
study, however, such a weakness of binary GAs creates no obstacles.

Table 2

Parameters of steel reinforcement

Variable Minimum Maximum Precision Comment

pru; prb 1 16 1 Indexes of vector of real numbers

nbI±nbIII 0 31 1

nuI±nuIII 0 31 1

lI; lII 0 127 1 No. of elements in a given interval

Fig. 3. Beam sections.

K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650 1633

Note that a binary form of vector X is often referred to as a chromosome, while individual variables xi are
termed genes. Thus, if our vector X was composed of two variables x; y, each represented by 8-bit binary
number, then our chromosome would store two genes and consist of 16 binary digits. How chromosomes
enter the GA procedure is discussed in the next section.

2.3. Genetic algorithms

Genetic algorithms, as stated in Section 1, are formulated using a direct analogy with evolution processes
observed in nature, a source of fundamental di�erence between traditional optimizers and GAs. Genetic
algorithms, in contrast to traditional methods, work simultaneously with a population of individuals,
exploring a number of new areas in the search space in parallel, thus reducing the probability of being
trapped in a local minimum. As in nature, individuals in a population compete with each other for sur-
viving so that ®tter individuals tend to progress into new generations, while the poor ones usually die out.
This process is brie¯y described in Algorithm 1.

Algorithm 1. Principle of genetic algorithm
t � 0
generate P0, evaluate P0

while (not termination-condition) {
t � t � 1
select Mt from Ptÿ1 (apply sampling mechanism)
alter Mt (apply genetic operators)
create Pt from Mt and evaluate Pt (insert new individuals into Pt)

}

Algorithm 1 provides basic steps of a single GA cycle; reproduction phase (#5), recombination (#6), and
selection of a new population (#7). In the next paragraph we ®rst explore basic operators controlling Step
6. Steps 5 and 7 will be explained in more detail when formulating various algorithms we tested.

2.3.1. Genetic operators
Breeding is the essential force-driving evolution of each species. Mating process, in which two parents

combine their (we hope) good characteristics to produce (we hope) a better o�spring, is accomplished in
GAs through various `cross-breeding' and `mutating' operators. Detailed exposition to these operators is
given in [4]. Here, we limit our attention to basic crossover and mutation operators we employed in the
present study.

We begin with uniform crossover. When two individuals are selected for mating this operator works in
accord with Fig. 4.

First, a random mask of the same length as the parents is generated. To create offspring-1 we proceed as
follows. When the bit in the mask is 1 then the corresponding bit from parent-1 is copied to offspring-1 and
when there is a 0 in the mask then the corresponding bit in parent-2 is passed to offspring-1. To create
offspring-2 we simply exchange the order of parents. In addition, when randomly generating sets of ones
and zeros, as shown in Fig. 5, we may arrive at single-point and two-point crossover operators, respectively.
In other words, when applying single-point crossover, for example, we ®rst randomly select a crossover

Fig. 4. Uniform crossover.

1634 K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650

point after which parents exchange their tails. Crossover operator is usually applied with only a certain
probability pc. Therefore, not all pairs of individuals selected for mating are modi®ed by the crossover step.

However, they still are bound to be disrupted by the mutation operator. The mutation operator ran-
domly introduces new information, either positive or negative, into a population. It provides a very good
job, particularly in the ®rst exploration stage. However, its role in the recombination step should gradually
decrease in the exploitation stage as the solution converges to the `global' minimum. On the contrary, when
a population gets trapped, over a certain number of GAs cycles, in a local minimum, the mutation operator
might be the only source of a new information to drag the solution uphill to continue the search for the
global minimum. The GA algorithm should be able to adaptively react to these contradictory effects. On
the other hand, there exists several other, perhaps more appealing approaches which deal with this so-called
`premature convergence' towards a local minimum. Some of them will be discussed in Section 4.

In general, the mutation operator is applied to each new o�spring created in the crossover step. For the
binary algorithm, it just randomly changes bits from zeros to ones or vice-versa with a small probability,
Fig. 6.

It is generally accepted that mutation plays a secondary role in a process of recombination, and as in
nature the likelihood of its appearance is usually much smaller �pm � 0:001±0:01� than that of crossover
�pc � 0:6±1�. In what follows these operators will be placed within the framework of two simple versions of
Algorithm 1 examined in our study.

2.3.1.1. Genetic algorithm I (GAB I). To keep up our promise given in Section 1, we start with a simple
genetic algorithm described in [4] with only a minor di�erence related to sampling mechanism. This al-
gorithm can be placed into the category of preservative, generational and pure selection procedures. It
assumes non-zero selection probabilities for each individual. It carries out generational population re-
placement forcing each parent to reproduce in one generation only. To put this algorithm within the
context of Algorithm 1 we now review the important steps in more detail:

Step 5. Individuals selected for reproduction are copied to the `mating' pool according to their relative
performance referred to as their `®tness', or `®gure of merit'. In our case of function optimization, it is
simply equal to the function value or rather its inverse when solving minimization problem. An expected
number of copies each individual should receive in the mating pool Mt is given by

ei � siPN
1 si

N ; si � 1

d� fi
; fi P 0;

where N is the number of individuals in a population and fi is the function value associated with the ith
individual; si � fi when solving maximization problem. Parameter d is a small positive number. To select
individuals for recombination phase, we implemented a commonly used sampling mechanism called re-
mainder stochastic sampling without replacement (RSSwoR) [2,4,9]. This method allocates individuals ac-
cording to their integer part of ei. The remaining places in a population are then sampled according to their
fractional part using a spinning roulette wheel. The fractional parts represent a success probability of se-
lection. After each spin, the expected value of the selected individuals is set equal to zero. As shown by
Baker [2], however, this method is biased by favoring smaller fractions. Improved versions of this method
provided by Baker are discussed in Section 4.

Fig. 5. (a) Single-point crossover mask; (b) Two-point crossover mask.

Fig. 6. Mutation.

K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650 1635

Usually it is not desirable to sample individuals according to their raw ®tness. In such a case the best
individuals may receive a large number of copies in a single generation, so after a small number of GA
cycles all individuals start to look alike and the algorithm usually converges prematurely to a local mini-
mum. In other words, increasing the selection pressure decreases the population diversity. To compress the
range of ®tnesses, we incorporated a linear scaling (shifting) of the ®tness function into our sampling
procedure. For more details see, for example, [4]. However, care must be taken to avoid overcompression,
which not only slows down the GA performance but may result in the loss of the global minimum [3].

Steps 6 and 7. Randomly select pairs of individuals from the mating pool Mt and perform recombination
using genetic operators described in the previous paragraphs. Make sure that each individual is used only
once. Replace individuals in Ptÿ1 by a new offspring to create a new generation Pt.

2.3.1.2. Genetic algorithm II (GAB II). A number of GA confessors favor so-called steady-state algorithms,
when only a few members of population are changed. A simple version of this approach is again outlined
through individual steps of Algorithm 1.

Step 5. Reproduction phase employs the most simple sampling mechanism called stochastic sampling
with replacement or simply the Roulette wheel selection. Details regarding its implementation are given in [4,
Chapter 3]. In particular, by spinning the roulette wheel select two individuals from population Ptÿ1 for
mating. These individuals are temporarily stored in the mating pool Mt.

Step 6. Alter Mt by applying both the crossover and mutation operators, each with a prescribed prob-
ability.

Step 7. Using the inverse roulette wheel select two individuals from Ptÿ1 marked to die out. Insert new
offspring in Ptÿ1 only if their relative performance is better than those selected for dying. Otherwise, there
are no changes introduced in population Ptÿ1.

2.4. Examples

As an example we selected a continuous beam subjected to a uniformly distributed load according to
Fig. 7. Due to symmetry, only one half of the beam was analysed. Distribution of internal forces (bending
moment and shear force) was found using the ®nite element method. The required amount of steel then
follows from Eq. (4). The price Pc � 1350:0 K�c/m3 for concrete and Ps � 50:0 K�c/kg for steel was assumed.

To test the applicability of both algorithms, we explored two example problems. In the ®rst example we
attempted to reduce the price of a construction by merely modifying its shape. The steel remained unaf-
fected. The second example dealt with the shape and bending-reinforcement optimization simultaneously.

In each case, an initial population of 200 individuals was randomly generated. Probabilities of crossover
pc � 1 and mutation pm � 0:03 were kept constant throughout the GA run. Optimization process was
terminated when there was no change in the best individual ®tness observed over a certain number of GA
cycles. Results appear in Tables 3±5.

Table 3 lists optimal dimensions of the beam cross-section together with corresponding price assuming
both continuous and discrete change of cross-sectional dimensions during the optimization run. Both al-
gorithms managed to ®nd the exact minimum displayed in Fig. 8 (hollow circle). Function f �b; h� in Fig. 8
is normalized with respect to a given price f0. Here, f0 represents the price derived from EC2 (f0 � 1002:65
K�c, b � 200; h � 300 mm).

Results derived for the second example are stored in Table 4 showing the minimum, maximum, and
average price associated with the best chromosome in a population. Standard deviation is added to

Fig. 7. Continuous beam subjected to uniform loading.

1636 K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650

complete the basic chromosome statistics. It is evident from Table 4 that a proper arrangement of the
bending reinforcement bars can provide further reduction in the overall price. An additional improvement
might be expected when considering the shear reinforcement as a part of the optimization process. This is
the subject of the current investigation.

Although we tested all algorithms on one example only, results in Table 4 further suggest superiority
of steady-state genetic algorithm GAB II over more traditional genetic algorithm GAB I, particularly
when allowing only a discrete change of cross-sectional dimensions in the course of optimization. An
absence of convergence observed in this case is attributed to the problem of having the population av-
erage ®tness close to the population best ®tness. Regardless of suf®cient diversity within the population,
both average and the best individuals reproduce in such a case with a similar number of copies in the next
generations, which essentially reduces an opportunity for additional improvement. To remedy this situ-
ation, we may introduce a new source of information through randomly generated individuals to refresh
a portion of the current population. However, we did not experiment with this approach. Fig. 9 displays
convergence characteristics of both algorithms. Finally, Table 5 summarizes results obtained from ®ve
independent runs using the steady-state genetic algorithm. It shows variation in both dimensions and

Table 5

Example 2 ± results from ®ve independent runs using GABII

Values Section Dimensions Price (K�c)

A±A B±B b (mm) h (mm)

Continuous 6 £ 6.0 10 £ 6.5 151 385 837.22

5 £ 6.5 10 £ 6.5 150 393 842.21

7 £ 5.5 12 £ 6.0 150 388 838.16

6 £ 6.0 11 £ 6.0 150 408 859.15

6 £ 6.0 10 £ 6.5 150 388 838.91

Discrete 5 £ 7.0 10 £ 7.0 150 350 824.43

6 £ 6.5 10 £ 7.0 150 350 830.30

7 £ 6.0 12 £ 6.5 150 350 833.18

6 £ 6.5 12 £ 6.5 150 350 834.22

7 £ 6.0 10 £ 7.0 150 350 829.27

Table 4

Example 2 ± characteristics of the best individual

Algorithm Values Price (K�c)

Min. Avg. Max. Std. dev.

GAB I Continuous 851.27 866.24 880.83 9.01

Discrete 959.07 977.09 1024.12 17.10

GAB II Continuous 837.22 844.39 859.15 7.89

Discrete 824.43 829.48 834.22 3.23

Table 3

Example 1

Values b (mm) h (mm) Price (K�c)

Continuous 150 294 898.48

Discrete 150 300 906.39

K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650 1637

pro®les of the lower (section A±A) and upper (section B±B) reinforcement bars, which yet manifests the
discrete nature of the problem.

To conclude, we have shown ability of both algorithms to solve a simple design problem with only a few
constraints. The above results, though encouraging when comparing the optimal price with the one from
EC2, should not be overestimated as we avoided various design criteria recommended by standards.
Complying with additional design requirements just increases a number of constrains, which eventually
prevents the presented algorithms from working. Our early experiments, however, suggest that so-called
augmented simulated annealing, also discussed later in this paper, is the right method of attack. Another
possibility is to let genetic algorithms to do the hard work when exploring promising areas in the solution
space initially and then call the local optimizer to descend individual hills in search for the best solution.
These are the two routes we are currently pursuing.

3. Initially pre-stressed laminates

To stay on the moving train we examine in this section another problem from the category of structural
design tasks. Although our objectives are essentially the same (improving the overall performance of

Fig. 8. Distribution of the objective function.

Fig. 9. Distribution of the objective function.

1638 K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650

composite laminated structures), both the formulation of objective functional and our selection of the
design parameters substantially di�er from those introduced in the former section.

In this particular problem we combine a simple multilayered plate element with a micromechanical
analysis of unidirectional ®brous composite plies to investigate the e�ect of the initial ®ber pre-stress on
both the local and overall response of the laminate. With the help of a certain energy-type objective
functional, we seek for an optimal through-thickness variation of the initial ®ber pre-stress in order to
meet certain goals (reduce de¯ection, redistribute the local stresses in favor of the matrix phase, thus
increasing the load bearing capacity of laminates). Here, the initial ®ber pre-stress serves as a design
parameter.

It is worthy to note that an e�cient implementation of a genetic algorithm in its standard fashion su�ers
from a complicated and expensive cost functional, particularly when inelastic deformation of the matrix
phase takes place during optimization. To overcome these obstacles we re-examine certain suggestions
given in the literature [5] when dealing with such less-friendly objective functions or functionals. We show
that even in the case when the local properties of the matrix phase together with its local stress and strain
®elds depend on the deformation history, the proposed optimization procedure built upon an augmented
genetic algorithm still provides su�ciently accurate and e�cient results.

3.1. Objective function

As in Section 2, we ®rst turn our attention to the formulation of the objective functional. To this end,
consider a laminated plate displayed in Fig. 10. The local displacement, stress and strain ®elds within in-
dividual plies are found using the re®ned laminated plate theory with separate assumptions for the dis-
placement ®eld of each layer [8]. The standard Mindlin kinematic conditions are assumed so that the
displacement ®eld takes the form

ui
1�X1;X2; x3� � U i

1�X1;X2� � xi
3/

i
2�X1;X2�;

ui
2�X1;X2; x3� � U i

2�X1;X2� ÿ xi
3/

i
1�X1;X2�; �13�

ui
3�X1;X2; x3� � U i

3�X1;X2�; i � 1; 2; . . . N ;

where xi
3 is measured from the middle plane of the ith ply; vector U i represents axial displacements and

/i
1;/

i
2 are rotations of the material line about the X1;X2 axis, respectively, within individual plies. Such a

formulation is quite simple and straightforward, but it requires an introduction of the following constraints
to maintain integrity of the laminate

Fig. 10. Composite laminate.

K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650 1639

gi
1 � U i�1

1 ÿ U i
1 ÿ

1

2
hi�1/i�1

2

� � hi/i
2

�
;

gi
2 � U i�1

2 ÿ U i
2 �

1

2
hi�1/i�1

1

� � hi/i
1

�
; i � 1; 2; . . . N ÿ 1:

�14�

Actual implementation of this theory into a ®nite element code together with an incremental strategy for
solving a nonlinear problem is not part of this study, and therefore we refer the reader to [14] for details on
this subject. On the other hand, a short introductory invasion into the above layered laminated plate theory
is necessary to understand individual terms in the proposed objective functional we now present in the
following form:

Pj
0�u; b; l� � U j

m � U
j
int �

Z
Sm

XNÿ1

i�1

bi� �TgidS � U j
ext �

XN

i�1

fi: �15�

A graphical representation of the above expression is displayed in Fig. 11. In Eq. (15) the term U j
ext rep-

resents the work done by externally applied load, vector b stands for the Lagrange multipliers for incor-
porating the displacement continuity conditions (14) and N is the number of layers of the laminated plate.
The term U

j
int is the work of internal forces associated with bending and stretching effects. The last term in

(15) provides certain constraints on ®ber stresses to prevent their failure during the optimization process.
Herein, it assumes the following form:

f i � ri
f11

ru � A

� �B

; �16�

where ri
f11

is the actual tensile stress in the ®ber and ru is the corresponding strength limit; A and B are again
certain control variables de®ned by the user. The ®rst quadratic term on the right-hand side of Eq. (15) Uj

m
is given by

Uj
m �

1

2

Z
Sm

XN

i�1

��
h
� l�Ti Ai �� � l�i

ij
dSm; �17�

where Ai is the 3� 3 plane stress tangent sti�ness matrix multiplied by the ply thickness hi. Contribution to
the overall initial strain vector l is caused by the uniform ®ber pre-stress k

pr
f (lpr

f � ÿM fk
pr
f ; M f is the

compliance matrix of the ®ber phase), and by the plastic strain developed in the matrix. Finally, � stores
components of the total in-plane strain vector.

Fig. 11. Formulation of objective functional.

1640 K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650

Note that Eq. (15) is written for individual load increments. This implies that the optimization procedure
is called to generate an increment of the initial ®ber pre-stress, which minimizes (15) for the current jth
increment of the prescribed load. Evidently, Eq. (15) is not exactly a clean quadratic functional, but rather
represents a constrained media problem. Moreover, its evaluation takes up most of the time spent on a
single genetic algorithm cycle. How to reduce the number of its evaluation and yet maintain e�ciency of the
algorithm is discussed in the next section.

3.2. Optimization technique

In this section we continue our experimentation with binary coding and simple crossover. In view of
several important remarks given in the preceding paragraph we work with a very small population con-
sisting of two individuals only. In the search space, an individual is formed as a vector of n variables
corresponding to the initial ®ber pre-stress �kpr

f �i applied in individual plies (n6N). Each variable is then
mapped to its counterpart in the representation space following the procedure described in Section 2.2.1. A
binary representation of searched variables is displayed in Fig. 12.

To construct a single GA cycle we have to bear in mind a loading-path-dependent response of a structure
undergoing an inelastic deformation. To understand this subject, assume that a structure with a certain
deformation history arrives at the equilibrium state for a given level of external loading and magnitudes of
the initial ®ber pre-stress derived up to the last but one load increment. Our objective now is to adjust the
level of the initial ®ber pre-stress to minimize Eq. (15). Further assume that the best solution obtained so far
is stored. In the representation space we call this solution chromosome 1. Only the best solution is stored
and for a new reproduction cycle the second parent is generated randomly (chromosome 2).

To include reproduction step in the GA cycle we select parents to breed among individual genes as
shown in Fig. 12 according to their ®tness. To this end, a standard roulette wheel is used. Pairs of genes for
breeding are drawn from the best chromosome and their number is arbitrary. To determine an in¯uence of
individual genes on the objective function we load the structure, in turn, by increments of the n components
of the solution vector (increment of the initial ®ber pre-stress resulting from genetic operations). Mutation
operator can be either applied similarly as in the previous section or omitted entirely due to the fact that a
new vector is generated after each cycle. In our study, the mutation operator was included but with a rather
low probability pm � 0:01.

3.3. Example

As an example we present results for the [0/90]s simply supported composite laminate loaded in trans-
verse compression. Each ply is made of aligned T-50 graphite ®bers bonded to the 6061-O aluminum matrix
with cf � 0:5. The solution vector thus consists of four variables. The search space is de®ned on the closed
interval hÿ100; . . . ; 100i MPa.

Fig. 13 shows a distribution of the ®ber pre-stress during optimization and loading process. Note that
the optimization procedure is called continuously for each load increment throughout the entire loading
program. The solid line corresponds to a ®ber pre-stress generated in the most bottom ply. Since no
constraints were imposed on ®ber pre-stress signs, the method also produced a negative ®ber pre-stress in

Fig. 12. Representation space and crossover operator.

K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650 1641

the most upper ply which is of the same magnitude as the one generated in the ®rst ply to compensate for
the bending moment due to the applied load. In reality, however, only a tensile ®ber pre-stress can be
introduced during the manufacturing process. This fact has to be taken into account when setting up the
optimization process.

Nevertheless, the ®nal redistribution of the initial ®ber pre-stress not only substantially reduced the
maximum vertical de¯ection of the laminate, but also led to a ®nal redistribution of local stresses in favor of
matrix, which provides an additional improvement in the laminate response. Such encouraging results
indirectly support the proposed optimization procedure, and also proves applicability of GAs in problems
with complicated functions.

4. Formulation of a periodic unit cell

The last section of this paper is devoted to a community of researchers interested in micromechanical
analysis of composite materials. Here, we limit our attention to one speci®c problem associated with a
formulation of the representative volume element (RVE) for a composite medium with randomly dis-
tributed ®bers. To introduce a subject, imagine a high contrast micrograph of a part of the graphite ®ber
tow impregnated by the polymer matrix displayed in Fig. 14.

Fig. 13. Distribution of ®ber pre-stress during optimization.

Fig. 14. A micrograph of the ®ber tow.

1642 K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650

This sample typically consists of a large number of particles (in order of 100) and its direct analysis
would be rather expensive. To remedy this problem we follow a clever idea proposed by Povirk [11]. Instead
of examining a large micrograph, Fig. 14, he suggested to formulate a representative volume element in
terms of a periodic unit cell, which closely resembles the real microstructure. A number of ways can be used
to accomplish this task. Here, we o�er a simple approach based on microstructural statistics.

4.1. Objective function

The approach we are going to discuss in this section requires a knowledge of a certain microstructure-
characterizing function. An example of such a function is the second-order intensity function K�r� [13]. This
function is de®ned as the number of further points expected to lie within a distance r of an arbitrary point
divided by the number of points per unit area

K�r� � A
N 2

XN

i�1

Ii�r�; �18�

where A is the area of a sample, N the number of points in a given sample and Ii�r� is the number of further
points within a circle with center at point i and radius r. For more details about this function see, e.g., [1].
Providing this function is available for the original microstructure, we argue that the RVE can be repre-
sented by a periodic unit cell with only a few reinforcements, for which this function is most similar to the
original one. After accepting this assumption we may formulate the following problem:

For a given number of ®bers N, dimensions of a unit cell H1 and H2 and values of the original function
K�r� evaluated in points ri; i � 1; . . . ;Nm ®nd the con®guration of particle centers xN

H1;H2
such that

xN
H1;H2

� arg min
x2S

F �xN
H1;H2
� where F �xN

H1;H2
� �

XNm

i�1

K�ri� ÿ K�ri�
pr2

i

� �2

; �19�

where vector x � fx1; y1; . . . ; xN ; yNg stands for the con®guration of particle centers of the periodic unit cell;
xi and yi correspond to x and y coordinates of the ith particle and S denotes a set of admissible vectors x.
After solving the above problem for ®xed values of the unit cell dimensions we may further adjust H1 and
H2 to cover all reasonable values. The most suitable RVE then corresponds to the minimal attained value of
F �xN

H1;H2
�.

Our choice of function K�r� for the problem optimization is primarily attributed to its simplicity and
very rapid evaluation for a reasonable number of particles N. In addition, the selected form of the objective
function F, Eq. (18), is quite useful since it serves directly as a `natural' penalization when particles happen
to overlap. Therefore, no additional algorithmic labor necessary for avoiding unacceptable solutions [11] is
needed.

To de®ne a set S of admissible solutions we recall the principle objective: construction of a periodic unit
cell. Such a unit cell is then surrounded by periodic replicas of itself so xi and yi can take arbitrary values.
To avoid various numerical di�culties associated with the presence of two materials at the boundary, we
further require that a set of vectors x in (19) satis®es the following condition:

R6 xi6H1 ÿ R ^ R6 yi6H2 ÿ R; i � 1; . . . ;N ; �20�

where R is the ®ber radius. Eq. (19) together with condition (20) then represent a constrained optimization
problem. Several tips for dealing with such a problem are given in [9]. To further support our selection of
genetic algorithms for solving Eq. (19) we present an admissible unit cell consisting of 10 ®bers together
with an example of the objective function F manifesting the problem complexity, Fig. 15. Coordinates x1

and y1 in Fig. 15 represent locations of the ®lled ®ber center. Positions of remaining ®bers are ®xed. The
minimum of function F is marked by a hollow circle.

K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650 1643

4.2. Optimization techniques

In Sections 2 and 3, we discussed an application of the binary version of genetic algorithms. The basic
ideas and vocabulary of genetic algorithms we have reviewed so far will also be adopted herein, although in
a somewhat di�erent manner.

In Section 2, we have already pointed out certain drawbacks associated with the binary coding of
searched variables. In particular, we recall a precision limitation of the binary genetic algorithm by the
binary representation of its parameters. This problem becomes particularly important when the search
space is formed by high-precision continuous parameters, since a high-precision requirement usually im-
plies a very large representation space. In such a case the binary genetic algorithm performs rather poorly.

In view of this general conclusion we now abandon the binary representation of parameters for the
remaining part of this study and turn our attention to a ¯oating-point representation of genes instead. This
step brings a number of advantages. First of all, using real numbers easily allows representation to the
machine precision. In addition, the search operators work directly in the search domain thus no mapping
between the representation space and the search space is required. This is a direct consequence of the
¯oating point implementation, where each chromosome vector is coded as a vector of ¯oating point
numbers, of the same length as the solution vector.

Various modi®cation of the continuous genetic algorithm will now be described in the sequel. For ad-
ditional comparison we also present an augmented version of the simulated annealing method, see [7].

To begin we recall Algorithm 1, which summarizes essential steps of the genetic algorithm. The popu-
lation Pt now becomes a family of possible con®gurations of a single unit cell. Each individual, a unit cell, is
represented by a real-valued vector X � fx1; . . . ; x2Ng. Individual components of this vector are related to
actual ®ber centers as follows:

x2iÿ1 � xi and x2i � yi for i � 1; . . . ;N ;

where N is the number of ®bers within the unit cell. As for the binary algorithm, step 6 in Algorithm 1
requires application of certain genetic operators acting on individual chromosomes (vector X). The next
Subsection provides a list of operators developed for ¯oat-point genes, which were implemented in our
codes. Details regarding their construction can be found in [10].

4.2.1. Genetic operators for real-valued alphabets
Let Li and Ui represent the lower and upper bound for each variable xi, respectively. Further assume that

vector X represents a parent, whereas vector X 0 corresponds to an o�spring; u�a; b� is a real number and
u�a; b� is an integer number with uniform distribution de®ned on a closed interval ha; bi. The following
operators can now be de®ned:

Fig. 15. An admissible unit cell.

1644 K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650

Uniform mutation. Let j � u�1; 2N � and set

x0i �
u�Li;Ui� if i � j;
xi otherwise:

�
Boundary mutation. Let j � u�1; 2N �, p � u�0; 1� and set

x0i �
Li if i � j; p < 0:5;
Ui if i � j; p P 0:5;
xi otherwise:

8<:
Non-uniform mutation. Let j � u�1; 2N �, p � u�0; 1� and set

x0i �
xi � �Li ÿ xi�f �t� if i � j; p < 0:5;
xi � �Ui ÿ xi�f �t� if i � j; p P 0:5;
xi otherwise;

8<:
where f �t� � u�0; 1��1ÿ t=tmax�b, t is the current generation, tmax the maximum number of generations and b
is the shape parameter. This operator allows for a local tuning as it uniformly searches the space initially
and very locally at later stages.

Multi-non-uniform mutation. Non-uniform mutation applied to all variables of X .
Simple crossover. Let j � �1; 2N � and set

x0i �
xi if i < j;
yi otherwise;

�

y0i �
yi if i < j;
xi otherwise:

�
Simple arithmetic crossover. Let j � u�1; 2N �, p � u�0; 1� and set

x0i �
pxi � �1ÿ p�yi if i � j;
xi otherwise;

�

y0i �
pyi � �1ÿ p�xi if i � j;
yi otherwise:

�
Whole arithmetic crossover. Simple arithmetic crossover applied to all variables of X .
Heuristic crossover. Let p � u�0; 1� and set

X 0 � �1� p�X ÿ pY ;

Y 0 � X ;

where X is a better individual than Y in terms of ®tness. If X 0 62S, then a new random number p is
generated until the feasibility condition (X 0 2S) is met or the maximum allowed number of heuristic
crossover applications is exceeded.

Altering an old generation Ptÿ1 requires an application of each operator in a certain number of times
depending on the selected sampling mechanism. Recall that the sampling mechanism facilitates the re-
production step of the GA (step 5 in Algorithm 1).

We already know from our work in Section 2 that a proper selection scheme may quite signi®cantly
in¯uence an ultimate performance of the GA. However, there is no ®rm evidence proving the superiority of
one particular sampling method over the others. This bare fact, on the other hand, reveals the real beauty of
GAs as it provides a relative freedom when developing a new evolutionary program. The versatile phe-
nomenon of GA-based optimization approach is further demonstrated in the next section, where we present
some additional modi®cations of a simple genetic algorithm for enhancing the genetic search.

K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650 1645

4.2.2. Genetic algorithms
This section continues our exposition to popular sampling mechanisms available in the literature. Each

method is again placed within the context of particular genetic algorithm. We describe them in turn by
referencing individual steps of Algorithm 1.

4.2.2.1. Genetic Algorithm I (GAR I). We begin with the most simple one usually termed as steady-state
GAs. Reproduction is implemented through the weighted roulette wheel and only one or two offspring are
created within each generation. For better understanding we now review the relevant steps:

Step 5. By spinning the roulette wheel, select the r individuals from population Ptÿ1 required for mating
(one individual for mutation, two individuals when the crossover operator is applied). These individuals are
temporarily stored in the mating pool Mt. Linear scaling is used to reduce a common threat of premature
convergence to a local optimum.

Step 6. Altering Mt by applying either crossover or mutation operator. In our case, the mutation op-
erator is used twice as often as the crossover operator.

Step 7. Based on a number of new offsprings created, select a corresponding number of individuals from
Ptÿ1 to die using the inverse roulette wheel. Insert new offsprings into Ptÿ1 to create Pt.

4.2.2.2. Genetic Algorithm II (GAR II). This algorithm closely resembles the simple genetic algorithm
described in Section 2 with only minor changes. To reduce statistical errors associated with the roulette
wheel selection we employ, in this case, an improved version of RSSwoR called remainder stochastic in-
dependent sampling (RSIS) [2].

Unlike the RSSwoR, where the fractional expected values are sampled spinning the roulette wheel, the
RSIS uses each fractional value as a probability of selection. In particular, when sampling the fractional
parts we ®rst generate a random real number r uniformly distributed within the range �0::1�. Then we check,
whether the fractional part of the ith individual is greater than r. If yes, the individual is added to the
mating pool and its fractional part is set equal to zero. If not, we move to the next individual. These steps
are repeated until the number of individuals in the mating pool equals the population size. This algorithm is
substantially simpler than the RSSwoR and the number of operations needed for reproduction is of order
of N (population size). As for GAR I, we now review the important steps of Algorithm 1:

Step 5. Apply the RSIS sample individuals from Ptÿ1 copy them into the mating pool Mt. Note that
precisely N individuals are selected for reproduction. This sampling method thus falls into the category of
preservative and generational selections [9]. Similar actions as in GAR I are taken to deal with the pre-
mature convergence.

Step 6. Genetic operators are applied to all individuals in Mt. Each operator is used in a prescribed
number of times depending on the population size, and new individuals are placed into a temporary
population P 0t . Parents for breeding are selected uniformly.

Step 7. Create a new population Pt by successively replacing the worst individual from Ptÿ1 by individuals
from the temporary population P 0t .

4.2.2.3. Genetic Algorithm III (GAR III). This algorithm is essentially a replica of the Michalewicz modGA
algorithm ([9, p. 59]). It employs the stochastic universal sampling mechanism (SUS) presented by Baker [2].
It is based on a single roulette wheel spin. In Baker's formulation, the standard roulette wheel is marked
with equally spaced pointers indicating the happy individual selected for reproduction. A number of
pointers indicates a number of desired individuals used for reproduction. This is particularly appreciable
when applying the modGA, which is characterized by the following steps:

Step 5a. Using the SUS, select a subset of n individuals from Ptÿ1 for reproduction and copy them to Mt.
Note that each member of Mt can appear only once in the reproduction cycle.

Step 5b. Again using the SUS, select exactly N ÿ n individuals from Ptÿ1 and copy them to a new
population Pt.

Step 6. Select uniformly parents from Mt to produce exactly n offsprings (as in GAR II, but in this case
the genetic operators act only on n individuals stored in the mating pool).

Step 7. Add new offspring to population Pt.

1646 K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650

4.2.2.4. Hybrid genetic algorithm (HGA). GAs are generally very e�cient in ®nding promising areas of the
searched solution. On the other hand, they may perform rather poorly when shooting for the exact solution
with a high degree of precision (premature convergence, convergence to local optimum, etc.). Therefore it
appears logical to combine GAs exploring the search space initially with a suitable gradient or deterministic
optimizer exploiting promising solutions locally.

As natural for GAs, this procedure can be implemented in a number of ways. When experimenting with
this approach, we combined various ideas suggested up-to-date, which eventually led to a reliable and
e�cient algorithm. It works with relatively small population sizes, which makes computationally feasible to
restart the genetic algorithm after a given convergence criterion is met. Each restart is associated with a
certain number of new members entering the initial population to maintain a su�cient diversity among
chromosomes. Consequently, mutation operators can be excluded from reproduction. Individual steps of
this algorithm are now discussed in a sequel:

Step 2. Randomly generate a small population.
Steps 5 and 6. Perform standard genetic operations until convergence or the maximum number of

generations exceeded. To select chromosomes for reproduction we applied stochastic tournament selection
scheme [4,3]. Only crossover operators are used.

Step 7a. Select the n of best individuals for local search. We adopted the dynamic hill climbing method of
Yuret [15] and his local optimize to seek for the desired optimum with a starting point provided by the GA.
When the local optimizer converges copy new individuals into Pt.

Step 7b. Add N ÿ n randomly generated individuals to ®ll population Pt. This ensures diversity among
chromosomes. Go to step 5 and restart the GA.

4.2.2.5. Augmented simulated annealing (AUSA). When talking about GAs, it would be unfair not to mention
another popular method using random choice to explore the solution space, namely the augmented
simulated annealing method presented by Kvasnicka [7]. This method effectively exploits the essentials
of GAs (a population of chromosomes, rather than a single point in space, is optimized) together with
the basic concept of simulated annealing method guiding the search towards minimal energy states.

If we wish to put GAs and the AUSA on the same footing, we may relate the AUSA to a group of steady
state and on the fly methods [9], in which the offspring replaces its parents immediately. The replacement
procedure is controlled by the Metropolis criterion, which allows a worse child to replace its better parent
with only a certain probability. The probability of excepting a worse solution is reduced as the procedure
converges to the `global' minimum. The following algorithm describes an implementation of the AUSA:

Algorithm 2. Augmented simulated annealing

T � Tmax; t � 0
generate P0, evaluate P0

while (not termination-condition) {
counter � success � 0
while(counter < countermax ^ success < successmax) {

counter � counter � 1; t � t � 1
select operator O
select individual(s) It from Pt

modify It by O
select individual(s) I 0t from Pt

p � exp��F �I 0t � ÿ F �It��=T �
if �u�0; 1�6 p� {

success � success� 1
insert It into Pt

evaluate Pt

}
}
decrease T

}

K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650 1647

Step 7. It is recommended to choose mutation operators with much higher probabilities then crossovers.
In [7] ratio � 0:1 is proposed.

Step 8. New individuals are selected using the normalized geometric ranking method [6].
Step 10. Instead of replacing parents we select individuals to die using the inverse normalized geometric

ranking method.
Step 11. The temperature Tmax should be chosen such that the ratio of accepted solutions to all solutions

is � 50%.
Step 18. This step is called the cooling schedule. We use a very simple form of cooling schedule

Ti�1 � TmultTi. In this step we also perform reannealing if necessary. If the actual temperature is lower than a
given parameter Tmin, we set T � Tmax and copy half of the current population to a new one. Remaining part
of the new population is generated randomly.

4.2.2.6. Diversity of population. As is evident from Fig. 15, the objective function possesses quite a large
number of plateaus. Thus a part of population inevitably lands on one of these plateaus if no action is
taken. This, however, substantially decreases performance of the genetic algorithm.

To overcome this obstacle, we introduce a very simple procedure for maintaining a su�cient diversity in
population: Before inserting an o�spring X into population, we ®rst search for an individual X 0 which
satis®es

F �X� � F �X 0� �21�

max
i
jxi ÿ x0ij < e; i � 1; . . . ; 2N ; �22�

where e is set here to 1� 10ÿ5. If such an individual exists, it is replaced by X . Otherwise an individual X
enters a population following step 7 in above algorithms. This procedure, though very simple and `naive',
yields substantial improvement in stability above all previously mentioned methods.

4.3. Examples

To test individual methods, we assumed a square periodic unit cell consisting of 10 ®bers with the same
volume fraction as the real specimen. As a ®rst step we wished to ®t functions K�r� and K�r� in ®ve points
only (Nm � 5). Sampled points were spaced by ®ber diameter.

In all cases, the initial population was generated purely randomly. Except for the HGA we created a
population of size equal to 64 chromosomes. Only eight individuals were generated to ®ll a population
when running the HGA. Iteration process was terminated, if one of the following conditions was met:
· Algorithm returned value F �x�6 e � 6� 10ÿ5.
· Number of function evaluations exceeded 250,000.
Each algorithm was run 20 times. For each run, the number of function evaluations was recorded together
with the minimum attained value of the objective function (19).

Table 6 shows the minimum, maximum, and average values for the number of function evaluations.
Table 7 lists similar results for the best chromosome in a population. In this case, however, we also included
runs terminated after exceeding the maximum number of function evaluations. Presented results provide no
evidence for promoting one particular method and discriminate the others, although nobody is perhaps
caught by surprise seeing the HGA as the current winner and the GAR I, which did not always converged,
as a loser. On the other hand, since all properties a�ecting the searching process (population size, initial
parameter settings relevant to individual methods, age and optimization process dependent probabilities
guiding an application of a given genetic operator) are hand-tuned only, the e�ciency of algorithms can be
underestimated.

To check quality of the resultant unit cell we plotted the second-order intensity function for original
microstructure (K�r�) against the one associated with a unit cell chosen as the minimum from 20 inde-
pendent runs. Results, which appear in Fig. 16, were derived via the AUSA method. Evidently, both

1648 K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650

functions agree well at sampled points. Unfortunately, a signi®cant deviation is distinct in all other points.
To improve coincidence of both functions we increased a number of sampled points to 10 (Nm � 10) and
used solutions obtained for Nm � 5 as our initial guesses. In this way, a much better agreement was at-
tained, see Fig. 16. Fig. 16 shows how the unit cell evolved when increasing an accuracy of our solution. It is
interesting to note that when running for example the AUSA for Nm � 10 from the beginning, we arrived at
the minimum equal to 1:63� 10ÿ4 after approximately 173,000 function evaluations. However, when
starting with Nm � 5 and then continuing with Nm � 10, we received the desired minimum after 115,000
function evaluations only. This just con®rms similar conclusions drawn from experiments with complicated
functions.

Fig. 16. Periodic unit cells with corresponding second-order intensity functions.

Table 6

Number of function evaluations

Algorithm Number of evaluations

Min. Avg. Max.

GAR I 8896 74,562 193,600

GAR II 6956 17,270 55,296

GAR III 4484 12,037 26,224

HGA 1613 8856 24,404

AUSA 3490 8709 26,314

Table 7

Characteristics of the best individual

Algorithm Number found Returned value �105

Min. Avg. Max.

GAR I 18 6.0 7.2 16.4

GAR II 20 5.9 6.0 6.0

GAR III 20 5.9 6.0 6.0

AUSA 20 5.9 6.0 6.0

HGA 20 5.9 6.0 6.0

K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650 1649

Acknowledgements

Financial support was provided by the GA�CR 103/97/1255 and GA�CR 103/97/P040 grants, by the re-
search project J04/98:210000003, and by the IG�CVUT 3099K1322.

References

[1] M. Axelsen, Quantitative description of the morphology and microdamage of composite materials, Ph.D. Thesis, Aalborg

University, 1995.

[2] J.E. Baker, Reducing bias and ine�ciency in the selection algorithm, in: J.J. Grefenstette (Ed.), Proceedings of the Second

International Conference on Genetic Algorithms, 1987, pp. 13±21.

[3] D. Beasley, D.R. Bull, R.R. Martin, An overview of genetic algorithms: Part 1, fundamentals, University Comput. 15 (2) (1993)

58±69.

[4] D.E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.

[5] D.E. Goldberg, Sizing populations for serial and parallel genetic algorithms, in: J.D. Scha�er (Ed.), Proceedings of the Third

International Conference on Genetic Algorithms, 1989, pp. 70±79.

[6] C.R. Houck, J.A. Joines, M.G. Kay, A Genetic Algorithm for Function Optimization: A Matlab implementation, North Carolina

State University, available at www.fmmcenter.ncsu.edu/fac_sta�/joines/papers/gaot.ps, 1995.

[7] V. Kvasni�cka, Augmented-simulated annealing adaption of feed-forward neural networks, Neural Network World 3 (1994) 67±80.

[8] S.T. Mau, A re®ned laminated plate theory, J. Appl. Mech. (1973) 606±607.

[9] Z. Michalewicz, Genetic Algorithms + Data Structures�Evolution Programs, Springer, Berlin, 1992.

[10] Z. Michalewicz, T.D. Logan, S. Swaminathan, Evolutionary operators for continuous convex parameter spaces, in: A.V. Sebald,

L.J. Fogel (Eds.), Proceedings of the Third Annual Conference on Evolutionary Programming, 1994.

[11] G.L. Povirk, Incorporation of microstructural information into model of two-phase materials, Acta Metall. Mater. 43 (8) (1995)

3199±3206.

[12] J. Proch�azka, EUROCODE 2, �CSN P ENV 1992-1-1, PROCON, 1995.

[13] B.D. Ripley, Modelling spatial patterns, J. Roy. Stat. Soc. Series B 39 (1977) 172±212.

[14] M. �Sejnoha, K. Matou�s, Nonlinear analysis of initially prestressed laminates, Acta Polytechnica, Submitted.

[15] D. Yuret, From genetic algorithms to e�cient optimization, Master Thesis, Massachusetts Institute of Technology, Arti®cial

Inteligence Laboratory, 1994.

1650 K. Matou�s et al. / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1629±1650

