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a b s t r a c t

An extension of the generalized finite element method to the class of mixed finite element methods is
presented to tackle heterogeneous systems with nearly incompressible non-linear hyperelastic material
behavior. In particular, heterogeneous systems with large modulus mismatch across the material inter-
face undergoing large strains are investigated using two formulations, one based on a continuous defor-
mation map, the other on a discontinuous one. A bimaterial patch test is formulated to assess the ability
of the two formulations to reproduce constant stress fields, while a mesh convergence study is used to
examine the consistency of the formulations. Finally, compression of a model heterogeneous propellant
pack is simulated to demonstrate the robustness of the proposed discontinuous deformation map
formulation.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The numerical treatment of reinforced rubbery materials such
as tires and energetic materials poses two key challenges. The first
one is the accurate representation and discretization of the heter-
ogeneous microstructure, especially for composite materials with
high reinforcement volume fraction such as those found in solid
propellants and explosives (see Fig. 1). The second challenge is
associated with the markedly disparate material response of the
constituent phases, which usually consist of very stiff particles
embedded in a highly compliant nearly incompressible matrix that
often experiences large deformations.

A relatively recent addition to the set of numerical tools, the
generalized finite element method (GFEM) [14,35,6,28], which al-
lows for the construction of elements that do not conform to the
microstructure, is increasingly considered as an attractive way to
tackle the computational geometry challenge. This technique has
been used with some success in the treatment of bimaterial inter-
faces. For example, Moës et al. [27] have used a partition of unity-
based extended finite element method that permits intra-element
discontinuities by enriching the finite element approximation with
a ridge function. The extended finite element method has also been
applied to debonding of interfaces by Hettich and Ramm [19], who
ll rights reserved.

rospace Engineering, Univer-
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used the ridge function in conjunction with a Heaviside function
and a traction–separation law. Methods of the discontinuous
Galerkin type include the work of Hansbo and Hansbo [18] and
Mergheim and Steinmann [26], where the Nitsche method is used
to balance the fluxes across the intra-element bimaterial
discontinuity.

In addition to the complex heterogeneous microstructure, as
shown in Fig. 1, the second challenge associated with the modeling
of energetic materials arises from significant differences in mate-
rial responses of particles and a matrix, caused in part by the nearly
incompressible non-linear material behavior of the matrix. Tradi-
tionally, incompressibility is enforced using a class of mixed finite
element methods [32], where the finite element interpolant spaces
for displacement and pressure are subject to the Babuška–Brezzi
conditions [8]. In order to satisfy the Babuška–Brezzi conditions,
higher-order interpolations for displacements and lower-order
interpolations for pressure (e.g., P2=P1 element) are required. How-
ever, the advent of stabilized formulations [20] provide means to
use lower-order interpolations for both fields (e.g., P1=P1 element)
and have been applied successfully to model linear elasticity [24],
hyperelasticity [1], elasto-plasticity [31], and particle–matrix deb-
onding in particle-reinforced elastomers [25].

The ability of the GFEM to handle bimaterial problems under
plane strain with vastly different properties both in terms of
modulus mismatch (with particle-to-matrix shear modulus ratios
in excess of 1000) and the isochoric nature of the deformation is
still to be investigated and is the focus of the present work. The
treatment of incompressibility within the context of non-linear
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Fig. 2. Illustration of the mapping of a bimaterial system from B0 to B.

Fig. 1. Heterogeneous solid propellant; (a) a sample of the heterogeneous solid propellant [11]; (b) a tomographic image of the complex microstructure of the oxidizer
particles embedded in the polymeric binder (fuel) [11]; (c) computer generated pack used in numerical modeling [22].
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kinematics and the GFEM has been primarily devoted to fracture in
a homogeneous material [13,23]. It appears that the only other
work which addresses incompressibility using the GFEM under
plane strain conditions is based on a geometrically non-linear as-
sumed strain method developed by Dolbow and Devan [13], where
coarse mesh accuracy and mesh locking problems in the fracture of
compressible and nearly incompressible homogeneous materials
were examined. Legrain et al. [23] studied the fracture in rubber-
like materials under plane stress conditions using suitable crack
tip enrichments. In that work, however, plane stress conditions
facilitated the explicit evaluation of the hydrostatic pressure and
a standard displacement-based finite element method sufficed.

The objective of the present work is to develop a numerical
framework, based on the generalized finite element method, capa-
ble of simulating heterogeneous materials that exhibit nearly
incompressible material behavior and high modulus mismatch ra-
tios across a material interface. In this paper, we present two for-
mulations, a continuous deformation map (CDM) based on the
ridge enrichment, and a discontinuous deformation map (DDM)
based on a combination of the Heaviside enrichment with Lagrange
multipliers. This combination has previously been utilized by
Belytschko et al. [7] to study discontinuities in tangential displace-
ments across interface cracks, by Vaughan et al. [38] to study
singular sources and discontinuous coefficients in scalar elliptic
equations and by Kim et al. [21] to impose frictional contact
constraints on intra-element or embedded surfaces, albeit for small
deformations with linear elastic material behavior. The present
work describes and compares the CDM and DDM formulations
used to model the motion of a bimaterial nearly incompressible
hyperelastic solid undergoing large deformations, with the gener-
alized finite element formulation presented as an extension of
the classical mixed finite element method. In particular, the effect
of material modulus mismatch across the bimaterial interface
using low-order Q1=P0 elements is highlighted.

The remainder of the paper is organized as follows. In Section 2,
the governing equations for the motion of a hyperelastic bimaterial
body are summarized, followed in Section 3 by the derivation of a
variational formulation in the context of a continuous and a dis-
continuous map. The generalized finite element approximations,
in the context of a mixed method, are derived in Section 4. Section
5 describes the patch and convergence tests employed to assess
the numerical methodology under high modulus mismatches,
and an example is presented to demonstrate the efficacy of the
method. In this paper, we denote second-order tensors with upper-
case boldface Roman letters, e.g., F, while vectors are denoted by
boldface italic Roman and Greek letters, e.g., u and k, and fourth-
order tensors are denoted using the calligraphic font, e.g., A. Final-
ly, the trace of a second-order tensor A is given by trðAÞ.

2. Governing equations

Consider a hyperelastic body, as shown in Fig. 2, in an initial
configuration B0 � R3 that undergoes the motion /ðX; tÞ to the
current configuration B � R3. Let FðX; tÞ ¼ r/ðX; tÞ be the defor-
mation at the current time t 2 Rþ with the Jacobian given by
J ¼ detðFÞ. Here X and x ð2 R3Þ designate the position of a particle
in the reference B0 and current B configuration, respectively. The
displacement vector u is obtained from x ¼ X þ u.

Suppose now that the body is divided by a material interface S0

with a unit normal N0. For the sake of simplicity, we assume that
the material interface partitions the body into two subbodies B�0 ,
occupying the plus and minus sides of the material interface, S�0 ,
respectively. The deformation on either side of the interface is de-
noted by /� : B�0 ! B�. The governing equations in the reference
configuration are given by

$ � Pþ b0 ¼ 0 in B�0 ;

P � N0 ¼ t0 on oBT ;

sP � N0t ¼ 0 on S�0 ;
/ ¼ /p on oBu;

ð1Þ

where s � t is the jump operator, P is the first Piola-Kirchhoff stress,
b0 is the body force vector acting per unit volume of B�0 , t0 is the
externally applied traction vector on oBT and /p is the externally
applied displacement vector on oBu, with oBT \ oBu ¼ ;.

For nearly incompressible materials, the significant difference
in material shear and bulk response is handled through a multipli-
cative decomposition of the deformation gradient into a dilata-
tional/volumetric part and a deviatoric/isochoric part. The
volume-preserving part of the deformation gradient F is given by

bF ¼ J�
1
3F; ð2Þ

while an independent variable h is used to capture the volumetric
response

h ¼ J; ð3Þ
and we introduce F ¼ h

1
3bF as a mixed deformation gradient. Note

that, in the finite element formulation that follows, (3) is enforced
in a weak sense.
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To close the system of equations in (1), we assume the material
behavior of the bulk to be hyperelastic and nearly incompressible.
The strain energy function W is composed of distortional cW and
dilatational U parts [32],

Wðh1
3bFÞ ¼ cW ðFÞ þ UðhÞ; ð4Þ

and the standard nearly incompressible Neo-Hookean material
model is employed

cW ðFÞ ¼ 1
2
l J�

2
3trðFT FÞ � 3

h i
;

UðhÞ ¼ 1
2
jðh� 1Þ2:

ð5Þ

Here, l is the shear modulus and j is the bulk modulus of the
incompressible material. The hyperelastic constitutive equation
reads

P ¼ ocW ðFÞ
oF

�����
F¼F

þ dU
dh|{z}

p

oh
oF

����
F¼F
; ð6Þ

where p is the hydrostatic pressure.

3. Variational formulation

For completeness and clarity of presentation, we summarize the
variational formulations for two approaches used in this work to
describe the motions /�. The first approach is based on methods
that ensure continuity in deformation maps of /� but allow for
jumps in the deformation gradients F� ¼ r/�. The second ap-
proach admits jumps in deformation maps as well as its gradients,
with the continuity of the deformation maps enforced weakly.

3.1. Continuous deformation map (CDM)

The motion of subbodies B�0 is restricted along the interface S0

to ensure continuity of the deformation maps /�. This restriction,
combined with Eqs. (1)–(3), enables the formulation of a mixed
three-field de Veubeke–Hu–Washizu variational statement [32]
for the finite deformation bimaterial hyperelastic problem, with a
Lagrange functional PCDM defined as

PCDMð/; p; hÞ ¼
Z
B�0

fcW ðFÞ þ UðhÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Wðh

1
3bFÞ

gdV0 þ
Z
B�0

pðJ � hÞdV0 þPext;

ð7Þ

where p is the Lagrange multiplier, which corresponds for certain
functions W to the pressure (Eq. (6)). Pext is the total potential energy
associated with body forces b0 and externally applied tractions t0.

The stationarity of (7), from which the corresponding Euler–
Lagrange equations are derived, leads to

dPCDMð/;p; hÞ ¼
Z
B�0

bP : dFdV0 þ
Z
B�0

U0ðhÞdhdV0 þ
Z
B�0

dpðJ � hÞdV0

þ
Z
B�0

pðdJ � dhÞdV0 þ dPext ¼ 0 ð8Þ

for all admissible variations

du 2 ½H1ðB0Þ�; du ¼ 0 on oBu; dp 2 L2ðB0Þ;
dh 2 L2ðB0Þ;

ð9Þ

where H1ðB0Þ is the Sobolev space of square-integrable functions
with weak derivatives up to first-order with range in R3, andbP ¼ obW ðFÞ

oF .
A second variation of (7) is also needed to construct the consis-

tent linearization of (8):
DdPCDMð/;p; hÞ ¼
Z
B�0

dF : cA : DFdV0 þ
Z
B�0

dh U00ðhÞDhdV0

þ
Z
B�0

dpðDJ � DhÞdV0 þ
Z
B�0

ðdJ � dhÞDpdV0

þ
Z
B�0

pDdJ dV0 þ DdPext: ð10Þ

Here, cA ¼ o2 bW
oFoF is the fourth-order material tangent pseudo-moduli,

and the first and second variations of J are

dJ ¼ JF�T : dF;

DdJ ¼ dF : fJðF�T � F�TÞ þ JTð�F�1
� F�TÞg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

: DF; ð11Þ

where T is the fourth-order transposition tensor ðTA ¼ ATÞ. The �
and � tensor products of two second-order tensors A and B are de-
fined as

ðA� BÞijkl ¼ AijBkl;

ðA � BÞijkl ¼ AikBjl:
ð12Þ
3.2. Discontinuous deformation map (DDM)

Suppose now that the motion of the subbodies B�0 is not re-
stricted along the interface S0. Instead, the continuity of the defor-
mation maps is enforced weakly using Lagrange multipliers k. The
modified de Veubeke–Hu–Washizu variational statement reads

PDDMð/;p; h; kÞ ¼
Z
B�0

fcW ðFÞ þ UðhÞgdV0 þ
Z
B�0

pðJ � hÞdV0

þ
Z

S0

k � s/tdS0 þPext: ð13Þ

In (13), an additional independent vector variable k is introduced,
which represents the Lagrange multipliers, i.e., the interface
tractions.

The corresponding stationarity condition gives

dPDDMð/;p; h; kÞ ¼
Z
B�0

bP : dFdV0 þ
Z
B�0

U0ðhÞdhdV0

þ
Z
B�0

dpðJ � hÞdV0 þ
Z
B�0

pðdJ � dhÞdV0

þ
Z

S0

dk � s/tdS0 þ
Z

S0

k � sd/tdS0 þ dPext ¼ 0

ð14Þ

for all admissible variations (9) and dk 2 H�
1
2ðS0Þ

h i
. The second vari-

ations, similar to (10), are derived to obtain consistent tangents

DdPDDMð/;p; h; kÞ ¼
Z
B�0

dF : cA : DFdV0 þ
Z
B�0

dhU00ðhÞDhdV0

þ
Z
B�0

dpðDJ � DhÞdV0 þ
Z
B�0

ðdJ � dhÞDpdV0

þ
Z
B�0

pDdJ dV0 þ
Z

S0

dk � sD/tdS0

þ
Z

S0

Dk � sd/tdS0 þ DdPext: ð15Þ
4. Generalized finite element method

A Partition of unity method (PUM) is used to obtain a discrete
representation of the three-field variational statements (7) and
(13). The PUM developed by Babuška and Melenk [5] and
the method of clouds proposed by Duarte and Oden [16] have
the ability to incorporate a priori into the finite element space
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the knowledge of the governing partial differential equations. In-
stances of the PUM, the generalized finite element method (GFEM)
[15,33,17] and the extended finite element method (XFEM) [12,36]
have achieved some success in solving partial differential equa-
tions with strong and weak discontinuities. This section extends
the formulation to the case of near-incompressible materials under
large deformations for the two variational statements described in
the previous section, i.e., the continuous (7) and discontinuous (13)
formulation.

4.1. Discretization

Let the domain B0 be divided into Ne elements Be
0, with the ele-

ment edges chosen independently of the bimaterial interface S0.
The discretization is composed of NJ displacement nodes, with par-
tition of unity shape functions v used to describe the geometry and
the coordinates in the reference configuration B0. Let xJ be the
support of any node J 2 NJ . A set of enriched nodes NI (Fig. 3a) is
then defined as

NI ¼ fJjJ 2 NJ ;xJ \ S0–;g: ð16Þ

The approximate displacement field ~u is composed of a coarse dis-
placement field ~us and a set of a enriched (fine) displacement fields
~ue

a as

~uðXÞ ¼
XNJ

j
vjðXÞûj|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

~usðXÞ

þ
X

a

XNI

i
viðXÞw

aâa
i|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

~ue
aðXÞ

; ð17Þ

where every node I 2 NI is enriched with a linearly independent
enrichment functions wa, and âa

i are the additional degrees of free-
dom introduced to approximate the fine enriched displacement
field ~ue

a. The choice of enrichment functions is strongly influenced
by the desired regularity and behavior of solution ~uðXÞ around
the vicinity of the interface S0. Discussion on the choice of the
enrichment functions is presented in Section 4.3.

The approximations to pressure p and volumetric field h are
constructed from partition of unity shape functions as well. The
pressure nodes Np

J and the volumetric nodes Nh
J are enriched if their

supports xp
J and xh

J are intersected by the interface S0, as shown in
Fig. 3b:

Np
I ¼ fn

p
I jn

p
I 2 Np

J ;x
p
J \ S0–;g;

Nh
I ¼ fnh

I jnh
I 2 Nh

J ;x
h
J \ S0–;g:

ð18Þ
Fig. 3. Section of the finite element mesh in the vicinity of the material interface S0 show
pressure/volumetric nodes at element centers for a piecewise constant pressure/volume
As in (17), approximations of pressure ~p and volumetric field ~h can
be constructed as

~pðXÞ ¼
XNp

J

j
vp

j ðXÞp̂j|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
psðXÞ

þ
X
ap

XNp
I

i
vp

i ðXÞw
ap

âap

i|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pe
ap ðXÞ

;

~hðXÞ ¼
XNh

J

j
vh

j ðXÞĥj|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
hsðXÞ

þ
X
ah

XNh
I

i
vh

i ðXÞw
ah

âah

i|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
he
ah ðXÞ

:
ð19Þ

For the continuous deformation maps described in Section 3.1,
substituting the approximations for u, p, and h in (8) and invoking
arbitrariness of the variations dð�Þ, the following system of non-lin-
ear Euler–Lagrange equations yields:

Rus ¼
Z
B�0

bP : deFs dV0 þ
Z
B�0

~peJeF�T : deFs dV0 ¼ 0;

Ra
ue ¼

Z
B�0

bP : deFe
a dV0 þ

Z
B�0

~peJeF�T : deFe
a dV0 ¼ 0;

Rps ¼
Z
B�0

ðeJ � ~hÞd~ps dV0 ¼ 0;

Rap

pe ¼
Z
B�0

ðeJ � ~hÞd~pe
ap dV0 ¼ 0;

Rhs ¼
Z
B�0

ðU0ð~hÞ � ~pÞd~hs dV0 ¼ 0;

Rah

he ¼
Z
B�0

ðU0ð~hÞ � ~pÞd~he
ah dV0 ¼ 0;

ð20Þ

where the admissible variations dð�Þ are described in Appendix A.
In the case of a discontinuous deformation map (Section 3.2),

the Lagrange multiplier k introduced in (13) can be viewed as a
Dirac-Delta distribution centered around the interface. Therefore,
it is sufficient to discretize the interface S0 for constructing approx-
imations ~k. The discretization, illustrated in Fig. 4, enables con-
struction of the approximate vector field ~k as

~kðXÞ ¼
XNk

j¼1

vk
j ðXÞk̂j; ð21Þ

where Nk is the set of Lagrange multiplier nodes in the discretiza-
tion. It should be noted that the choice of basis functions v, vp, vh,
and vk is subject to the inf–sup conditions
ðinf

u
inf

h
sup

p
sup

k

PDDMðu; h;p; kÞÞ for the method to be uncondition-

ally convergent and stable [8,3,4]. Since we focus on the Q1=P0
ing (a) the enriched displacement nodes for a bilinear Q1 element; (b) the enriched
P0 element.



Fig. 4. Section of the finite element mesh showing the discretization of the
interface for the approximation of the Lagrange multiplier vector field k.
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element, that does not satisfy the inf–sup conditions on u and p, we
assess the element through the patch test.

Correspondingly, a system of non-linear Euler–Lagrange equa-
tions, similar to (20), is obtained as

Rus ¼
Z
B�0

bP : deFs dV0 þ
Z
B�0

~peJeF�T : deFs dV0

þ
Z

S0

~k � sd~ustdS0 ¼ 0;

Ra
ue ¼

Z
B�0

bP : deFe
a dV0 þ

Z
B�0

~peJeF�T : deFe
a dV0

þ
Z

S0

~k � sd~ue
atdS0 ¼ 0;

Rk ¼
Z

S0

d~k � s~us þ ~ue
atdS0 ¼ 0:

ð22Þ

The Euler–Lagrange equations for pressure ðps; peÞ and the volume
ðhs; heÞ fields are identical to those in (20) and therefore not re-
peated in (22). In order to obtain optimally convergent Newton–
Raphson schemes, consistent linearization of the residual Eqs. (20)
and (22) is performed using the consistent tangent moduli derived
in (10) and (15), respectively.

4.2. Geometry description and numerical integration

Let us describe the bimaterial interface as a zero level set of a
functions UðXÞ approximated using the standard basis functions
v as

UðXÞ ¼
X

NJ

vJ
bUðXJÞ: ð23Þ

In the above equation, the nodal level set function bU is constructed
at every node J as

bUðXJÞ ¼ signððXJ � XIÞ � N0Þ minðjjXJ � XIjjÞ; ð24Þ

where XI denotes any point on the interface S0, and N0 is the out-
ward pointing normal at XI . As a result, each node in the finite ele-
ment mesh stores an additional scalar bU, which is then used to
track/detect the existence of an interface. Level sets are traditionally
used to track moving fronts [30] and have been successfully used to
model crack propagation [34,10,37], with the level set function up-
dated every time step. In the present study, since stationary inter-
faces are considered, the level set function UðXÞ is computed at
the outset and remains unchanged thereafter. For each node, the
sign of the level set function U is used to check its position in Bþ0 ,
B�0 or S0. Similarly, elements are assigned to Bþ0 , B�0 or an
intersected element set that contain a interface S0. Implementation
details on detection of the interface can be found in [36].

Conventional Gaussian quadrature is used to integrate the vol-
ume integrals in elements that lie completely in Bþ0 or B�0 . Addi-
tional care is taken to compute the integrals in elements
intersected by an interface. Moës et al. [29] proposed the partition
of the intersected elements into triangles to perform accurate inte-
grations. The same approach is adopted here and the elements are
triangulated on either side of the interface with four Gaussian
quadrature integration points. Tests have shown that the seven-
point Gauss quadrature rule yield identical results. As indicated
in [29], the triangulation resulting from the partition of the ele-
ment is stored for integration purposes only, and no new nodes/
elements are added to the existing finite element mesh.

4.3. Enrichment functions

To model weak discontinuities in bimaterial interfaces, Moës
et al. [27] proposed a ridge function given by

wðXÞ ¼
X

i

viðXÞjbUðXiÞj �
X

i

viðXÞbUðXiÞ
�����

�����: ð25Þ

The ridge function is continuous across the interface S0, though the
gradients of the ridge function are discontinuous. The ridge enrich-
ment is well suited for the method described in Section 3.1, and
Moës et al. [27] reported optimally convergent results in the small
strain regime for linear elastic materials with relatively small mod-
ulus mismatch. In this study, the convergence rates obtained
through the ridge enrichment is further examined for large defor-
mations of nearly incompressible materials with large modulus
mismatch. Fig. 5a illustrates the nodal ridge enrichment function
on a patch of elements bisected by a material interface.

In the case of discontinuous deformation maps (Section 3.2), the
enrichment function w needs to be discontinuous. A simple choice
for a discontinuous enrichment function is the Heaviside function
[7,21], illustrated in Fig. 5b, defined as

wðXÞ ¼HðXÞ ¼
1 if UðXÞ > 0;
0 if UðXÞ < 0:

�
ð26Þ

An alternate approach to Heaviside enrichments, is to discretize
(14) using the Unfitted finite element method (UFEM) [18,26],
where the intersected element is duplicated to represent the maps
/� independently. A note on the equivalence of the GFEM/XFEM
and UFEM is given in [2].

5. Numerical examples

In this section, patch and convergence tests are performed to as-
sess the performance of the numerical methodologies developed in
Section 3. The finite elements considered for the studies are the
classical Q 1=P0 element, a low-order element prevalently used in
engineering simulations. The Heaviside function (26) is used as
an enrichment for the pressure and volume fields in (19). A low-or-
der piecewise constant approximation for the Lagrange multiplier
is adopted as well.

5.1. Bimaterial patch test

A bimaterial patch test is devised to assess the capability of the
numerical methods described in Section 4 to reproduce constant
stress fields. Based on enrichment functions chosen in Section 4.3,
the finite element approximation contains the space of piecewise
linear displacement fields, and is therefore expected to reproduce
constant stress fields exactly. The bimaterial patch test is composed
of two nearly incompressible materials (j1 ¼ 1:25� 104 MPa,



Fig. 5. Schematic of the support of node A bisected by a bimaterial interface with a (a) ridge enrichment; (b) Heaviside enrichment.

K.R. Srinivasan et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 4882–4893 4887
l1 ¼ 2:5 MPa, i.e., Poisson’s ratio m1 ¼ 0:4999, and j2 ¼ 1:25�
107 MPa, l2 ¼ 2:5� 103 MPa, i.e., Poisson’s ratio m2 ¼ 0:4999),
shown in Fig. 6, occupying the top and bottom halves of a square
domain ð½�1 1� � ½�1 1�Þ (units in mm). The bottom surface
ðy ¼ �1Þ is restricted along the y-axis and free to move along the
x-axis, while the left surface ðx ¼ �1Þ is restricted along the x-axis
and free to move along the y-axis. A uniform displacement of
ux ¼ 0:05 mm is applied to the surface on the right ðx ¼ 1Þ, while
the top surface ðy ¼ 1Þ is traction-free. The bimaterial patch test
is solved on a straight mesh and a skewed mesh (Fig. 6) under plane
strain conditions to study the effect of mesh orientation with re-
spect to the material interface.

Fig. 7 depicts the spatial distribution of the pressure variable p
in the bimaterial system for the straight and skewed mesh orienta-
tions. The use of the continuous deformation map formulation
with the ridge enrichment function (25) is found to cause large
oscillations (	25%) near the material interface in the skewed mesh
orientation, as shown in Fig. 7b. The discontinuous deformation
map formulation with the Heaviside enrichment and Lagrange mul-
tipliers is found to yield more accurate results, with oscillations
near the interface (Fig. 7c and d) less than 0.1%. Similar small
oscillations were observed in a discontinuous patch test devised
by Dolbow and Devan [13], where an enriched assumed strain
method is used to enforce the incompressibility constraint.

5.2. Convergence tests

We now turn our attention to a mesh convergence study for the
numerical methods discussed in Sections 3.1 and 3.2. That study is
Fig. 6. Schematic of the bimaterial patch test problem with applied displacements ux

orientations, shown on the right, where the bimaterial interface is independent of elem
performed on a square domain of length L ¼ 2 mm (the matrix),
filled with a circular inclusion (the particle) of radius a ¼ 0:4 mm
under a compressive load of 2 MPa carried out using Q1=P0 ele-
ments under 2-D plane strain conditions. Details of the loading
and boundary conditions can be found in Fig. 8a. A level set func-
tion (24) is used to describe the circular inclusion, where the level
set function is positive outside the circular inclusion and negative
inside. The convergence study is carried out on structured uniform
grids composed of 10� 10;20� 20;40� 40, and 80� 80 elements.
A typical mesh for the bimaterial problem is shown in Fig. 8b. The
error Eu in displacement is defined using the H1 Sobolev norm

Eu ¼ k~u� urefkH1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k~u� urefk2 þ kr~u�rurefk2

q
; ð27Þ

while the error measure Ep for the pressure field is defined as

Ep ¼ k~p� prefkL2
: ð28Þ

Due to the absence of an analytical solution for the non-linear prob-
lem discussed here, a fine finite element mesh composed of 18570
Q1=P0 elements and 18841 nodes that conforms to the bimaterial
interface is used as the reference solution in (27) and (28). The
hyperelastic constitutive relations described in Section 2 are used
to describe the material response of the matrix and the particle.
The bulk and shear modulus of the matrix are jm ¼ 1:25� 104

MPa and lm ¼ 2:5 MPa, while the material properties of the particle
are varied to study the effect of the modulus mismatches, quanti-
fied by

j
 ¼ jp

jm
; l
 ¼

lp

lm
: ð29Þ
to the right surface. The patch test is performed on straight and skewed mesh
ent edges.



Fig. 7. Spatial distribution of the pressure variable p on each side of the bimaterial interface in the bimaterial patch test on (a) a straight mesh and (b) a skewed mesh with the
ridge enrichment; (c) a straight mesh and (d) a skewed mesh with the Heaviside enrichment and Lagrange multipliers. Note that, the pressure p in each material domain is
associated with its own grayscale legend to highlight the pressure instabilities.

Fig. 8. (a) Schematic of the boundary value problem used for mesh convergence tests and (b) a sample 80� 80 finite element mesh with an embedded inclusion.
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Two sets of modulus mismatches are chosen, ðj
;l
Þ ¼ ð10;10Þ and
ðj
;l
Þ ¼ ð1000;1000Þ, to represent a moderate and a large
mismatch.

Fig. 9 reports results for the two sets of moduli mismatches
mentioned above. Fig. 9a shows the dependence of Eu on the mesh
size h. It is observed that for a moderate mismatch, the conver-
gence rates for the CDM and DDM formulations are near-optimal
ðOptimal rate ¼ 1Þ, and the accuracies of the two formulations
are comparable. However, significant differences in accuracy are
observed for a large mismatch, where the DDM formulation clearly
outperforms the CDM one. The reason for higher accuracy is more
evident from Fig. 9b that reports error in pressure Ep. As observed
for Eu, the error in pressure Ep also indicates optimal convergence
and comparable accuracies for the moderate modulus mismatch
case in both formulations. However, striking differences appear
for the large mismatch case, where the DDM formulation exhibits
optimal convergence, while the CDM formulation appears to be
non-convergent.

Fig. 10 shows the spatial convergence of the magnitude of the
Lagrange multiplier solution plotted along the circumference of
Fig. 10. Distribution of the magnitude of the Lagrange multiplier along the
circumference of the inclusion parameterized by polar angle uð�p;þpÞ for varying
mesh sizes.

b

Fig. 9. Log–log plots for the continuous deformation map (CDM) and the discon-
tinuous deformation map (DDM) cases with varying modulus mismatches l

showing (a) the displacement error norm Eu as a function of the mesh size h; (b) the
pressure error norm Ep as a function of the mesh size h.
the inclusion. It is observed that the Lagrange multiplier field con-
verges with mesh size h, albeit exhibiting some oscillatory behav-
ior. These oscillations occur in portions of the Lagrange multiplier
mesh that have very small support, i.e., where the interfacial mesh
is very small compared to the bulk mesh size. The numerical meth-
od presented in this work leads to non-uniform Lagrange multi-
plier interface meshes and hence the traditional convergence
tests for the Lagrange multiplier filed is not performed.

The spatial distribution of pressure p for the cases mentioned
above is shown in Fig. 11. Fig. 11a and c depicts the pressure dis-
tribution in the bimaterial system for the moderate mismatch case
and show smooth continuous pressure distributions within each
material domain. For the large mismatch case (Fig. 11b and d),
the pressure remains smooth for the DDM formulation, while a se-
vere checkerboard type pattern is obtained for the CDM formula-
tion. It is emphasized that the classical Q1=P0 element, though
highly effective in practice, does not satisfy the Babuška–Brezzi
condition on u and p [8]. It is likely that, for the CDM formulation
with ridge enrichments, the observed checkerboard pattern is a
manifestation of the aforementioned violation of the Babuška–
Brezzi condition, although rigorous inf–sup tests would be
required for a complete assessment [9]. As described in Section
3.1, the CDM formulation enriched with the ridge function, en-
forces the continuity of the deformation maps ð/�Þ strongly, and
as a result, lower-order elements tend to lock causing spurious
oscillations in the pressure field. The weak treatment of this
continuity condition through Lagrange multipliers appears to
alleviate the locking problem in the low-order element.

Beyond the stability of the pressure field, another advantage of
using the DDM formulation with Lagrange multipliers is the ease of
computing interfacial tractions. An accurate description of the spa-
tial distribution of tractions along a bimaterial interface is of para-
mount importance for the simulation of debonding between the
binder and particles [25]. The DDM formulation enables the auto-
matic extraction of the interface traction fields obtained directly
form the unknown solution vector k. In Fig. 12, the normal traction
kn along the bimaterial interface is shown, with the length of the
arrows indicating their magnitude. For a compressive pressure
load applied along the top surface, the inclusion/particle predomi-
nantly encounters compressive tractions at A and B, while experi-
encing a small amount of tensile tractions at C and D locations. It is



Fig. 11. Spatial distribution of the pressure variable p for the continuous deformation map (CDM) with (a) l
 ¼ 10; (b) l
 ¼ 1000; and the discontinuous deformation map
(DDM) with (c) l
 ¼ 10; (d) l
 ¼ 1000.
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also observed that the normal traction field does not exhibit spuri-
ous oscillations along the interface. It is noted, however, that the
computational expense associated with the DDM formulation in-
creases with the number of discretization nodes on the interface.
Fig. 12. Spatial distribution of the normal tractions kn acting on the circular
inclusion of the bimaterial test problem using the DDM formulation. Length of the
arrows indicate the magnitude. All values in MPa.
5.3. Model heterogeneous propellant pack

To demonstrate the robustness of the DDM formulation, we
now turn our attention to the particulate composite problem
shown in Fig. 13a. The particulate composite is assumed to have
properties similar to those of a heterogeneous solid propellant
composed of very stiff, but compressible, Ammonium Perchlorate
(AP) particles of various sizes (jAP ¼ 14:95 GPa and lAP ¼
10:67 GPa) embedded in a much more compliant quasi-incom-
pressible binder (jBinder ¼ 12:5 GPa and lBinder ¼ 2:5 MPa). The
material response is modeled using the constitutive relations given
in Section 2 and the modulus mismatch ratio l
 for this problem is
3252. A pressure load of 2 MPa is applied on the top surface, while
the bottom surface is free to move horizontally but restrained ver-
tically. The point P is fixed horizontally as well to remove rigid
body motions. All other surfaces are left traction-free. A structured
finite element mesh independent of the circular particles is
adopted (Fig. 13b).

Fig. 13b also shows the deformed shape of the idealized pack
under the compressive load and emphasizes the heterogeneity
of the deformation field, both in terms of the shape of the bound-
ary, the deformed shapes of elements and the quasi-rigid rotation
of the particles. The elements located between adjacent particles
appear to experience substantial stretching in the direction per-
pendicular to the applied pressure, which points to the existence
of tensile conditions in some regions of the pack. This particle-
to-particle interaction is further illustrated in Fig. 14, which



Fig. 13. (a) Schematic of the heterogeneous propellant pack made of Ammonium
Perchlorate (AP) particles embedded in a polymeric binder; (b) deformed mesh
showing the embedded AP/Binder interfaces, independent of element edges.

Fig. 14. Spatial distribution of pressure variable p in the heterogeneous propellant
pack. Inset shows the normal tractions acting along the material interfaces at
locations A and B.

Table 1
Residuals after each Newton–Raphson iteration of the non-linear solution step for the
modeled heterogeneous solid propellant pack

Iter. No. Ru Rp Rk

1 1.8587E�01 2.2417E+00 6.1109E+00
2 9.8766E�03 9.2729E�02 2.1292E+00
3 2.8650E�04 2.7543E�03 1.4805E�01
4 4.5306E�07 1.4057E�06 1.2884E�03
5 2.2461E�12 9.5716E�13 1.6565E�07

Note that residuals for the volume field Rh attain machine precision immediately
after the first iteration and are not listed.
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presents the pressure field in the pack. While most of the domain is
under compression ðp < 0Þ, some regions, such as those contained
in boxes labeled A and B experience tension ðp > 0Þ. As shown in
the inset, which present the spatial variation of the normal trac-
tions acting along the AP/Binder interfaces, the inter-particle inter-
action leads to a state of tensile tractions along the boundary that
might be a precursor to debonding. The effect is especially domi-
nant when AP particles are close to each other. Despite the large
gradients in the Lagrange multiplier field, the resulting normal
tractions are generally smooth.

To indicate optimal rates of convergence of the Newton–Raph-
son scheme, the residuals (22) for the displacement u, pressure p
and Lagrange multiplier k fields after each Newton–Raphson itera-
tion are listed in Table 1. Note that, for the simple dilatational
strain energy density U (5), the residuals for the volume unknown
Rh (20) attain machine precision values immediately after the first
iteration and are therefore not listed in Table 1.

6. Conclusions

The present work provides a numerical framework that com-
bines the generalized finite element method with the classical
mixed finite element method. Two formulations, based on a con-
tinuous and discontinuous deformation map, were derived and
discretized for the motion of a bimaterial nearly incompressible
hyperelastic solid. The two formulations were assessed numeri-
cally on the low-order Q1=P0 element, which is very popular in
engineering practice, using a bimaterial patch test, and mesh con-
vergence studies were carried out to evaluate the consistencies of
the formulations. It was observed that both the continuous and
discontinuous deformation maps yield convergent schemes for
moderate modulus mismatches, while the continuous deformation
map appears to be non-convergent for large mismatches. Finally,
an idealized heterogeneous solid propellant pack is chosen as an
example to demonstrate the capability and robustness of the dis-
continuous deformation map formulation.
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Appendix A

Variations of the displacement approximation (17) required in
the Euler–Lagrange equations (20) and (22) and the consistent tan-
gent moduli (10) and (15) are derived as

d~uðXÞ ¼
XNJ

j
vjðXÞdûj|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
d~usðXÞ

þ
X

a

XNI

i
viðXÞw

adâa
i|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

d~ue
aðXÞ

;

D~uðXÞ ¼
XNJ

j
vjðXÞDûj|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
D~usðXÞ

þ
X

a

XNI

i
viðXÞw

aDâa
i|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D~ue
aðXÞ

ðA:1Þ

with d~u;D~u 2 H1ðBh
0Þ, and Bh

0 is the discretization of B0. Subse-
quently, variations of the deformation gradient eF are approximated
using (A.1) as

deF ¼ deFs þ deFe
a with deFs ¼ rXd~us and deFe

a ¼ rXd~ue
a;

DeF ¼ DeFs þ DeFe
a with DeFs ¼ rXD~us and DeFe

a ¼ rXD~ue
a:
ðA:2Þ

Similarly, variations of the pressure ~p and volume ~h approximations
(19) are given by

d~pðXÞ ¼
XNp

J

j
vp

j ðXÞdp̂j|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
dps

þ
X
ap

XNp
I

i
vp

i ðXÞw
ap

dâap

i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dpe

ap

;

D~pðXÞ ¼
XNp

J

j
vp

j ðXÞDp̂j|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Dps

þ
X
ap

XNp
I

i
vp

i ðXÞw
ap

Dâap

i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dpe

ap

ðA:3Þ

and

d~hðXÞ ¼
XNh

J

j
vh

j ðXÞdĥj|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
dhs

þ
X
ah

XNh
I

i
vh

i ðXÞw
ah

dâah

i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dhe

ah

;

D~hðXÞ ¼
XNh

J

j
vh

j ðXÞDĥj|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Dhs

þ
X
ah

XNh
I

i
vh

i ðXÞw
ah

Dâah

i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dhe

ah

ðA:4Þ

with d~p;D~p; d~h;D~h 2 L2ðBh
0Þ, while the variations of the Lagrange

multiplier field ~k, introduced in (21), are given by

d~kðXÞ ¼
XNk

j¼1

vk
j ðXÞdk̂j; D~kðXÞ ¼

XNk

j¼1

vk
j ðXÞDk̂j ðA:5Þ

with d~k;D~k 2 H�
1
2ðSh

0Þ, and Sh
0 is the discretization of S0. The approx-

imated variations derived above are substituted in Eqs. (20) and
(22) to establish static equilibrium.

For brevity, only the discretization of Rus in (22) is shown
below:

Rus ¼
Z
B�0

bP : rXdus dV0 þ
Z
B�0

~peJeF�T : rXdus dV0

þ
Z

S0

~k � sd~ustdS0 ¼ 0: ðA:6Þ
The consistent linearization of (A.6) using (15) and (11) yields

DR½dus;Dus� ¼
Z
B�0

rXdus : cA : rXDus dV0

þ
Z
B�0

rXdus : ~pA : rXDus dV0;

DR½dus;Due
a� ¼

Z
B�0

rXdus : cA : rXDue
a dV0

þ
Z
B�0

rXdus : ~pA : rXDue
a dV0;

DR½dus;Dps� ¼
Z
B�0

rXdus : eJeF�TDps dV0;

DR½dus;Dpe
a� ¼

Z
B�0

rXdus : eJeF�TDpe
a dV0;

DR½dus;Dhs� ¼ 0;
DR½dus;Dhe

a� ¼ 0;

DR½dus;D~k� ¼
Z

S0

sdust � D~kdS0:

ðA:7Þ
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