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Abstract

Developing an accurate nonlinear reduced order model from simulation data has been an outstanding research topic for many
years. For many physical systems, data collection is very expensive and the optimal data distribution is not known in advance.
Thus, maximizing the information gain remains a grand challenge. In a recent paper, Bhattacharjee and Matouš (2016) proposed
a manifold-based nonlinear reduced order model for multiscale problems in mechanics of materials. Expanding this work here,
we develop a novel sampling strategy based on the physics/pattern-guided data distribution. Our adaptive sampling strategy relies
on enrichment of sub-manifolds based on the principal stretches and rotational sensitivity analysis. This novel sampling strategy
substantially decreases the number of snapshots needed for accurate reduced order model construction (i.e., ∼ 5× reduction
of snapshots over Bhattacharjee and Matouš (2016)). Moreover, we build the nonlinear manifold using the displacement rather
than deformation gradient data. We provide rigorous verification and error assessment. Finally, we demonstrate both localization
and homogenization of the multiscale solution on a large particulate composite unit cell.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Over time, a large number of scientific and engineering fields have come to rely on computer simulations to
handle complex real world phenomena with large amounts of data. Such phenomena appear in Very Large Scale
Integration (VLSI) design [1], chemical engineering [2], and modeling of turbulence [3], as well as in mechanics
of materials [4]. These complex electrical/chemical/mechanical systems with complex multi-physics interactions
require detailed numerical analysis tools (i.e., Direct Numerical Modeling/Simulation (DNM/DNS)) to resolve them.

Among these applications is the modeling of complex materials (e.g., biological materials). A very popular
and effective method when material complexity involves multiple length scales is Computational Homogenization
(CH) [5–8]. This includes the so-called FE2 implementation where both scales are solved together concurrently
[9,10]. However, the complexity is increased when deformation reaches the high strain regime. It is worth
commenting that although problem definitions differ in different fields, these can broadly be categorized as
nonlinear optimization problems. CH poses extra complexity as it involves multiple length scales along with costly
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functional evaluations to solve the inherent optimization/variational problem [9–11]. Unfortunately, computational
costs associated with solving these complex problems limit the use of these high-fidelity simulations, and an efficient
means of acceleration would promote their industrial use.

To circumvent computational challenges, many data-driven Reduced Order Models (ROMs) have gained attention
in the computational physics/mechanics community. These include proper orthogonal/generalized decomposi-
tion [12,13], kernel methods [14], manifold methods [15,16] and many others [17–19]. Consequently, in many
fields there is a great interest in tools and techniques that facilitate the construction of such regression models,
while minimizing the computational costs and maximizing model accuracy. For example, an efficient surrogate
model using dimension reduction and the Gaussian process has been proposed for a single scale two-dimensional
system [20]. Moreover, the applicability of Neural Networks (NNs) [21,22], kernel methods [14], and other ROM
techniques [23–25] has become indispensable to the computational physics/mechanics community as these methods
drastically reduce the computational overhead. However, most of the aforementioned techniques are applicable only
when dealing with fairly low-dimensional problems.

In the context of CH, the literature mainly involves Proper Orthogonal Decomposition (POD) [24], discrete
material maps [26,27], NN techniques [22], and recently wavelet-based model reduction [25]. In our previous
work [16], we proposed a manifold-based technique that can perform both homogenization and localization of the
material response in the 3D finite strain setting with a realistic Representative Unit Cell (RUC). It is important
to mention that all these methodologies involve pre-computation of solutions to construct a digital database
using highly expensive solvers. Although utilizing modern high-performance computers speeds up the process of
generating data [9,28,29], the database construction is still a bottleneck. Furthermore, ROMs demand extra care
since the complexity increases with the number of simulations. Therefore, data sampling is necessary in order to
eliminate redundant simulations.

Because the data collection is computationally expensive and the optimal data distribution is not known in
advance, data sampling is a grand challenge to maximize the information gain [30]. Although there are several
statistical techniques available to address this issue [30–33], none of them are universal. These methods are
categorized as classical Response Surface Model (RSM) schemes and space-filling methods [30]. Generally,
minimization of bias is more important in ROMs for better predictability [34,35]. Therefore, the uniformity of
the points in the design space is the main objective. This uniformity is achieved either by maximizing the minimum
distances among input points or by minimizing correlation measures among the sample data [36]. Although both
criteria are important and intuitively linked, achieving them together is almost impossible [36].

Practical implementation of space filling techniques include orthogonal array testing [37], Latin hypercube
design [32], minmax/maxmin design [33], entropy based design [38], and others. These techniques also have
considerably intuitive appeal. The orthogonal arrays produce uniform samples, but can generate particular forms
of point replications. On the other hand, the Latin hypercube does not replicate points, but can lack uniformity.
Ultimately, all mentioned methodologies have no control over the output space. It is true that in the limit, uniformity
of the input space induces uniformity of the output space, but that requires a large number of sample points. This
large sample point requirement increases exponentially with the dimension of the input space [35]. Unfortunately,
the generation of such a rich dataset is practically impossible. For engineering implementation, we have to rely
on very few simulations that eventually maximize the information and lead to an enriched ROM. However, in this
particular case and when extremely high-dimensionality is involved, a uniform input space does not guarantee a
uniform output space because of the curse of dimensionality. When the process of generating data is expensive as
in the case of CH, sequential sampling is more efficient [30,39]. Moreover, adaptive sequential sampling is superior
to one without adaptation [40].

In this work, we propose a novel sampling strategy in the context of CH. In particular, we employ the Manifold-
based Nonlinear ROM (MNROM) developed in [16]. The MNROM operates directly on the finite element data
and can be used to substantially accelerate fully-coupled FE2 simulations [9,29]. The key components of MNROM
are nonlinear manifold learning, such as Isomap (i.e., projection to a Euclidean space), which unfolds the solution
manifold, a kernel based inverse map, and a NN. The efficacy of Isomap depends on how the limited simulation
points can represent the manifold [41]. Since CH is a highly nonlinear process, a uniform distribution of points in
the input space may lead to many pockets of extremely sparse regions on the manifold. On the other hand, some
regions become unnecessarily dense. This fails to capture the global information of the manifold. Consequently,
Isomap fails as it is a global learning technique and produces enormous noise [42]. Unfortunately, all other maps
associated with MNROM are noise sensitive as well and that leads to a poorly performing ROM.



S. Bhattacharjee and K. Matouš / Computer Methods in Applied Mechanics and Engineering 359 (2020) 112657 3

Therefore, we propose a deterministic strategy to efficiently sample in the input space such that the sparse
regions of the high dimensional output manifold are minimized with respect to the specific number of simulations.
This novel sampling method is completely pattern/physics-driven. In this method, the input and output spaces are
coupled. We explore the data distribution on the manifold and find physical parameters which guide the pattern. We
enrich the complete manifold by enriching the sub-manifolds. Some sub-manifolds require a small number of data
points. On the other hand, some sub-manifolds require more points depending on the volume of the sub-manifold.
From the learned pattern, we can easily determine the number of necessary points (i.e., the simulation snapshots).
This method distributes the snapshots more evenly in the output space. This deterministic sampling technique is
sequential and adaptive in nature. However, it does not imply the creation of a uniform input space.

We also address the issue of reducing the expense of costly Isomap as the enrichment technique proposed here
is sequential in nature. Every time we enrich the manifold, we need to perform a highly expensive algorithm
(i.e., Isomap) to reduce dimensionality. To mitigate this particular problem, we propose to use a greedy algorithm
instead of the full-scale Isomap to project any new point into the reduced space. This greedy algorithm is extremely
effective if the current dataset is dense enough. Our native physics-guided sampling strategy supports this aspect of
the model reduction as well and lend itself well to FE2 acceleration.

This paper is organized as follows. In Section 2, we briefly summarize the theory of computational homogeniza-
tion for heterogeneous materials and the framework of the MNROM. In Section 3, we describe a new physics-guided
sampling methodology. In Sections 4 and 5, we present numerical examples to show different aspects of this physics-
guided technique and present both the homogenization and localization of the multiscale response of a RUC with
95 stiff inclusions. Finally, in Section 6, we summarize the work and discuss the issues and scope for further
improvement.

2. Scale coupling using dimension reduction

In this section, we briefly summarize the theory of computational homogenization, which is described in detail
in [5–11]. We also summarize the reduced order scheme for CH, which is based on the nonlinear manifold and
machine learning introduced in [16]. This abbreviated theoretical section is for the completeness of the presentation.
More details can be found in [16].

2.1. Computational homogenization

Let a body Ω0 ⊂ R3, consisting of material points X ∈ Ω0, represent a macro-continuum (see Fig. 1), where the
position vector 0x and the deformation gradient 0F are defined as

0x(X) =X +
0u(X) ∀X ∈ Ω0,

0F(X) =∇X
0x = 1 + ∇X

0u ∀X ∈ Ω0.
(1)

Next, a microstructure (RUC) Θ0 ⊂ R3 consisting of microscale points Y ∈ Θ0 is locally attached to each
macroscale point X ∈ Ω0 (see Fig. 1). In the first-order homogenization theory, the microscale position vector
x and the deformation gradient F are assumed to be functions of both the macro and micro variables as

x(X, Y ) =
0F(X)Y + u(Y ) ∀Y ∈ Θ0,

F(X, Y ) =
0F(X) + ∇Yu(Y ) ∀Y ∈ Θ0.

(2)

In short, CH solves two nested nonlinear Boundary Value Problems (BVP). Neglecting inertial forces, the
macroscale BVP is given by

∇X ·
0P +

0b = 0 in Ω0,

0P ·
0N = t on ∂Ω t

0,

0u = u on ∂Ωu
0 ,

(3)

where 0P = ∂ 0W/∂ 0F is the macroscopic first Piola–Kirchhoff stress tensor, 0W is the hyperelastic macroscopic
strain energy density function, 0b is the macroscale body force, and 0N is the unit normal to the surface ∂Ω t

0. After
neglecting body forces and without prescribed tractions, the microscale equilibrium equation reads

∇Y ·
(1P

)
= 0 in Θ0, (4)



4 S. Bhattacharjee and K. Matouš / Computer Methods in Applied Mechanics and Engineering 359 (2020) 112657

Fig. 1. Schematic of CH and MNROM: Dashed lines represent solution paths for snapshots, and solid lines show solution paths for reduced
analysis of query points (i.e., points not in the database). The digital database (i.e., snapshots) is constructed in the offline stage. The data
flow represented by solid lines also shows utilization of MNROM in the FE2 setting.

where 1P = ∂ 1W/∂ F is the microscopic first Piola–Kirchhoff stress tensor. The microscopic free energy density
function, 1W , is needed to close the constitutive equation across the scales. Moreover, the microscopic equilibrium
equation (4) requires boundary conditions. In CH, the behavior of a material point at the macroscale is linked to
the microscale through the Hill–Mandel stationarity condition [5]:

0W (0u) = inf
u

1
|Θ0|

∫
Θ0

1W (0F + ∇Yu) dΘ . (5)

The above equation implicitly suggests that the fine-scale deformation only influences the coarse scale behavior
through its volume average over the RUC. This entails that the boundary conditions prescribed on the RUC must
satisfy certain restrictions [11]. Periodic boundary conditions are a natural choice and are used in this work [8].

2.2. Computational homogenization from a manifold perspective

In this section, the macro and microscale coupling, (see Fig. 1), is summarized from a nonlinear manifold point
of view (MNROM) as discussed in [16]. Since the entire quality of any data driven modeling rests on the ensemble
nature of the data, the grand challenge lies in how to construct a representative manifold, M, from a limited number
(N ) of data points. This is an emphasis of this work.

In this work, we propose a novel physics-driven adaptive technique to construct the solution manifold by sampling
only non-redundant simulations. In contrast to our original work [16], where the deformation gradient was used, here
a nonlinear manifold is constructed using the microscale displacement field which is also referred to as a snapshot.
This substantially reduces the dimensionality of the problem (i.e., F is a second order tensor (3 × 3) and u is a
vector (3 × 1)). We note that the gradient operator is a linear function of the nodal displacements, and thus, both
approaches are closely related. By vectorizing the snapshots (i.e., the RUC microscale simulations), we construct
a high-dimensional manifold M ⊂ RD (the gray region in Fig. 1) containing the set Z = {ξ 1, . . . , ξ N

}. The point
ξ i on the manifold M is given by the ordered set of the microscale displacements at each node (discretized by the
Finite Element Method (FEM), for example), ξ i

= {u1, . . . , uNn } ∈ M, where Nn is the number of nodes in the
RUC. This set governs the dimension of the embedding/ambient space of the manifold D = 3 × Nn . The proximity
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of the points on the manifold is described by the distance metric D (in terms of the discrete L2-norm), suggesting
that the topological space (M, D) is a metric space, which is bounded, dense, complete and compact [16,43].

The manifold points are associated with the corresponding macroscale loading conditions, T = {η1, . . . , ηN
} ⊂

Rd̃ , where ηi is a vector of loading/controlling parameters and d̃ is the dimension. In this work, we use 3 principal
stretches and 3 principal directions as loading/controlling parameters (i.e., d̃ = 6, see Section 3). Although
mathematically there is a map F : T ↦→ M (the elliptic Eq. (4)) that defines the manifold M parametrically
in terms of the input space T, it is not a trivial task to construct this map analytically or even by deep learning
[44], especially when the map is extremely nonlinear and involves very high dimensionality. For well-posed
problems [45], if the parameter space T is compact, the manifold M is also compact and inherits the topological
dimension of the parameter space. We construct it as a composition of two maps f −1 and P (F = f −1

◦ P).
Thus, MNROM consists of three individual components: (i) dimension reduction (map f ), (ii) linkage of the

parameter space to the reduced space (map P), and (iii) reconstruction of the microscale solution (map f −1) [16].
For dimension reduction, we apply Isomap [42] as we idealize the data on the nonlinear manifold. This

idealization is consistent since the displacement field is nonlinear over the macroscopic loading space. Therefore,
our data reduction problem statement is as follows: given a set of N -unordered points (i.e., snapshots) belonging to a
manifold M embedded in a high-dimensional space RD , find a low-dimensional region A ⊂ Rd̂ that is isometric to
M, where d̂ ≪ D. Isomap globally unfolds the manifold and returns a Euclidean space, A = {ζ 1, . . . , ζ N

} ⊂ Rd̂ ,
where ζ i is a vector of reduced/latent variables and d̂ is the intrinsic dimension of the manifold. Because the reduced
space A is isometric to M, the geodesic distances on manifold M are approximately preserved as the Euclidean
distances on A. This allows us to map vectors ξ (i.e., N vectors of dimension D) in M to vectors ζ (i.e., N vectors
of dimension d̂) in A more accurately than in other methods (e.g., POD).

Next, we construct the relationship between the loading space T (i.e., a space containing a set of loading
conditions) and the reduced space A (i.e., a space containing a set of reduced/latent variables) by a NN. We refer
to this map as P.

Finally, we complete the correspondence between the manifold and the reduced space by constructing an
appropriate inverse map, f −1, by nonparametric regression. Note that the inverse map is exact only when the
number of data points N → ∞. Thus in what follows, f −1 represents the approximate inverse and is constructed
from a finite set of points.

This concludes the three individual maps/components of MNROM: (i) the dimension reduction where vectors
ξ ∈ M ⊂ RD are mapped to vectors ζ ∈ A ⊂ Rd̂ by Isomap, (ii) the link between generating parameters
η ∈ T ⊂ Rd̃ and the low-dimensional space ζ ∈ A ⊂ Rd̂ by NN, and (iii) the reconstruction of the solution, which
is the inverse process to dimension reduction. Fig. 1 shows the macroscopic level with the space of generating
parameters T, the reduced order level with the space A of latent variables as well as the microscopic level with
simulation data (i.e., the manifold M). Moreover, the information flow is highlighted. Discussion about possible
non-uniqueness of the deformation gradient and about incompressible solids can be found in [16].

2.2.1. Isomap and kernel isomap
As mentioned in the previous section, we establish the map f using Isomap, which assumes that M = f −1(A)

is globally isometric to A [42]. In the limit, N → ∞, the data representation is a smooth manifold M without
holes, as the parametric space T is without singularity (i.e., the loading conditions are finite). Since f is globally
isometric and M is compact and without holes, the Euclidean space A is convex. For the smooth manifold M, we
can define the geodesic distance, DM (ξ i , ξ j ), between all pair of points ξ i and ξ j where i, j = 1 . . . N [46]:

DM (ξ i , ξ j ) = inf
γ

{length(γ ) : γ : [0, 1] ↦→ M and γ (0) = ξ i , γ (1) = ξ j
}. (6)

Note that the length of the arcs in the equation above is defined using the distance metric D.
Isomap exploits the concept of the distance kernel trick with the geodesic kernel K(ξ i , ξ j ) = −D2

M (ξ i , ξ j ) that
is conditionally positive definite (CPD) and returns the parameter space A [47]. The manifold is represented by
the graph, G, constructed from the points, ξ i , on the manifold M using the k-rule, where k nearest neighbors are
connected through the graph edges. What points are neighbors in the graph G construction is determined based on
the pair-wise distances D (i.e., the discrete L2 measure). Next, we construct the neighborhoods for each ξ i . There
are several methods to construct the k-neighborhood (e.g., local linear interpolation [43]). In this work, we use both
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kernel Isomap with the reproducing kernel map construction as in our previous work [16] and regular Isomap with
the k-neighborhood local linear interpolation.

Isomap involves the computation of an affinity matrix, Di j = D2
G(ξ i , ξ j ), from the dataset Z. Here, DG(ξ i , ξ j )

is the approximate geodesic computed from the graph, G [48]. Then, the matrix D is transformed into a positive
semi-definite (PSD) double-centered matrix, D̃, as follows

D̃ = −
1
2

H DH, (7)

where H = I −
1
N 11T is a centering matrix, I is the N × N identity matrix, and 1 is a N -vector with all elements

equal 1. Note, D̃ is a PSD Gram matrix [47].
To construct the reduced space A (i.e., a space containing a set of reduced/latent variables, ζ ), Isomap utilizes

Merecer’s theorem [49]: let M ⊂ RD be closed with a strictly positive Borel measure on M, and K be a continuous
function on M × M which is positive definite (PD) and square integrable, then,

K(ξ i , ξ j ) =

∞∑
k=1

σkv
k(ξ i ) · vk(ξ j ), (8)

where σk is the kth eigenvalue and vk is the corresponding eigenvector of D̃.
We note that the series converges absolutely for each pair (ξ i , ξ j ) ∈ M × M and uniformly on each compact

subset of M. Mercer’s theorem still holds pointwise if M is a finite set Z. Exploiting Eq. (8), the embedding is
constructed by

ζ i
k =

√
σk vk

i , (9)

Here, ζ i
k is the kth component of ζ i out of d̂ components (i.e., k = 1, . . . , d̂), and vk

i is the i th component of vk

out of N components (i.e., i = 1, . . . , N ). Truncation in the decaying spectrum to compute d̂ is done by applying
the Beardwood–Halton–Hammersley (BHH) theorem [50]. Once d̂ is computed, embedding can be constructed by
taking the first d̂ eigenvalues and eigenvectors. This will create the low-dimensional space A. It can be shown that
convergence takes place asymptotically for an isometric map.

One of the major components of Isomap is the computation of approximate geodesic distances in terms of
all-pair shortest paths. We use Dijkstra’s algorithm [51] to compute the shortest path. The approximate geodesic
distances computed over the graph G obey the following theorem: let M be a compact manifold, embedded in RD ,
isometrically equivalent to a convex domain A ⊂ Rd̂ and let some parameters ω1, ω2 and µ be given in (0, 1)
(i.e., 0 < ω1, ω2 < 1 and 0 < µ < 1). Neglecting the boundary effects, we can assert with probability at least 1−µ

that the following inequalities

(1 − ω1)DM (ξ i , ξ j ) ≤ DG(ξ i , ξ j ) ≤ (1 + ω2)DM (ξ i , ξ j ), (10)

hold on M for all ξ i , ξ j . Eq. (10) guarantees the asymptotic convergence of the computed approximate geodesics
in limiting conditions (N → ∞). See [43,48] for more details.

The inequality (10) indicates the possibility of noise associated with the computed geodesic distances. This
implies that the Gram matrix, D̃, may not be PSD and violates the fundamentals of the kernel operations. Although
Isomap replaces the negative eigenvalues with zeros, which is mathematically sound, this can underestimate the
dimension. To circumvent this situation, a kernel version of the Isomap algorithm has been proposed in [52]. The
kernel version employs the analytical framework of the additive constant problem and transforms the kernel into a
PD one [53]. Although topological instability can be an issue for Isomap [54], we can circumvent it by carefully
constructing a finite number of disjoint sub-manifolds and analyze those separately [16].

2.2.2. Greedy algorithm
Isomap is an expensive algorithm, since we need to compute all the shortest paths (approximate geodesics) and

carry out the eigenvalue analysis. However, once the manifold reaches a certain density, we would like to enrich
the manifold and the corresponding reduced space further very quickly. This enrichment should allow adding new
snapshots to the manifold without recomputing all existing geodesics (i.e., O(N 2) algorithm). Therefore, to avoid
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the computational cost, we apply a greedy algorithm to project any new snapshot, ξ new, added to the manifold by
projecting it to the current reduced space (in terms of the existing eigenvalues and eigenvectors) as follows [41]:

ζk(ξ new) =
1

2
√

σk

∑
vi

k(E[D̃2(ξ new, ξ i )] − D̃2(ξ new, ξ i )). (11)

Here, we only need to compute the geodesic distances for the newly added point, ξ new, and E is the average
operator. Note, the value of the geodesic distances can change drastically for a manifold that is not well populated.
This implies that the accuracy of this greedy technique depends on the current density of the manifold data, and
we will show this in Section 4.1. For more details on greedy algorithms see [55].

2.2.3. Neural network
The map P is essentially the relationship between the macroscale loading parameter space T and the reduced

space A (see Fig. 1). We note that the connection between the reduced space, A, and the space of physical
macroscale parameters, T, is not straightforward for nonlinear problems. Because feed-forward neural network is a
universal approximator [56,57], in this work, the map between the reduced space, A, and the macroscale loading
parameter space, T, is established through use of a NN by minimizing the mean-square error between the reduced
space, A, and the approximate output of the NN [56,58]. The NN architecture is discussed in [16].

One of the very common problems with NN is over-fitting [58,59]. To circumvent this issue, we have used
Bayesian regularization [58,60,61]. Another important issue with NN is the possibility of getting stuck at the local
minima. In this work, we use an ensemble NN to limit this problem [62].

2.2.4. Reconstruction of the microscale solution
The map f is globally isometric [42], which leads to a bijection since the geodesic distance on M is equal to

the Euclidean distance on A and the distance between two distinct points cannot be zero. Additionally, the entire
framework assumes that the embedding, f −1, is a diffeomorphism. Although the isometric map can be constructed
explicitly, in our work the map f is without an explicit form and does not have an explicit inverse. Moreover,
the computed Euclidean distance does not exactly correspond to the geodesic distance over manifold M [16]. In
order to predict the microstructural response from the reduced dimensional parameters, we numerically construct
an approximation to the inverse map through regression [16,43,63,64]. In this work, we exploit the concept of
Reproducing Kernel Hilbert Space (RK H S) to construct the inverse map, f −1 [65,66]. For every RK H S, there is
a corresponding PD kernel. However, most radial functions do not correspond to a PD kernel [67]. The generalized
version of RK H S is Reproducing Kernel Krein Space (RK K S), where the associated kernel is CPD. Note, that
the geodesic kernel, K(ξ i , ξ j ) = −D2

M (ξ i , ξ j ), is a CPD one [47]. This allows us to represent each component
as [68,69]

ξ
q
j =

N∑
i=1

θ i
jK(ξ i , ξ q ). (12)

Here, ξ
q
j is the j th component of the solution vector (ξ q ) corresponding to its reduced space representation ζ q .

The reproducing kernel, K(ξ i , ξ q ) = −D2
M (ξ i , ξ j ) = −∥ζ i

− ζ q
∥L2 , is a scale-free radial basis function (RB F).

Note that here, we represent the L2 norm in the discrete sense. The coefficients θ i
j are determined using the training

dataset (ζ i , ξ i ) as follows⎡⎢⎣θ1
1 · · · θ1

D
...

. . .
...

θ N
1 · · · θ N

D

⎤⎥⎦ =

⎡⎢⎣K(ζ 1, ζ 1) · · · K(ζ 1, ζ N )
...

. . .
...

K(ζ N , ζ 1) · · · K(ζ N , ζ N )

⎤⎥⎦
−1 ⎡⎢⎣ξ 1

1 · · · ξ 1
D

...
. . .

...

ξ N
1 · · · ξ N

D

⎤⎥⎦ . (13)

This regression training requires one simple N × N matrix inversion followed by N × D matrix vector product
operations and can be performed quickly even for large D. However, it is worth mentioning that the solution in
RK K S may not represent the global minima of the cost function [69]. Moreover, a Bayesian framework [70] is
very expensive in the case of very high-dimensional regression, hence we avoid it in this work. The successful
implementation of this technique for the reconstruction of an extremely high dimensional manifold can be found
in [16].
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Fig. 2. Concept of the physics-based construction of the manifold. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

3. Physics-guided manifold construction

As discussed in the previous section (see Section 2.2), the importance of the representativeness of the manifold M
is crucial. Therefore, we explore the snapshot patterns on the manifold M. This novel sampling strategy substantially
reduces the number of snapshots (i.e., the RUC microscale simulations by the FEM) needed for accurate MNROM
representation. Moreover, it can be used in several similar model reduction schemes. In this work, we limit ourselves
to statistically isotropic hyperelastic solids, and decompose the microscopic free energy density function in Eq. (5)
into its deviatoric and volumetric parts, 1W =

1W C(Ĉ) +
1W J(J ). Here, J = det (F) is the Jacobian of the

deformation gradient and Ĉ = J−2/3C is the deviatoric right Cauchy–Green deformation tensor, where C = FT F.
First, we would like to highlight the parameter space, T, which stores the macroscopic deformation gradients

0F. Using the polar decomposition, 0F =
0R 0U , we obtain

0U =
0λ1(0e1

⊗
0e1) +

0λ2(0e2
⊗

0e2) +
0λ3(0e3

⊗
0e3), (14)

where 0λl ∈ (0, ∞) are principal stretches and 0el are the orthogonal principal directions generated by three angles
ϕl (the axis-angle representation), with l = 1, 2, 3. Axis is characterized by the angles ϕ1

∈ [0, 2π ), ϕ2
∈ [0, π

2 ),
and the rotation about the axis ϕ3

∈ [0, π
2 ). Note that we assume an isotropic material, which makes the rotational

space smaller. We construct the parameter space T as a Cartesian product of two spaces: (i) the stretch space Tλ and
(ii) the rotational space Tϕ as depicted in Fig. 2. In our numerical implementation, stretches 0⃗λ are from a closed
interval, and thus, the parameter space, T, is a compact subset of Euclidean space. The objective of this analysis is
to better understand the distribution pattern for the rotational parameters.

3.1. Rotational sensitivity

A concept of the rotational sensitivity analysis is illustrated in Fig. 3. In this analysis, the stretch space is a cube
with the line of volumetric deformations (the dotted line in Fig. 3) as its main diagonal. All the points on this line
manifest pure volumetric deformation (0λ1 =

0λ2 =
0λ3 =

0λ), because 0U =
0λ1. From the physical perspective

regardless of the constitutive model, the pure volumetric deformations are invariant of rotation. Therefore, if the
stretch vector is near the volumetric deformation line, it will show less rotational dependency. Moreover, the
volumetric part of the energy density, 1W J(J ), is typically more dominant in the high stretch regime (i.e., J ≪ 1
or J ≫ 1) [71]. When performing the rotational sensitivity analysis, we first cover the space Tλ with the finite
number (i ) of open sets U i

Tλ
(see Fig. 2). Thus, the parameter space T can be represented as

T = (∪U i
Tλ

) × Tϕ = ∪(U i
Tλ

× Tϕ). (15)

Since the manifold M is compact, the sub-manifolds, Mi
λ, can be defined as

Mi
λ = F(U i

Tλ
× Tϕ), (16)



S. Bhattacharjee and K. Matouš / Computer Methods in Applied Mechanics and Engineering 359 (2020) 112657 9

Fig. 3. Concept of the rotational sensitivity analysis.

where M =
⋃

Mi
λ. Note that these sub-manifolds also have the same dimension, d̂ , because of the manifold

M smoothness. In the discrete setting, sub-manifolds are constructed as a subset of points with all rotations for a
specific stretch vector 0⃗λ

i
(see Fig. 2). Therefore, the discrete space Mi

λ reads

Mi
λ = F(

0
λ⃗i

× Tϕ), (17)

for the finite number of stretch points. Note that the number of generating parameters for Mi
λ is 3, which implies

Mi
λ is a 3-manifold. Here we construct the subgraph G i

r , which graphically represents the sub-manifold, Mi
λ (see

Fig. 3). The graph diameter, d i
r , represents the diameter of the minimum covering ball, Bi

λ, for the corresponding
sub-manifold Mi

λ (see Fig. 2). The graph diameter is computed simply as the longest shortest path (i.e., the longest
graph geodesic) in the graph [72].

Physically, it is expected that the rotational dependency will increase with the perpendicular distance, r i
λ, from

any point on the line of volumetric deformation (see Fig. 3). It is also important to note that the effect is not the same
for all volumetric deformations. As the volumetric strain energy increases, the graph diameter should be a function
of the volumetric deformation (i.e., the third invariant of the Green–Lagrange strain tensor, I3 = det(C) = J 2 or
its square root) and the distance, r i

λ, of the stretch vector from the corresponding pure volumetric point. In our
implementation, we neglect this coupling.

Rotational sensitivity analysis allows for the optimal distribution of rotational points for the corresponding
number of stretches. Lower diameter suggests less rotational dependency and higher diameter suggests higher
rotational dependency of that particular point in the stretch space. From this relationship, we can decide the number
of rotational points required for a particular point in the stretch space or equivalently construct the representative
sub-manifold Mi

λ. Now by utilizing the concept of rotational sensitivity analysis, we propose an adaptive data
enrichment technique to represent the manifold by enriching the sub-manifolds and eliminating possible redundant
points.

3.2. Adaptive snapshot redistribution

In the first step, we start with a few simulations, N0. After determining all diameters, d i
r , we learn as a function

of the distance, r i
λ. This function allows us to adaptively add extra points in the stretch space Tλ. To do so, we

compute the average number of points, ng , in the ϵ neighborhood over all points in the entire dataset as follows

ng =
1
N

N∑
i=1

ngi , (18)
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where ngi is the number of points within ϵ neighborhood centered on any point ξ i on the manifold, M. Next,
we compute ni

g for all data points associated with each closed domain, U i
Tλ

, for the same ϵ neighborhood. If ni
g

is less than max(ng , k), we add an extra stretch point to the center of U i
Tλ

(shown as a filled triangle in the 2D
representation in Fig. 2). This adaptive point insertion refines the stretch space (i.e., the initial uniform stretch
cubical grid) without duplicating data as was possible in our previous blind sampling strategy [16]. Here we use
local linear interpolation [43], where k is the k-nearest neighbor of the graph representation of the manifold, M, and
ng measures the average data density. This strategy helps to add data points in the sparse regions of the manifold by
increasing the average local data density, ni

g to more than k and ng . In this work, we construct U i
Tλ

using tetrahedral
refinement. Note any extra points (Ne) will be added to the manifold, M, by enriching the sub-manifolds, Mi

λ. The
number of required enrichment points is proportional to the volume of the sub-manifolds, VMi

λ
. To accomplish this

purpose, first we compute the volume of these sub-manifolds. However, it is difficult to compute VMi
λ

exactly from
a few points. Therefore, we assume that the volume VMi

λ
is proportional to the volume of its minimum covering

ball [73], Bi
λ, which yields

VBi
λ

=
π d̂/2

Γ (d̂/2 + 1)
(d i

r/2)d̂ . (19)

Here, Γ is the gamma function and π is a mathematical constant. The number of sub-manifolds, Nλ, is the same
as number of the points in the stretch space. The number of enrichment points N i

ϕ in the rotational space, Tϕ , for
the corresponding stretch point is calculated as follows

N i
ϕ =

⌈ V i
Mλ∑Nλ

i=1 V i
Mλ

Ne

⌉
=

⌈ V i
Bλ∑Nλ

i=1 V i
Bλ

Ne

⌉
. (20)

Note that N i
ϕ takes the next integer value as computed from Eq. (20). The tacit assumption behind the above

algorithm is that the manifold M is the disjoint union of Nλ sub-manifolds (M =
⨆

Mi
λ). To verify this

assumption, we compute the degree of overlap PO as follows

PO =

(
VI

VM
− 1

)
× 100 [%], (21)

where VI is the volume of the data associated with the interface of the closed domains, U i
Tλ

, with all attached
rotations. Note that the interface regions are counted twice during volume calculations. We also note that once the
manifold is adaptively built, the greedy algorithm proposed in Section 2.2.2 can be used to add points without
complex geodesic computation and we will show this in Section 4.1.

4. Numerical examples

Numerical examples are performed on a randomly configured (statistically isotropic [74,75]) particulate hyper-
elastic material. We create the unit cell consisting of monodisperse spheres with radius R = 0.5 µm by using the
packing algorithm Rocpack [76]. The size of the unit cell is selected based on statistical analysis, details of which
are provided in [16]. The unit cell with a side length of lRUC = 10R = 5 µm contains 95 particles and is identical
to the unit cell in our previous work [16] for ease of comparison.

Fig. 4 shows the geometry of the cell used in this work. After a FEM convergence study, the RUC is discretized
with 96,252 nodes and 486,051 elements. This discretization results in 250,035 nonlinear degrees of freedom to
solve the micro-problem (see Eq. (4)). This sets the size of the dimension of the embedding/ambient space of the
manifold, M, and gives D = 288, 756. As a constitutive model in the RUC, we use an isotropic hyperelastic
strain–energy density function similar to the Mooney–Rivlin solid,

1W C(Ĉ) =µ10
[
tr(Ĉ) − 3

]
+

µ01

2

[
(trĈ)2

− Ĉ : Ĉ − 6
]
,

1W J(J ) =
κ

2

[
exp(J − 1) − ln(J ) − 1

]
.

(22)

Here, µ10 and µ01 are the shear moduli and κ is the bulk modulus. The associated material properties of the
microscale constituents are provided in Table 1. We note that more nonlinear models (e.g., visco-plasticity) will
make the problem more complex. In this case, a new development will be needed to reduce both the nonlinear partial
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Fig. 4. RUC with the side length of lRUC = 10R = 5 µm. The cell contains 95 hard spherical particles with 1 µm diameter. The unit cell
is taken from our previous work [16] for ease of comparison.

Table 1
Mooney–Rivlin material properties.

Material E [MPa] ν κ [MPa] G [MPa] µ01 [MPa] µ10 [MPa]

Particle 5e3 0.25 3.33e3 2e3 5e2 5e2
Matrix 50 0.35 55.56 18.52 4.63 4.63

differential equation (PDE) and the nonlinear material model (i.e., nonlinear ordinary differential equations (ODEs)).
The snapshots are generated using the high-performance PG Fem3D solver1 that performs FEM operations in
parallel with a high degree of efficiency [4,29]. Such parallelism is important for both the database construction as
well as for fast re-localization of a new solution vector.

4.1. Physics-guided learning and manifold enrichment

We are interested in developing a microstructural ROM (i.e., MNROM for Eq. (4)) in the context of CH (see
Fig. 1). The RUC is loaded by an arbitrary macroscale deformation gradient, 0F, which consists of the principal
stretches and directions (see Section 3, Eq. (14)). For our analysis, we take 10% maximum principal stretch in each
direction (i.e., 30% maximum stretch) and all possible principal rotations as the loading envelope. This leads to a
large design space of solutions of the nonlinear PDE without assumptions about the particular loading (e.g., shear
only or tension only). This broad loading envelope is important for industrial design where loading conditions vary
from point to point at the macroscale. We note that CH is a highly nonlinear process (i.e., depending on the free
energy function, 1W ). Moreover, two different loading conditions in T (i.e., different prescribed principal stretches
and rotations in Eq. (14)) can produce similar 0U and lead to similar microscale solutions or snapshots. Similarity of
the microscale data can lead to misrepresentation of the manifold, which is referred to as topological instability [54].
Note that we do not consider loss of ellipticity and bifurcation in this work. As discussed in our previous work [16],
capturing limit and bifurcation points requires a special numerical treatment and MNROM would have to be
constructed and analyzed carefully for each bifurcation branch. However, morphological imperfections are common
when working with random materials and will guide the solution path. Moreover, we use displacement driven CH
where the macro-deformation is uniquely prescribed.

To avoid any potential topological instability, we divide our parameter space to four modes based on the loading
conditions. Here, mode 1 is purely tensile and mode 4 is purely compressive. On the other hand, modes 2 and 3
are mixed ones as described in [16]. Next, we construct each of these manifolds separately for our reduced order

1 https://github.com/C-SWARM.
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Table 2
Description of the macroscale loading modes. Recall that N is the number of FEM snapshots used to construct the manifold M.

Loading case Description Step 0 Step 1 Step 2

Mode 1 0λ1 ≥ 1, 0λ2 ≥ 1, 0λ3 ≥ 1 405 530 730
Mode 2 0λ1 ≤ 1, 0λ2 ≥ 1, 0λ3 ≥ 1 405 1133 2770
Mode 3 0λ1 ≤ 1, 0λ2 ≤ 1, 0λ3 ≥ 1 405 1060 2471
Mode 4 0λ1 ≤ 1, 0λ2 ≤ 1, 0λ3 ≤ 1 405 524 790

Total N = 1620 N = 3247 N = 6761

model. In doing so, we implement our novel physics-guided sampling technique for the performance enhancement
of the ROM. This technique is deterministic and sequential in nature.

To begin with our sequentially adaptive sampling technique, initially (step 0), we take a uniform grid (3 × 3 × 3)
to create the stretch space, Tλ. This leads to 27 points. Next, to construct the rotational space, Tϕ , associated with
each stretch point, we take 15 randomly generated (from the uniform distribution) well-spaced points. To create
these well spaced points, we first generate 10,000 random points inside the rotational space and call this set T∗

ϕ .
Next, we pick any point from T∗

ϕ to get the first point of Tϕ . Then, we use the concept of Hausdorff distance and
pick the next point from T∗

ϕ , which produces the farthest distance from Tϕ . We continue this process for specified
times (i.e., 14 here) to generate 15 points to construct the rotational space. Since the parameter space is represented
as a product of the stretch and rotational spaces (T = Tλ × Tϕ), the total number of initial snapshots (i.e., FEM
simulations of RUC using Eq. (4)) for step 0 is 405 (see Table 2).

After the initial snapshot set is defined, we employ both regular and kernel Isomap to estimate the dimension of
the manifold. Both Isomap representations unfold the manifold into 6-dimensional Euclidean space (i.e., d̂ = 6),
which is the dimension of the parameter space, T (i.e., d̃ = 6). Note we construct our reduced space by regular
Isomap and use local linear interpolation with k-nearest neighbors. We have used k = 21 based on comparison with
kernel Isomap and numerical tests, as well as the errors we encountered while maintaining the algorithm’s ability
to make accurate predictions.

Although the number of enrichment steps is not limited in this study, we only show the results for two steps
(step 1 and step 2). We have selected 2 steps to show the convergence of the algorithm, but only the first step
is needed to accurately distribute data as will be shown in Section 5. Also, we can enrich the manifold M with
any number of points in each step. Here, we double the total number of snapshots in every step to understand
the convergence properties of the enrichment (see Table 2). The maximum number of simulations/snapshots is
N = 6761 (i.e., step 2), but we will show later that such manifold density is not needed and step 1 enrichment with
N = 3247 is sufficient. In each step, we compute the volume of each manifold corresponding to each mode (See
Eq. (19)) and proportionally distribute the added points among these four manifolds. After determining the number
of extra points in each mode, we first enrich the stretch space Tλ by exploiting a density analysis as described in
Fig. 2 (red marker). Then, we employ a rotational sensitivity analysis and decide the number of rotational points
for each stretch vector, which is proportional to the volume of the sub-manifolds, Mi

λ (see Eq. (20)).
For the first enrichment step (step 1), we conduct a density analysis on step 0 dataset as described in Section 3.2.

We compute ng , from Eq. (18) on the entire dataset for a particular ϵ-neighborhood. We have considered ϵ =

(1/4) dG for all modes. Here, dG is the diameter of the complete graph corresponding to the whole manifold, M.
Next, we consider each closed domain, U i

Tλ
, in the stretch space (see Fig. 2). We construct the i th stretch space

grid by tetrahedral elements covering U i
Tλ

. We compute ni
g by taking the data associated with the i th element (see

the gray triangle in the stretch space in Fig. 2) with all rotations. If ni
g is less than max(ng, k), we add an extra

stretch point in the center of that element (see added red data point in the stretch space in Fig. 2). This ensures
that after the enrichment step, the sparse regions in the manifold have at least k neighboring points (in an average
sense, in the ϵ-neighborhood). This completes the stretch space enrichment for step 1.

Next, we explore the pattern using rotational sensitivity analysis to distribute the rotational points in the
newly constructed stretch space. To distribute the rotational points, we separate out the sub-manifolds, Mi

λ. We
approximate the sub-manifolds in terms of the subgraphs, G i

r . All subgraphs initially contain 15 rotational points
(step 0). Next, we compute the diameter, d i

r , for each subgraph which is the longest shortest path (i.e., the longest
graph geodesic) in the graph [72]. Although the diameter is a function of both r i

λ and I i
3 , we notice the effect of I i

3
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Fig. 5. Rotational sensitivity analysis with step 0 and step 1 data. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4.

is not very significant. Therefore, we plot the graph diameters d i
r as a function of r i

λ in Fig. 5 for all four modes.
Because the graph diameters are clustered around a line, we learn diameter as the linear least-square fit. The small
scatter of the diameters of the sub-manifolds is due to the effect of the third invariant, I3, and noise associated with
the geodesic computations. Using this linear relationship obtained from data in Fig. 5, we estimate the diameter for
any new stretch point and compute the volume by Eq. (19) with d̂ = 3 (see the discussion in Section 3.1). Next
we distribute new points among the sub-manifolds Mi

λ by Eq. (20). This completes the first enrichment process
(step 1).

For the second enrichment step (step 2), we use the current dataset (step 1) with total 3247 snapshots (distributed
among the modes, see Table 2) and repeat the process for further enrichment. Note that the second enrichment step
is performed to assess the convergence of the algorithm only. As listed in Table 2, mode 2 and mode 3 take most
of the extra points. On the other hand, mode 1 and mode 4 enrichment is not that significant. Note that mode 2 and
mode 3 are mixed modes and more deviatoric in nature, which is consistent with the rotational sensitivity analysis
(see Section 3.1). It is also indicative that the manifolds corresponding to mode 2 and mode 3 are more nonlinear
than mode 1 and mode 4, respectively. To summarize our novel physics-guided enrichment strategy, we provide a
complete algorithm that entails all steps discussed above (see Algorithm 1).

To understand the quality of the enrichment scheme for two steps, in Fig. 6, we present the distribution of
the number of points, ngi , within ϵ-neighborhood (density) with all steps for all four modes. In Fig. 6, we can
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Algorithm 1 Adaptive Physics-guided MNROM

1: Start with a number of uncorrelated snapshots, N0.
2: Compute all-pair geodesic/shortest paths (see Eq. (6)) and carry out a density distribution analysis (see Eq. (18))

to predict the number of stretch points required and their locations. The current number of stretch points is Nλ.
3: Carry out a rotational sensitivity analysis (see Section 3.1) and learn the diameter of the sub-manifolds, d i

r , as
a function of the parameter, r i

λ.
4: From the rotational sensitivity analysis, determine the diameter of the sub-manifold corresponding to any stretch

point (see Section 3.1). Next, compute the volume of those sub-manifolds by Eq. (19). Then, determine the
number of the rotational points corresponding to each stretch point, given the total number of extra points by
following Eq. (20).

5: Any further extra snapshot will be added to the database based on the pattern of the current enrichment state.

Fig. 6. Distribution of ngi for all steps with all modes. The size of the markers indicates the enrichment step. (a) Mode 1. (b) Mode 2.
(c) Mode 3. (d) Mode 4.

see that the distributions become smoother with this enrichment scheme. Moreover, the distributions have distinct
tails, which indicates smaller data redundancy. Since the sparsity of each neighborhood decreases in the process,
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Table 3
Percentage of the overlap, PO , for each mode and in each step.

Step 0 Step 1 Step 2

Mode 1 3.65 3.99 4.49
Mode 2 2.49 2.66 2.66
Mode 3 2.52 2.62 2.72
Mode 4 3.67 3.88 4.64

in effect, it creates a higher possibility of capturing the local features/scales of the manifold. This is especially
important for mixed modes 2 and 3, which manifest more nonlinearity. In the tensile mode (Mode 1), we see
that most neighborhoods have around 10 points, and while the largest neighborhoods have around 100 points their
frequency is very low. On the other hand, the more nonlinear mixed mode (Mode 2) requires around 50 points in
the most frequent neighborhoods and the maximum neighborhood density approaches 600 points. This shows the
importance of heterogeneous data distribution to capture the features of the full manifold.

In each step, we also compute the percentage of overlap, PO , for each mode (see Table 3). The percentage of
overlap estimates the degree of redundancy of the data. Note the percentage of overlap remains almost unchanged
with manifold enrichment. This suggests that the adaptive enrichment technique helps to distribute data on the
manifold more evenly.

For our refinement strategy, we use Isomap at every enrichment step (i.e., we rebuild the geodesic distances for
all points between enrichment steps). However, as mentioned previously, the Isomap algorithm is expensive. To
avoid Isomap, a greedy algorithm is proposed in Section 2.2.2, where newly added points are projected into the
existing reduced space A. Therefore, when a new FEM unit cell simulation is performed, we compute the geodesic
distance only for that one point and then project it to the reduced space using Eq. (11) without rebuilding the
complete geodesic paths. This substantially improves the performance of the algorithm when new snapshots come
online as in the FE2 setting. To verify the greedy algorithm, we first take the step 2 dataset and construct the reduced
space, A2, by using the regular Isomap. The subscript 2 indicates that the reduced space involves all the data in
step 2. Similarly, we have constructed A0 and A1 with step 0 and step 1 datasets, respectively. Next, we project the
extra snapshots in the step 2 dataset, which are not in the step 0 dataset by using Eq. (11) and denote this reduced
space as A2(0). In the same way, we construct A2(1), where all extra snapshots are projected using the eigenvalues
and eigenvectors computed from the step 1 data. To compare A2 with A2(0) and A2(1), we first vectorize these
matrices into ζ 2, ζ 2(0), and ζ 2(1), respectively. Note the reduced space A is a 6 × N matrix, d̂ = 6. However, in
the continuum sense (N → ∞) these vectors can be viewed as the finite set of points constructed from the scalar
field, ζ̂ . To verify the greedy algorithm, we plot the distribution of the scalar fields ζ̂2, ζ̂2(0), and ζ̂2(1) in Fig. 7.
Fig. 7 shows that the enrichment points on the manifold have been projected to the reduced space satisfactorily as
ζ̂2(1) (projected) converges to ζ̂2 (directly computed). This indicates that the step 1 dataset is enriched enough and
that any future snapshot can be projected to the reduced space, A1, by avoiding expensive Isomap computation of
all-pair shortest paths and eigenvalue analysis.

Finally, we investigate the effect of the enrichment on the convergence of the physical fields, such as the
deformation gradient. The local error in the physical fields (localization) is computed as follows

Er =
∥F RO M

r − FF E M
r ∥F

∥FF E M
r ∥F

× 100 [%]. (23)

Here, we use the Frobenius norm (∥•∥F ). The subscript r represents a material phase (particle or matrix). In order
to quantify the cumulative error, the following volume averaged (homogenization) error, 0Er , reads

0Er =

1
Θ0

∫
Θr

Er dΘ

∥0 Fr∥F
× 100 [%], (24)

where 0 Fr =
1
Θ0

∫
Θr

F dΘ .

For the error analysis, we first establish all the maps associated with the MNROM framework for step 0, step
1 and step 2 datasets. Next, we compute the microscopic deformations for 200 query points (i.e., the cells/loading
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Fig. 7. Efficacy of the greedy algorithm: enrichment points in the step 2 dataset are projected to the step 0 and step 1 reduced spaces by
Eq. (11). (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4.

conditions not in the database) in each mode. To ensure that the query points are well spaced and uncorrelated
with the existing dataset, we first generate 10,000 samples from a uniform distribution in the macroscopic loading
space and refer to this set as T∗. Then we pick the query point ηq from T∗ which produces the maximum Euclidean
distance from the existing loading set, T. After picking ηq we remove this point from T∗ and add it to T. We iterate
this process 200 times. Once this process ends, we take out all these query points from T and construct the set of
query points, Tq . After computing the displacement field for all the query points by the MNROM framework, we
can determine the deformation gradient locally and compute the volume averaged error by Eq. (24) in comparison
with the deformation gradient computed from the FEM framework (i.e., the numerical model of Eq. (4)). Next, we
plot the mean and maximum errors in Fig. 8. We notice that in step 1 the maximum error has decreased to below
2 %. However, from step 1 to step 2 error decay has saturated.

Considering the enrichment result presented in this section, we proceed in further studies with the dataset
from step 1 (i.e., 3247 snapshots) since this manifold is well populated and covers all loading conditions, 0F,
to approximate solutions of Eq. (4) within 10% principal stretch. This constitutes a large reduction in the number
of required samples relative to our previous work [16], where we used 16128 simulations to construct the manifold.
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Fig. 8. Convergence of the adaptive data enrichment scheme in terms of the microscopic deformation gradient field. (a) Matrix-mean for
Modes 1, 2 and 4. (b) Matrix-max for Modes 1, 2 and 4. (c) Matrix-mean for Mode 3. (d) Matrix-max for Mode 3.

5. Verification of the complete MNROM

In this section, we provide the verification of each map associated with MNROM individually with the step 1
dataset (i.e., we use only 3247 snapshots for the full manifold construction). Subsequently, we also present the
quality of the solution predicted for out-of-data macroscopic loading condition (query points). The overall quality
of MNROM is the cumulative quality of the individual maps. Note that all snapshots are computed in parallel using
the high-performance FEM solver PGFem3D. This allows fast snapshot construction even for O(1000) samples
needed to create the database.

5.1. Isomap, f

We use Isomap as a dimension reduction technique. We see in Fig. 9 that regular Isomap converges to dimension
d̂ = 6 for all four loading modes. As mentioned earlier, we have verified this result with kernel Isomap to confirm
the intrinsic dimensionality of the manifold M. Once more we would like to mention that the manifold M is a
parametric manifold with 6 macroscopic loading parameters. This implies that Isomap has unfolded the manifold
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Fig. 9. Isomap dimensionality, d̂ .

Fig. 10. Distribution of the volume averaged error (homogenization) given by Eq. (24) for randomly selected 10% of points from database
(one-out cases). (a) Particle. (b) Matrix.

correctly and has returned a reduced space, A, where the Euclidean distances are approximately equal to the geodesic
distances on the manifold. Because we construct the map, F (F : T ↦→ M) as a composition of the inverse map
( f −1) and the parameter linkage map (P), for the next step we verify these maps individually.

5.2. Inverse map, f −1

We check the accuracy of the inverse map, f −1
: A ↦→ M, by a standard leave-one-out experiment on 10%

randomly selected (from the uniform distribution) points from each loading mode. For each of these points, we
compare the inverse map solution with the FEM solution in terms of the volume-averaged error for the matrix
and particles (see Eq. (24)) of the deformation gradient field, F. The distribution of the volume averaged error is
presented in Fig. 10. The particle error is less than 0.11% (see Fig. 10(a)) and the matrix error is bounded by 1.8%
(see Fig. 10(b)). To check the quality of the localized MNROM solution, we show the distribution of ∥F∥F for the
particle in Fig. 11(b) and for the matrix in Fig. 11(a). Comparison with the FEM solution yields the highest volume
averaged error in the matrix (i.e., 0Em = 1.789%). We can see in Fig. 11(a) that the inverse map can predict the
localized field remarkably well.
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Fig. 11. Distribution of ∥F∥F from FEM and MNROM over RUC in Fig. 4. (a) Over matrix. (b) Over particle.

5.3. NN map, P

To establish a link between the macroscopic loading space and the reduced space, we build the map P using the
neural network. As in our previous work, we use the NN implementation in MATLAB [58]. The NN architecture,
target-function/error, training and other parameters are identical to those from our work in [16]. As elucidated in
Section 2.2.3, NN is very prone to getting trapped in local minima. To circumvent this issue, we use ensemble
NN. We train NN 10 times for each mode and take the direct average of the output. Also, to overcome over-fitting,
we have employed a Bayesian regularization method [60,61]. Then, we reconstruct the reduced space as the NN
output for the entire dataset. This reconstructed reduced space, A, deviates from the reduced space, A. The physical
interpretation of this error is the drift of the predicted MNROM solution from the FEM solution along the manifold.
Note that the vector ζ i

∈ A contains the displacement data. It is worth mentioning that the effect of this error on
the local micro-field is extremely small.

In Fig. 12, we plot the distribution of the error, which is calculated as the Euclidean distance between the same
index vectors ζ i and ζ

i from the two sets A and A, respectively. In order to understand the error, we provide the
target range for vectors ζ i that is [−150, 150] for Mode 1 and Mode 4, and [−220, 220] for Mode 2 and Mode
3. We can see that the NN error has been reduced drastically from step 0 to step 1 (see Fig. 12). However, error
reduction is not noticeable from step 1 to step 2. The average error for all modes is around 3 unit with step 1 data,
which is O(10−3) in [−1, 1] range when normalized. This suggests that the step 1 data is enriched enough. The
data shift for the highest frequency is only 3 units on average, and the maximum shift is ∼ 15 units. We note that
in [16], we observed the shift for the highest frequency well above 5 units with the maximum shift at ∼ 20 units.
This shows that the NN map has been improved significantly over the one in [16] with this novel physics-guided
sampling technique.

5.4. Verification of complete MNROM framework

After verification of all maps, the MNROM framework (see Fig. 1) can be used to compute the macroscale
(homogenization) as well as the microscale (localization) fields for any given loading conditions, 0F, of the unit
cell that are bounded by 10% principal stretch in each direction. Next, we predict the microscale deformation fields
for 200 query points (see the process of generating query points in Section 4.1) for each of the four modes (i.e., 800
total query points).

We compute the microscale deformation gradient and compare it to the deformation gradient from FEM
simulations. First, we compute the volume averaged error for 200 query points considering all four modes by
Eq. (24). The volume averaged error is shown in Figs. 13(a) and 13(b) for the particles and matrix, respectively.
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Fig. 12. Distribution of the neural network output error compared to the reduced space over the entire dataset for different enrichment steps.
The size of the markers indicates the enrichment step. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4.

The minimum, maximum, mean and median of the volume averaged error over all query points for all modes are
listed in Table 4. Fig. 13 shows that the error in the matrix is higher than that in the particles. In Fig. 13(b), we
note that the maximum error goes to 1.67%, but less than 10% of query points have a volume-averaged error above
1% considering all modes. The query points associated with higher error are either close to the loading envelope
or in the regions where the manifold data density is still low. Next, we will analyze the quality of MNROM for the
homogenization and localization of different fields of interest.

5.5. Homogenization of material response

In this section, we investigate the capability of MNROM to predict the homogenized response for 800 query
points (200 in each mode) with the step 1 dataset. In doing so, we first compute the homogenized strain energy
density (see Eq. (5)), which is the volume average of the local strain energy density. In Fig. 14, we plot the deviatoric
(Fig. 14(a)) and the volumetric (Fig. 14(b)) part of the strain energy density. Looking at both the deviatoric and
volumetric strain energy, we can observe a very high correlation between the FEM and MNROM predictions.
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Table 4
Quality of the MNROM for all modes computed from Eq. (24) for 200 query points in each mode.

Loading cases Min. [%] Max.[%] Mean [%] Median [%]

Mode 1
Particle 0.0038 0.0284 0.0127 0.0124
Matrix 0.1080 0.8224 0.4093 0.4013

Mode 2
Particle 0.0069 0.0541 0.0239 0.0214
Matrix 0.1009 0.8058 0.3866 0.3810

Mode 3
Particle 0.0101 0.1083 0.0330 0.0295
Matrix 0.1168 1.6605 0.4612 0.3796

Mode 4
Particle 0.0100 0.0722 0.0344 0.0334
Matrix 0.1557 1.2821 0.6322 0.6335

Fig. 13. Distribution of the volume averaged error (homogenization) given by Eq. (24) of the 200 randomly selected query points in each
mode. (a) Particle. (b) Matrix.

Moreover, we compute the error associated with the homogenized potential energy:

E0W =

⏐⏐0W RO M
−

0W F E M
⏐⏐

0W F E M
× 100 [%]. (25)

Here, 0W RO M and 0W F E M are the homogenized strain energies computed using the MNROM framework and
FEM respectively. Because mode 1 and mode 4 are purely tensile and compressive, and also more volumetric in
nature (see Fig. 5), these are the modes contributing to the moderate to high volumetric strain energy in Fig. 14(b).
On the other hand, mode 2 and mode 3 are more deviatoric and contribute more to the deviatoric energy in Fig. 14(a).
In the entire analysis with 800 query points, 94.12% of the points have less than 10% error as computed from
Eq. (25). Only a few points (around 5%) show more than 10% error. Moreover, the greedy procedure introduced
in Section 2.2.2 can be used to enrich the neighborhoods with large errors and thus improve the overall accuracy
further. This is a large improvement over our prior work, where only 75% of the cases had error below 20% [16].
This indicates the strength of the physics-guided manifold construction. Furthermore, we would like to learn the
functional form of the homogenized potential energy, 0W (0C). We do it separately for the volumetric part, 0WJ (0 J ),
and the deviatoric part, 0WC (

0Ĉ). We could use a machine learning technique for this calibration, however, here
we simply take the functional form given in Eq. (22) and learn it as a least square fit. Fig. 15 depicts the model
calibration using the volumetric (Fig. 15(b)) and deviatoric (Fig. 15(a)) functions for both the FEM and MNROM
data. The FEM and MNROM parameterizations show an excellent agreement for both the volumetric and deviatoric
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Fig. 14. Macroscale strain energy density function MNROM versus FEM. (a) The deviatoric potential, 0WC (0Ĉ). (b) The volumetric potential,
0WJ (0 J ).

Fig. 15. Least-square fit of the macroscale strain energy density function from MNROM versus FEM (a) The deviatoric potential, 0WC (0Ĉ).
(b) The volumetric potential, 0WJ (0 J ).

Table 5
Homogenized material properties of the RUC in Fig. 4 determined from the least-square fit.

Source κ [MPa] µ10 [MPa] µ01 [MPa]

MNROM 96.37 11.01 11.01
FEM 96.36 11.74 11.74

potentials. Finally, the homogenized material constants (i.e., the coefficients of the least-square fit) for both FEM
and MNROM models are presented in Table 5.

Although we can derive the homogenized stress after we learn the functional form of the homogenized potential,
here we would also like to check the quality of the homogenized stress computed from the microscale field
using MNROM. We compare this stress with the FEM solution. In Fig. 16(a), we plot the Frobenius norm of
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Fig. 16. Macroscale first Piola stress tensor, 0P , MNROM versus FEM. (a) Frobenius norm of 0P against Frobenius norm of 0F. (b)
Distribution of the homogenization error given by Eq. (26).

the macroscopic first Piola stress tensor, 0P =
1

|Θ0|

∫
Θ0

1P dΘ , with the corresponding Frobenius norm of the

macroscopic deformation gradient, 0F, for all four modes. Note, 0F is the energy conjugate to 0P . We can see that
the points corresponding to ∥

0P∥ computed by MNROM are very close to the points which are calculated using
the FEM. To close the comparison, we compute the error as follows:

E0P =
∥

0P RO M
−

0P F E M
∥

∥
0P F E M∥

× 100 [%]. (26)

The error plot is shown in Fig. 16(b), where the maximum error is E0P = 0.38%. This is again a large
improvement over the results presented in [16], where only 67.25% of all query points had less than 1% error
with the maximum error approaching 20%.

5.6. Localization of material response

In this section, we explore the ability of our adaptive data enrichment scheme to improve MNROM in terms
of the local (element-wise) engineering fields derived from the microscopic deformation. Note that localization of
the material response is performed using the highly parallel FEM solver PGFem3D. When a new loading condition
(i.e., η) is selected, we use NN and find the reduced vector ζ . Next, we perform the reconstruction of the solution
and obtain the solution vector ξ by applying the map f −1. This solution vector is loaded into the parallel FEM
solver and traditional FEM operations are performed to compute, strains, stresses, etc. Thus, the re-localization of
the solution is obtained quickly and consistently with the FE2 setting. Moreover, if the MNROM solution is not
sufficient, we can execute the nonlinear solve with ξ as the initial guess and produce DNM with a high degree of
acceleration.

In this study, we consider the deformation gradient in the matrix Fm and the Almansi strain, e, defined as

e =
1
2

(1 − F−1 F−T ). (27)

Moreover, we define ∥e∥F as the measure of the microscopic effective Almansi strain and use it for the localization
assessment. To compare FEM and MNROM solutions, we quantify the deformation gradient error using Em (i.e., see
Eq. (23)) at each local (microscopic) point Y in the microstructure (i.e., each finite element in RUC). Moreover,
we define an effective strain error as follows:

Ee =
|∥eRO M

∥F − ∥eF E M
∥F |

∥eF E M∥F
× 100 [%]. (28)
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Fig. 17. Joint probability distribution (computed in discrete element-wise sense) of the local fields (in matrix phase). (a) Em and ∥FF E M
∥F .

(b) Ee and ∥eF E M
∥F .

Because mode 3 is relatively more complex in nature, we chose a query point from mode 3 to judge the quality
of the localization process, which corresponds to a very high strain. We plot two joint probability distributions:
Fig. 17(a) shows the joint probability distribution of Em and ∥FF E M

∥F , and Fig. 17(b) displays the joint probability
distribution of Ee and ∥eF E M

∥F . Because the deformation of the particles is negligible, we focus on the matrix. The
joint probability distribution is constructed from a cloud of points representing individual finite elements within the
matrix phase (285,380 elements in the matrix).

Fig. 17(a) shows that most finite elements in the matrix carry a mean localization error of 0.99% for this loading
case. Although the range of deformations is [1.55, 2.15], the deformation is concentrated between ∥FF E M

∥F = 1.5
and ∥FF E M

∥F = 1.65, which characterizes very high compressive strain (note that ∥1∥F =
√

3 = 1.732). However,
this particular loading case also induces very high tensile strain locally. Fig. 17(a) shows that the error Em is
concentrated between ∼ 0.5 − 1.5%. Fig. 17(b) reveals that the mean microscopic effective Almansi strain error
calculated at every finite element in the matrix is 4.53%. Note that the regions of high strain are concentrated
between errors of 3 − 5%. Moreover, 70.46% of the finite elements have errors below 5% (median error is 2.84%),
and all of the finite elements in the matrix have errors below 15%. These results show excellent localization
prediction of MNROM. Moreover, all higher error points are associated with negligible effective strain (see strain
region ∥eF E M

∥F = 0.03 in Fig. 17(b)).
Finally, Fig. 18 provides a visual comparison of the microscopic effective Almansi strain in the matrix between

the FEM (left: Fig. 18(a)) and MNROM (right: Fig. 18(b)) analysis. We can observe that MNROM is able to capture
the overall strain distribution extremely well including localized features.

6. Conclusion

We have designed and implemented a novel physics-guided adaptive sequential sampling technique in the context
of the manifold-based reduced order model, MNROM, for multiscale modeling of nonlinear hyperelastic materials.
The MNROM relies on different nonlinear maps, established through Isomap for dimension reduction, kernel
inverse/reconstruction map and a NN. This manifold-based ROM not only drastically speeds up the CH process
(i.e., by avoiding additional large parallel finite element simulations in the FE2 setting), but it also provides both
homogenization and localization of the multiscale analysis for complex three-dimensional hyperelastic materials.

Although MNROM is a promising data-driven approach, it lacks an efficient means of data sampling. Thus, we
have developed a novel physics-driven sampling strategy that mitigates this issue. Our approach is a stepwise data
enrichment method, intended to minimize the sparse regions of the high-dimensional manifolds which effectively
maximizes information gain in each step. The method couples input and output space and explores the pattern in
the output space, which is directly guided by the inherent physics in the input space (i.e., the macroscale loading
condition). We learn the pattern in each step based on the current dataset which determines how extra simulations
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Fig. 18. Visualization of the microscopic effective Almansi strain (∥e∥F ) for ηq
= {

0λ1 = 0.9284, 0λ2 = 0.9058, 0λ3 = 1.0839, ϕ1
=

2.4217, ϕ2
= 1.2802, ϕ3

= 0.3165}. Note that the particles are rigid-like and hence are removed for visualization purpose. (a) FEM
simulation. (b) MNROM analysis.

are decided and added to the database. In this work, we have used the same framework of MNROM, where the
multiscale loading conditions are simulated in terms of the macroscopic principal stretches as well as the orthogonal
principal directions, while the high-dimensional manifold has been constructed from the microscopic displacement
fields. Moreover, we have shown the effectiveness of the proposed sampling technique through meticulous numerical
simulations.

In the numerical example, we observed that the data distribution becomes a smooth stepwise data enrichment
and accordingly, all the maps improved significantly. This physics-driven deterministic sampling strategy also ap-
preciably reduced the number of required simulations by eliminating redundant data points. Thus, the computational
complexity of MNROM is reduced enormously. Also, we have shown that with the proper enrichment the additional
simulations can be added to the dataset seamlessly using a greedy algorithm. Moreover, we can observe that even the
localization process produced extremely small error with a very small number of simulations. This sampling strategy
is not only helpful for CH and FE2 acceleration, but can potentially be applied to many other physical problems
by identifying the influential parameters. The development of MNROM that considers also path-dependent material
nonlinearity (e.g., visco-plasticity) is an important future direction.
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