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Highlights

• We develop an asynchronous space-time method for localized uncertainty assessment.
• We utilize polynomial chaos and domain decomposition with local Lagrange multipliers.
• We provide verification examples and convergence studies.
• We solve an impact problem with localized uncertainty in a region of interest.

Abstract

The computational cost associated with uncertainty quantification of engineering problems featuring localized phenomenon can
be reduced by confining the random variability of the model parameters within a region of interest. In this case, a localized treatment
of mesh and time resolutions is required to capture the effect of the confined material uncertainty on the global response. We present
a computational approach for localized uncertainty quantification with the capability of asynchronous treatment of mesh and time
resolutions. In particular, we allow each subdomain to have its local uncertainty representation and the corresponding mesh and
time resolutions. As a result, computing resources can be directed toward a small region of interest where a model with high spatial
and temporal resolutions is required. To verify the numerical implementation, we consider elastic wave propagation in an axially
loaded beam. Moreover, we perform convergence studies with respect to the spatial and temporal discretizations as well as the size
of an uncertain subdomain. A projectile impacting a composite sandwich plate is considered as an engineering application for the
proposed method.
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1. Introduction

Many practical engineering applications rely on the predictive capability of computer simulations [1]. Advances
in computing power and numerical algorithms facilitate such predictions of large-scale applications using parallel
computing (e.g., [2]). However, for the credibility of the computer predictions, it is critical to quantity uncertainty in
the numerical simulations due to the random variability of the model parameters [3–6]. Uncertainty Quantification
(UQ) using the traditional Monte-Carlo (MC) simulations can become computationally prohibitive when the
computational cost of the underlying deterministic solver is already intensive [7,8]. These issues are especially
apparent in problems with multiple spatial and temporal scales, where a large number of deterministic runs are
required for convergence [1,9].

For a certain class of problems that are described by stochastic PDE’s (i.e., PDE’s with random coefficients),
the Polynomial Chaos (PC) approach can provide a cost effective alternative for the uncertainty assessment of
computationally intensive applications [5,7,10]. In the PC approach, the solution is represented by a functional
expansion along the stochastic dimension and the coefficients of the expansion are determined either through Galerkin
projection (intrusive) or pseudo-spectral projection (non-intrusive) [10,5,8]. Similar to MC sampling, the non-intrusive
approach requires multiple calls to the underlying deterministic solver, which may become impractical for complex
problems [8,11]. On the other hand, the intrusive approach generates a deterministic linear system to obtain the PC
coefficients. However, as the size of the underlying deterministic problem and/or the dimension and order of the
stochastic expansion grow, the linear system in the intrusive PC approach becomes exponentially larger in size and
harder to solve [12,13]. Therefore, methodologies based on exploiting parallel algorithms are required to facilitate
the intrusive PC implementation (i.e., to large-scale problems). Thus, customized PC solvers have been an active
area of research. For example, multigrid methods [14,15], preconditioned iterative solvers [16–19], and domain
decomposition techniques [20–24] have been utilized for the intrusive PC implementation. Another approach to reduce
the computational cost of PC framework for UQ is stochastic model reduction (e.g., [25–28]).

Beside devising customized solvers for the intrusive PC implementations, domain decomposition methods have
also been utilized for the localized treatment of uncertainty (e.g., [29–32]). The localization treatment requires a
strategy to couple subdomains having different representation of uncertainty or subdomains with stochastic and
deterministic models. Winter and Tartakovsky [29,30] introduced the random domain decomposition method to
represent uncertainty in a partitioned domain as a two-scale random process. In their work, there is a global spatial
scale of uncertainty in the extent of the subdomains and a local scale of uncertainty within each subdomains. Cottereau
et al. [31] proposed a framework utilizing the Arlequin method to couple stochastic and deterministic subdomain
models. In their framework, an overlap region between the subdomains is identified and a weighting function is
introduced for the energy partitioning between the subdomain models. Hadigol et al. [32] adapted FETI algorithm and
a separated representation for the stochastic expansion to formulate a framework which enables partitioned treatment
of uncertainty.

In this work, we focus on reducing the computational cost of UQ in problems where a region of interest can
be specified. In this region, the high resolution space and time discretization schemes are used for a stochastic
model. Apart from the region of interest, low spatial and temporal resolutions are allowed for a stochastic model
with low dimensional representation of the uncertainty (or a deterministic model). The framework can be viewed as
a reduced representation of uncertainty for problems with localized features. The reduced representation is based on
the localization treatment of the random material properties as well as the spatial and temporal resolutions. Therefore,
computing power can be focused in a region of interest. To formulate the localized UQ framework, we extend the
Parallel Asynchronous Space–Time Algorithm based on a Domain Decomposition Method (PASTA-DDM) [33] and
incorporate intrusively the PC basis for the stochastic representation. Although we consider the intrusive approach
for the PC implementation, we retain the same structure of the dual–primal linear system as in the deterministic
PASTA-DDM [33]. The matrices in the stochastic dual–primal system have block sparsity structure compared to their
counterparts in the deterministic case.

For the numerical illustration, we consider an axially loaded beam with the Young’s modulus being a random
field. We verify the numerical results of PASTA-DDM with Uncertainty Quantification (PASTA-DDM-UQ) using
MC simulations. We quantify and provide convergence rates for the errors induced by coarsening the spatial and
temporal resolutions, and coarsening and confining uncertainty. In the second example, we consider a dog–bone like
specimen and study the dimension of the coupling mechanism, the sparsity structure of the arising linear system, and
the effect of the localization region (location of the subdomain with random properties). Moreover, we consider a
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projectile impacting a sandwich plate and show the potential of PASTA-DDM-UQ in reducing the computational cost
of UQ in a complex simulation.

We organize the article as follows. Section 2 provides the mathematical formulation for PASTA-DDM-UQ.
The spatial and time discretization schemes are presented in Section 3 and Section 4, respectively. Verification,
convergence studies and application to an engineering problem are shown in Section 5. We draw conclusions in
Section 6. In the Appendix, we present a Bayesian strategy to infer the localization region of interest.

2. Governing equations

Let Ω ⊂ Rd be a spatial domain with boundary ∂Ω and let (Θ,Σ , P) be a probability space, where Θ is the sample
space, Σ is the associated σ -algebra over Θ , and P represents an appropriate probability measure on Σ . Furthermore,
let ξ = {ξi (θ )}M

i=1, where θ ∈ Θ represents a finite set of standard identically distributed random variables having
a joint probability density function p(ξ ) = p1(ξ1) · p2(ξ2) · · · pM (ξM ) with support Ξ = Ξ1 × Ξ2 · · · × ΞM ⊂ RM .
Then, we consider the following stochastic transient linear elasticity problem: Find a random function u(x, t, ξ ) :

Ω × [0, T f ] × Ξ → R, such that the following equation holds

ρü(x, t, ξ ) = ∇ · σ + b in Ω × [0, T f ] × Ξ ,

u(x, t, ξ ) = ū on ∂Ωu × [0, T f ] × Ξ ,

σ · n = t̄ on ∂Ωt × [0, T f ] × Ξ ,

u(x, 0, ξ ) = u0 in Ω × Ξ ,

u̇(x, 0, ξ ) = u̇0 in Ω × Ξ ,

(1)

where ρ is the mass density, σ is the stress tensor, u is the displacement field, b is the body force, ū is the prescribed
displacement on ∂Ωu , t̄ is the prescribed traction on ∂Ωt , n is a unit normal to the surface, and u0 and u̇0 are the initial
displacement and velocity, respectively.

For small deformations the infinitesimal strain tensor, ε, is given by

ε =
1
2

(
∇u + ∇uT )

. (2)

Without loss of generality, we assume the elastic properties to be uncertain and define the following Kelvin-Voigt
viscoelastic model [34] in which stress is proportional to both the strain ε and strain-rate ε̇ as

σ = D(ξ ) : ε + D̂ : ε̇, (3)

where D(ξ ) is the linear elasticity tensor with uncertain parameters and D̂ is a damping tensor assumed to be
deterministic and based on the mean elasticity tensor as D̂ = ηD0. Here, η is the damping coefficient and D0 is
the mean elasticity tensor. We further assume that the Young’s modulus can be represented by a random field, while
the Poisson’s ratio can be assumed deterministic. Note that the proposed algorithm is capable of handling arbitrary
non-Gaussian representation yielding from considering both the Young’s modulus and Poisson’s ratio to be random.
Representing the resulting non-Gaussian coefficients of the ratio of two random quantities in the constitutive matrix
can be obtained by PC Galerkin projection [5,35,36]. However, in the subsequent examples, only Young’s modulus is
represented as a random field in order to avoid undue complexity in the numerical implementation.

2.1. Representation of a random field

Given the mean field E0(x) and the covariance function C(x1, x2) of the Young’s modulus, Karhunen–Loeve
Expansion (KLE) is used to represent the random field as [5,7]

E(x, ξ ) = E0(x) + τ

M∑
i=1

√
κiαi (x)ξi (θ ) =

M∑
i=0

Ei (x)ξi (θ ), (4)

where τ denotes the standard deviation of the field, κi , and αi (x) are the eigenvalues and eigenfunctions of the
covariance function, respectively. Here, we denote the KLE coefficients Ei (x) = τ

√
κiαi (x), for i > 0, and

set ξ0(θ ) = 1. The eigenpairs {κi , αi (x)} can be obtained from the solution of the following integral eigenvalue
problem [5,7]∫

Ω

C(x1, x2)αi (x1)dx1 = κiαi (x2). (5)
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(a) Spatial domain, Ω . (b) Domain decomposition, Ω = Ω1
⋃

Ω2.

Fig. 1. An arbitrary computational domain Ω with a random material property (i.e., E(x, ξ )) and its partitioning into two non-overlapping
subdomains Ω1 and Ω2. The local interfaces of Ω1 and Ω2 are denoted by Γ1 and Γ2, respectively. The global interface is denoted by Γ . The
velocities on the boundaries Γ1, Γ2, and Γ are denoted by u̇1, u̇2, and φ̇, respectively.

Consequently, the random elasticity tensor D(ξ ) is represented as

D(ξ ) =

M∑
i=0

Diξi (θ ), (6)

where Di are the KLE coefficients of the elasticity tensor associated with the KLE coefficients of the Young’s modulus
Ei (x) in Eq. (4).

2.2. PASTA-DDM with uncertainty quantification (PASTA-DDM-UQ)

For large-scale problems with localized uncertainty, a domain decomposition based algorithm such as PASTA-
DDM [33] becomes a natural choice. In this section, we summarize our PASTA-DDM method and extend it to
problems with uncertainty. In PASTA-DDM framework, the physical domain Ω , Fig. 1, is partitioned into ns non-
overlapping subdomains Ωs, 1 ⩽ s ⩽ ns such that:

Ω =

ns⋃
s=1

Ωs, Ωs

⋂
Ωr = ∅ for s ̸= r, Γ =

ns⋃
s=1

Γs, Γs = ∂Ωs \ ∂Ω . (7)

This decomposition is supplemented with transmission conditions to satisfy the continuity requirement of the solution
field.

Consequently, Eq. (1) can be transformed into the following constrained minimization problem: Find a random
function u(x, t, ξ ) : Ω × [0, T f ] × Ξ → R, such that

L(us, u̇s) =

ns∑
s=1

(T (u̇s) − V(us)) → min, (8)

Q(u̇s) =

ns∑
s=1

1
2

∫
Ξ

∫
Ωs

ε̇s : D̂s : ε̇s d�dΞ , (9)

subject to:
∫
Ξ

∫
Γ

(u̇s − φ̇) d0dΞ = 0, s = 1, . . . , ns, (10)

where L(us, u̇s) is the Lagrangian of the system, T (u̇s) denotes the subdomain kinetic energy, V(us) is the subdomain
potential energy, and Q(u̇s) is the dissipation function. Here, u̇s represents the local subdomain velocity and φ̇ is
the velocity of the common interface (frame) (see Fig. 1(b)). We denote the expectation operator as

∫
Ξ (•)p(ξ )dξ =∫

Ξ (•)dΞ .
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Utilizing the local Lagrange multipliers λs to enforce the common interface kinematic constraint given by Eq. (10),
the augmented Lagrangian yields

L̃(us, u̇s, λs, φ̇) =

ns∑
s=1

∫
Ξ

(
1
2

∫
Ωs

ρs u̇s · u̇s d� −
1
2

∫
Ωs

εs : σ s d� (11)

+

∫
Ωs

us · bs d� +

∫
∂Ωt

us · t̄s d0 +

∫
Γ

λs · (u̇s − φ̇) d0

)
dΞ .

The Hamilton’s principle with the dissipation term reads [37]∫ T f

0

(
δL̃ −

∂Q
∂ ε̇s

: δεs

)
dt = 0, (12)

where δL̃ is the first variation of the augmented Lagrangian:

δL̃ =

ns∑
s=1

∫
Ξ

[∫
Ωs

ρsδu̇s · u̇s d� −

∫
Ωs

δεs : Ds(ξ ) : εs d� +∫
Ωs

δus · bs d� +

∫
∂Ωt

δus · t̄s d0 +

∫
Γ

δλs · (u̇s − φ̇) d0 +∫
Γ

δu̇s · λsd0 −

∫
Γ

δφ̇ · λs d0

]
dΞ . (13)

Utilizing Eqs. (9) and (13), the Hamilton’s principle in Eq. (12) leads to the following three equations for a typical
subdomain Ωs . The stochastic constrained equation of motion:∫

Ξ

∫
Ωs

ρs üs · δus d� dΞ +

∫
Ξ

∫
Ωs

ε̇s : D̂s : δεs d� dΞ (14)

+

∫
Ξ

∫
Ωs

εs : Ds(ξ ) : δεs d� dΞ +

∫
Ξ

∫
Γs

λ̇s · δus d0 dΞ

=

∫
Ξ

∫
Ωs

δus · bs d� dΞλs +

∫
Ξ

∫
∂Ωt

δus · t̄s d0 dΞ .

The stochastic kinematic constraint coupling the subdomains:∫
Ξ

∫
Γ

δλs · (u̇s − φ̇) d0 dΞ = 0. (15)

The stochastic equilibrium equation among the subdomains:

−

ns∑
s=1

∫
Ξ

∫
Γ

δφ · λ̇s d0 dΞ = 0. (16)

Next, we seek an approximate solution to the weak problem in a finite dimensional tensor product space of the
spatial finite element and stochastic multivariate polynomial. This tensor space H(Ωs × Ξ ) can be expressed as
H = H(Ωs) ⊗ L2(Ξ ), where H(Ωs) is the traditional Hilbert space and L2(Ξ ) is the space of second order random
variables [38].

The solution to the stochastic weak problem, Eqs. (14)–(16), can be obtained either using the intrusive or non-
intrusive approach. The selection of intrusive versus non-intrusive implementation is problem dependent and requires
careful considerations. In the intrusive approach, an optimal accuracy of the solution can be obtained since the error
resulting from the finite PC representation is orthogonal to the stochastic space spanned by the PC basis [8,39]. On
the other hand in the non-intrusive approach, the error due to the integration rule can cause aliasing [8]. Furthermore,
for problems when a single deterministic run (required by the non-intrusive approach) is computationally intensive,
the intrusive approach can provide a faster execution time given the development of efficient solvers [8,39]. Since the
main objective of this work is to develop a framework for reducing the computational cost of UQ in problems with a
localized region of interest, we follow the intrusive approach.
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3. The stochastic finite element discretization

Let the spatial subdomain Ωs be triangulated with finite elements of size hs and let the associated finite
element subspaces X s

h ⊂ H 1
0 (Ωs), Y s

h ⊂ H 1
0 (Ωs), and Zs

h ⊂ H 1
0 (Ωs) for the displacement, Lagrange multipliers,

and the common interface variable be spanned by nodal bases functions {Ni
u(x)}L

i=1, {Ni
λ(x)}L

i=1, and {Ni
φ(x)}L

i=1,
respectively. Furthermore, for the stochastic discretization, let Wp ⊂ L2(Ξ ) be a finite dimensional space of square-
integrable random variables spanned by the polynomial chaos basis functions {Ψ j (ξ )}N

j=0 of the random variables
ξ (θ ) = {ξi (θ )}M

i=1. Thus, the approximated stochastic finite element solution in the discrete tensor product space
X s

h ⊗Wp ⊂ H 1
0 (Ωs) ⊗ L2(Ξ ), Y s

h ⊗Wp ⊂ H 1
0 (Ωs) ⊗ L2(Ξ ), and Zs

h ⊗Wp ⊂ H 1
0 (Ωs) ⊗ L2(Ξ ) can be expressed as

uhp
s (x, ξ , t) =

N∑
j=0

L∑
i=1

Ni
u(x)Ψ j (ξ )ũi j

s (t),

λhp
s (x, ξ , t) =

N∑
j=0

L∑
i=1

Ni
λ(x)Ψ j (ξ )λ̃

i j
s (t),

φhp
s (x, ξ , t) =

N∑
j=0

L∑
i=1

Ni
φ(x)Ψ j (ξ )φ̃

i j
s (t).

(17)

Substituting these discrete fields in the weak form Eqs. (14)–(16) gives the following semi-discretized stochastic
equation of motion, the kinematic constraint, and the equilibrium equation at the interface

MsÜs(t)Q0
+ CsU̇s(t)Q0

+

M∑
i=0

Ki
sUs(t)Qi

+ ET
s Λs(t)Q0

= Fs(t), (18)

EsU̇s(t)Q0
− BsΦ(t)Q0

= 0, (19)

−

ns∑
s=1

BT
s Λs(t)Q0

= 0. (20)

We drop the nodal finite element marks (tilde) for brevity of the representation and define the following matrices:

Q0
=

∫
Ξ

ΨΨdΞ , Qi
=

∫
Ξ

Ψξ iΨdΞ , Ms =

∫
Ωs

ρsNT
u Nud�,

Cs =

∫
Ωs

HT
u D̂sHud�, Ki

s =

∫
Ωs

HT
u Di

sHud�, Es =

∫
Ωs

NT
λ Nud0,

Bs =

∫
Ωs

NT
λ Nφd0, Us(t) = {u0

s (t), . . . , uN
s (t)},

Λs(t) = {λ̇
0
s (t), . . . , λ̇

N
s (t)}, Φ(t) = {φ̇

0
(t), . . . , φ̇

N
(t)}.

Here, Hu is the displacement–strain matrix.
At this stage, it is worth mentioning that in the case of non-matching meshes along the interfaces, the discrete

subdomain trace operators (Es and Bs) in Eq. (19) are not node-to-node restriction matrices. Therefore the
finite element discretization, Eqs. (18)–(20), must satisfy the Ladyzhenskaya–Babuška–Brezzi (inf–sup) stability
condition [40]. In the original PASTA-DDM work [33], we have shown that our three-field method satisfies the
inf–sup condition for the deterministic case. For the stochastic case, since we use a discrete tensor product space, the
inf–sup condition holds, provided that the material parameters are bounded.

4. Time discretization

In this section, we briefly summarize the asynchronous time integration method presented in Subber and
Matouš [33]. Let the integration time [T0, T f ] be divided into n f time steps and let nts denote the number of the
subdomain time steps. Then, the global synchronization ∆T and the local subdomain ∆ts time steps are defined as

∆T =
T f − T0

n f
and ∆ts =

∆T
nts

. (21)
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The Newmark time integration scheme, with local integration parameters γs and βs , is used to advance the stochastic
system one time step as

U̇k+1
s = U̇k

s + (1 − γs)∆tsÜk
s + γs∆tsÜk+1

s , (22)

Uk+1
s = Uk

s + ∆tsU̇k
s +

(
1
2

− βs

)
∆t2

s Ük
s + β∆t2

s Ük+1
s . (23)

Furthermore, a generalized α method is used for the Lagrange multipliers as

Λk
s = SkΛn

s + T kΛn+1
s , (24)

where the linear functions read Sk
= 1 − k/nts and T k

= k/nts . Accordingly, the full discrete system (after
vectorization) yields

MsÜ k+1
s + CsU̇ k+1

s + KsU k+1
s + T k+1ET

s Ln+1
s = F k+1

s − Sk+1ET
s Ln

s , (25)

−γs∆tsÜ k+1
s + U̇ k+1

s = − (1 − γs)∆tsÜ k
s − U̇ k

s , (26)

−βs∆t2
s Ü k+1

s + U k+1
s = −

(
1
2

− βs

)
∆t2

s Ü k
s − ∆tsU̇ k

s − U k
s ,

EsU̇ k+1
s − EsPk+1

s = 0, if k ̸= nts − 1,

EsU̇ k+1
s − BsPn+1

= 0, if k = nts − 1, (29)
ns∑

s=1

−BT
s Ln+1

s = 0, (30)

where vectorization, vec(•), is employed which concatenates the columns of a matrix into one column vector.
Furthermore, we define the following vectors and matrices

Ms = Q0
⊗ Ms, Cs = Q0

⊗ Cs, Ks =

M∑
i=0

Qi
⊗ Ki

s,

Es = Q0
⊗ Es, Bs = Q0

⊗ Bs, Ls = vec(Λs),
Us = vec(Us), Fs = vec(Fs), P = vec(Φ).

Note that the structure of the full dual–primal system for PASTA-DDM-UQ in the stochastic setting is the same as that
of the original deterministic PASTA-DDM [33]. The only difference is the block sparsity structure of the matrices.
We will comment on the matrix structure in Section 5.2.

5. Numerical examples

In this section, we present the numerical results of our framework for asynchronous space–time algorithm with
uncertainty quantification. First, we verify our computer implementation of PASTA-DDM-UQ with the traditional
Monte-Carlo (MC) simulations. We study different approaches for reducing the computational cost of uncertainty
quantification. We assess and provide convergence rates for the error that is associated with coarsening the space
and time discretizations, and confining uncertainty. Furthermore, we study the dimension of the coupling mechanism,
sparsity pattern and the localization region. Then, we show the capability of PASTA-DDM-UQ to solve engineering
problems by considering a composite plate impacted by a projectile. We investigate and study the effect of combining
asynchronous space and time refinements with localized uncertainty.

5.1. Verification and convergence studies

For the numerical verification, we consider an axially loaded beam (3.0 × 0.5 m) clamped at the right-hand side
while a time-dependent traction vector is applied on the left-hand side as shown in Fig. 2. For PASTA-DDM-UQ
implementation, the computational domain is decomposed into three subdomains Ω = ∪

3
s=1Ωs . The horizontal

traction is defined as F(t) = F0 cos(ωt), where F0 = 2100 kN/m and ω = 1.8 s−1. The quantities of interest (QOIs)
are the horizontal component of the displacement and velocity at point P located in the middle of the domain as
marked in Fig. 2.



376 W. Subber, K. Matouš / Comput. Methods Appl. Mech. Engrg. 325 (2017) 369–394

Fig. 2. Axially loaded beam exited by a time-dependent traction vector. The QOIs are the displacement and velocity at point P located at
(1.5, 0.25) m.

For the numerical implementation, the Young’s modulus (E(x, ξ ), x ∈ Ω ,Ω = ∪
3
s=1Ωs) is represented by a random

field having a constant mean E0 = 81.9 kPa and the following exponential covariance function

C(x1, x2) = τ 2 exp
(

−
|x1 − x2|

bx
−

|y1 − y2|

by

)
, (31)

where the standard deviation is τ = 12.285 kPa, and the correlation lengths are bx = 6.0 m and by = 3.0 m. The
analytical expressions for the eigenvalues and the associated eigenfunctions for this covariance function are available
in many textbooks on UQ (e.g., [5–8]). Typically for computer implementation, the KLE is truncated such that a
given amount of the random field variance is retained [5–8]. In other words, the sum of the neglected eigenvalues (the
mean-square-error) is sufficiently small compared to the sum of the first M terms [5–8]. In the numerical examples,
we truncate KLE such that 90% of the total variance is captured by the first M terms. Although not exercised in this
work, a scaling of the eigenvalues can be considered such that the total variance is conserved. This approach may
enhance the accuracy of the KLE representation of the input random field, but not the localized UQ framework.

The Young’s modules field is approximated by KLE with two random variables. Poisson’s ratio and mass density
are assumed to be deterministic quantities and their assigned values are ν = 0.3 and ρ = 7800 kg/m3. The damping
matrix is also deterministic and based on the mean property of the elasticity matrix with a damping coefficient
η = 15%.

5.1.1. Verification of uncertainty representation
To verify the computer implementation of PASTA-DD-UQ, MC method without domain decomposition is

considered. For the sampling procedure, Latin Hypercube Sampling (LHS) technique is used with 1000 samples.
The computational domain is discretized using mesh density h = 0.03125 m leading to 3072 elements and 1649
nodes. Traditional piecewise linear finite elements are used for the displacement, the common interface variable, and
the Lagrange multipliers [33]. Three subdomains with matching discretization along the interfaces are used in this
example. The system is integrated with uniform time step ∆t = 0.025 s up to the final time T f = 50 s. We use
intrusive implementation of PC and employ the second (PC2), fourth (PC4), and sixth order (PC6) expansions.

Fig. 3 shows the mean and the standard deviation (Std) of the horizontal component of the displacement at point
P , while Fig. 4 displays the phase space diagrams. It can be seen that the fourth order PC representation is in good
agreement with MC results. Increasing the PC order from fourth (15 terms in the expansion) to sixth (28 terms in
the expansion) qualitatively does not change the accuracy of the solution. Note that the presence of random Young’s
modulus leads to a discrepancy of 16% in the maximum amplitude of the displacement and velocity means compared
to the deterministic solution. Thus, this example provides a reasonable testbed.

To assess the quality of the PASTA-DDM-UQ solution, we define the following error measures for both the
displacement and velocity at point P:

EPC (MSTD(X)) =
MSTDPC6(X) − MSTD(X)

max
(
MSTDPC6(X)

) × 100 [%],

EMC (MSTD(X)) =
MSTDMC (X) − MSTD(X)

max
(
MSTDMC (X)

) × 100 [%].

(32)

Here, EPC (•) denotes the error with respect to sixth order PC representation and EMC(•) indicates the error with respect
to MC simulations. The quantity MSTD represents either the mean or the standard deviation and the dummy variable
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(a) Mean.

(b) Standard deviation.

Fig. 3. The mean (a) and the standard deviation (b) of the horizontal component of the displacement at point P . MC indicates Monte-Carlo
simulations, PC2, PC4, and PC6 are the second, fourth, and sixth order PC expansion, respectively.

X is either the horizontal displacement ux or velocity u̇x at point P . The quantity MSTD stands for the reference
solution.

In Fig. 5, we show the relative percentage error of the mean and Std of the displacement and velocity at point P
using fourth order PC expansion. The relative percentage error in the displacement and the velocity have the same
trend. The maximum value of the error in the mean for both the displacement and velocity is less than 0.5%. Moreover,
the error in the Std is less than 5% for both the displacement and velocity. The larger error in the Std compared to
the mean can be attributed to the fact that the higher order of the chaos expansion is required to accurately obtain the
higher order moments in PC expansion [41,42]. Based on these percentage error values, in the following subsections
we consider the fourth order PC expansion as an accurate representation of uncertainty in the response.

We note that this PC order is kept constant in all subdomains. To vary the PC order across the interface, a coupling
mechanism for the non-conforming PC coefficients would be required. This would be analogous to the case of non-
conforming meshes, but it is out of the scope of this work.

5.1.2. Effect of mesh incompatibility
For uncertainty quantification, when the solution varies slowly, a fine mesh resolution might not be needed

everywhere in the domain. In what follows, we investigate the effect of coarsening the mesh apart from the region
of interest on the accuracy of the solution. In particular, we consider three non-matching mesh discretizations listed
in Table 1. The meshes are defined such that a fine mesh resolution is kept in Ω2, where the QOIs are located, and
a coarser resolution is allowed in Ω1 and Ω3. In Fig. 6, we show mesh (b) which consists of 1632 elements and 903
nodes. This mesh has about 50% less elements than the full compatible mesh with h = 0.03125 m used in the previous
Section 5.1.1.
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(a) Mean.

(b) Standard deviation.

Fig. 4. The phase space diagram for (a) the mean and (b) the standard deviation at point P . MC indicates Monte-Carlo simulations, PC2, PC4,
and PC6 are the second, fourth, and sixth order PC expansion, respectively.

Table 1
Incompatible mesh discretizations.

Mesh h1 [m] h2 [m] h3 [m] h1:h2:h3

(a) 0.0625 0.03125 0.0625 1:2:1
(b) 0.1250 0.03125 0.1250 1:4:1
(c) 0.2500 0.03125 0.2500 1:8:1

For Mesh (b) with uniform time increment ∆ts = 0.025 s and fourth order PC expansion, the relative percentage
error of the mean and standard deviation of the displacement and velocity at point P are shown in Fig. 7. We use
the error measures defined in Eq. (32). Both the errors in the displacement and velocity have the same trend. A
reduction of about 50% in the number of elements leads to less than 1.5% maximum error in the mean displacement
and velocity and less than 5% maximum error in the Std of the displacement and velocity. Note that this error is
due to both reduction in PC order and mesh resolution. Clearly non-matching discretization introduces larger error
in the mean quantities compare to the standard deviation in contrast to the errors due to the PC order only (compare
Figs. 5 and 7). Although the error is in the 1%–5% range, the results suggest that the localized mesh resolution, for
this specific problem, affects the accuracy of the first mode of PC expansion more than the rest of the coefficients.

Next, to measure the convergence rate of the error at point P due to the mesh incompatibility, we define the
following norm

∥eMSTD(ux )∥ =

√∫
T

[
MSTD(u∗

x ) − MSTD(ux )
]2

dt, (33)
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(a) Mean of displacement. (b) Std of displacement.

(c) Mean of velocity. (d) Std of velocity.

Fig. 5. The error in the mean and the standard deviation at point P due to uncertainty representation. The error is measured using Eq. (32) with
MSTD being the solution using both MC (EMC ) and PC6 (EPC ), with compatible mesh h = 0.03125 m and uniform time step ∆t = 0.025 s. The
quantity MSTD is the solution using PC4 with compatible mesh h = 0.03125 m and uniform time step ∆t = 0.025 s.

Fig. 6. Mesh (b) with mesh densities h1 = 0.125 m, h2 = 0.03125 m, and h3 = 0.125 m.

where MSTD(u∗
x ) represents either the mean or Std corresponding to the compatible mesh with h = 0.03125 m and

MSTD(ux ) is either the mean or Std using meshes (a)–(c). In all cases, fourth order PC expansion and uniform time
increment ∆ts = 0.025 s are used. The convergence rates are shown in Fig. 8 for the mean and Std of the displacement
and velocity at point P . Second order convergence rate with respect to the average mesh size is achieved for both the
mean and Std (see [33] for deterministic convergence studies).

5.1.3. Effect of time asynchronicity
Next, we study the efficiency of the asynchronous time integration in reducing the computational cost of uncertainty

quantification. In particular, we keep a fine time step in subdomain Ω2 (subdomain containing the QOIs) and employ
a coarser time discretization in subdomains Ω1 and Ω3. The asynchronous time ratios are listed in Table 2.

Fig. 9 shows the relative percentage error for the case of asynchronous time discretization (case (b) in Table 2)
with matching meshes (mesh density h = 0.03125 m) and fourth order PC expansion. Once again, we use the error
measures defined in Eq. (32). When coarsening the time step four times in the subdomains Ω1 and Ω3, less than 1%
and 4% error in the mean and Std can be observed, respectively. These errors are due to both PC order reduction and
asynchronous time discretization.
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(a) Mean of displacement. (b) Std of displacement.

(c) Mean of velocity. (d) Std of velocity.

Fig. 7. The error in the mean and the standard deviation at point P due to mesh incompatibility. The error is measured using Eq. (32) with MSTD
being the solution using both MC (EMC ) and PC6 (EPC ), with compatible mesh h = 0.03125 m and uniform time step ∆t = 0.025 s. The quantity
MSTD is the solution using PC4 with mesh incompatibility ratio of h1:h2:h3 = 1:4:1 and uniform time step ∆ts = 0.025 s.

(a) Mean. (b) Standard deviation.

Fig. 8. Rate of convergence for (a) the mean and (b) the standard deviation at point P for the horizontal component of the displacement and
velocity with respect to the average mesh size. Uniform ∆ts = 0.025 s and PC4 are used.

Next, we measure the rate of convergence of the error in the mean and Std at point P with respect to the
synchronization time step. The same error norm defined in Eq. (33) is utilized. However, the reference quantity
MSTD(u∗

x ) is redefined as either the mean or Std corresponding to the synchronous time integration with ∆t = 0.025 s
and MSTD(ux ) is either the mean or Std due to the asynchronous time discretization (see Table 2). In all cases, fourth
order PC representation and matching meshes with h = 0.03125 m are used. The convergence rates are shown in
Fig. 10 for the mean and Std of the displacement and velocity at point P . Second order convergence rate with respect
to the synchronization time step is achieved (see [33] for deterministic convergence studies).
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Table 2
Asynchronous time discretizations.

Scheme ∆t1 [s] ∆t2 [s] ∆t3 [s] ∆t1:∆t2:∆t3

(a) 0.05 0.025 0.05 1:2:1
(b) 0.10 0.025 0.10 1:4:1
(c) 0.20 0.025 0.20 1:8:1

(a) Mean of displacement. (b) Std of displacement.

(c) Mean of velocity. (d) Std of velocity.

Fig. 9. The error in the mean and the standard deviation at point P due to asynchronous time integration. The error is measured using Eq. (32)
with MSTD being the solution using both MC (EMC ) and PC6 (EPC ), with compatible mesh h = 0.03125 m and uniform time step ∆t = 0.025 s.
The quantity MSTD is the solution using PC4 with compatible mesh h = 0.03125 m and time synchronicity ratio of ∆t1:∆t2:∆t3 = 1:4:1.

(a) Mean. (b) Standard deviation.

Fig. 10. Rate of convergence for (a) the mean and (b) the standard deviation at point P for the horizontal component of the displacement and
velocity with respect to the synchronization time step ∆T . Matching meshes h = 0.03125 m and PC4 are used.
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(a) Mean of displacement. (b) Std of displacement.

(c) Mean of velocity. (d) Std of velocity.

Fig. 11. The error in the mean and the standard deviation at point P due to the localized uncertainty. The error is measured using Eq. (32) with
MSTD being the solution using both MC (EMC ) and PC6 (EPC ), with compatible mesh h = 0.03125 m and uniform time step ∆t = 0.025 s. The
quantity MSTD is the solution when the Young’s modulus is a random field confined in Ω2 while a reduced field is assumed in Ω1 and Ω3. PC4 is
used with matching meshes h = 0.03125 m and uniform time step ∆t = 0.025 s.

5.1.4. Effect of localized uncertainty
In conjunction with asynchronous space–time scheme, the computational cost of uncertainty quantification can

be reduced further when the propagation media exhibits a confined stochastic nature. The effect of confining
the variability of the material properties around the region of interest is investigated next. In general, this is a
challenging task and often a problem dependent issue. The spatial confinement of uncertainty and the dimension
of its representation should be carefully considered with the PC order of the response and the location of the QOIs.
The correlation length of the random field can be used as an initial guide. We discuss some of these issues in the
example provided in Section 5.2.

We assume that the Young’s modulus is a random field and can be confined in Ω2, while a reduced representation
of uncertainty may be sufficient in subdomains Ω1 and Ω3:

E(x, ξ ) =

{
E(x, ξ ) x ∈ Ω2,

Ẽ(x, ξ ) x ∈ {Ω1,Ω3}.
(34)

Here Ẽ(x, ξ ) is a reduced random representation of the Young’s modulus and E(x, ξ ) is the full representation
provided in Eq. (4).

First, we use one random variable to represent the random field in Ω1 and Ω3, while keeping two random variables
in Ω2. Fig. 11 shows the relative percentage error of the mean and Std of both the displacement and velocity at point P
using Eq. (32). Matching meshes with mesh density h = 0.03125 m, synchronous time integration with ∆t = 0.025 s,
and fourth order PC are used. The errors in the displacement and velocity follow the same trend. The maximum value
of the error in the mean is about 1% and in the Std is about 4% for both the displacement and velocity.

Next, we use a deterministic model in both subdomains Ω1 and Ω3, and keep the stochastic model in subdomain
Ω2. In particular, only the mean value is used to represent the Young’s modulus in subdomains Ω1 and Ω3. However,
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(a) Mean of displacement. (b) Std of displacement.

(c) Mean of velocity. (d) Std of velocity.

Fig. 12. The error in the mean and the standard deviation at point P due to the localized uncertainty. The error is measured using Eq. (32) with
MSTD being the solution using both MC (EMC ) and PC6 (EPC ), with compatible mesh h = 0.03125 m and uniform time step ∆t = 0.025 s. The
quantity MSTD is the solution when the Young’s modulus is a random field confined in Ω2 while the mean field is assumed in Ω1 and Ω3. PC4 is
used with matching meshes h = 0.03125 m and uniform time step ∆t = 0.025 s.

two random variables are used in the subdomain Ω2. For matching meshes with mesh density h = 0.03125 m, uniform
time step ∆t = 0.025 s, and fourth order PC expansion, Fig. 12 shows the relative error of the mean and standard
deviation of both the displacement and velocity at point P using Eq. (32). The errors in the displacement and velocity
follow the same trend. The errors in the mean and standard deviation are larger to those with Ẽ(x, ξ ) represented
by one random variable (compare Figs. 11 and 12). This is expected since in the second case the material properties
across the subdomains are coupled through the mean value of the Young’s modulus only.

Note that the error can be reduced by either enlarging the length of the uncertain subdomain Ω2 or increasing
the order of the coupling mechanism between the subdomains (i.e., higher representation of the random field can
be considered in the region of interest, while a lower stochastic dimension can be assigned elsewhere). The latter
approach is studied in Section 5.2 and the former approach is considered in what follows.

We define the confinement length for localized uncertainty as l = (L − LΩ2 )/L , where L = 3.0 m is the size of
the entire computational domain and LΩ2 ∈ {2.5, 2.0, 1.5, 1.0} m represents the size of the uncertain subdomain Ω2.
In practice, the confinement length for localized uncertainty can be estimated using measurements as explained in
the Appendix. The error norm defined in Eq. (33) is utilized. However, the reference quantity MSTD(u∗

x ) is redefined
as either the mean or Std corresponding to the case of unconfined uncertainty (i.e., the Young’s modulus is a random
field defined in the entire domain). Matching meshes with mesh density h = 0.03125 m, synchronous time step
∆t = 0.025 s, and fourth order PC are used to study the convergence. The convergence rates are shown in Fig. 13 for
the mean and Std of the displacement and velocity at point P . The first order convergence rate is achieved for both
the displacement and velocity means at point P with respect to the confinement length of the localized uncertainty. A
faster convergence rate can be observed for the Std of the displacement and velocity at point P .
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(a) Mean. (b) Standard deviation.

Fig. 13. Rate of convergence for (a) the mean and (b) the standard deviation at point P for the horizontal component of the displacement and
velocity with respect to the confinement length l = (L − LΩ2 )/L . Matching meshes h = 0.03125 m, uniform time step ∆t = 0.025 s, and PC4
are used.

Table 3
Spatial discretization, temporal discretization, and random material
representation.

Ω1 Ω2 Ω3

h [m] 0.12500 0.03125 0.12500
∆t [s] 0.100 0.025 0.100
E E0 E(x, ξ ) E0

5.1.5. Effects of mesh incompatibility, time asynchronicity and localized uncertainty
The total effect of mesh incompatibility, time asynchronicity, and localized uncertainty on reducing the compu-

tational cost of uncertainty quantification is investigated next. Specifically, a coarse mesh and large time steps are
assigned to Ω1 and Ω3, where the mean field of the Young’s modulus is used. In contrast, a finer mesh and small time
steps are used in Ω2, where the QOIs are located, in conjunction with the full random field. The properties are listed
in Table 3 and we identify this simulation as the reduced model.

For the case of confined uncertainty with localized mesh and time resolutions in Fig. 14, we show the mean of the
horizontal component of the displacement and velocity at point P . For the sake of comparison, on the same plot we
show the results from matching meshes with mesh density h = 0.03125 m, uniform time step size ∆t = 0.025 s, sixth
order PC, and the Young’s modulus being a random field in the entire domain. We label these results as the full model.
The background light gray shaded area represents ±2 Std of the full model, while the foreground dark gray shaded
area represents ±2 Std of the reduced model. Fig. 15 shows magnified insets of Fig. 14. In the scale of these magnified
plots, there are only small differences between the mean results of both the full and reduced models. The confidence
interval represented by ±2 Std of the reduced model is smaller and lies within that of the full model. Note that the
reduced model consists of 50% fewer elements, 1/4 the number of time steps, 13 fewer terms in PC representation,
and no block coupling in the stiffness matrix of subdomains Ω1 and Ω3. Thus, large computational savings can be
achieved using the reduced model.

5.2. Effect of the stochastic coupling mechanism

The accuracy of the proposed algorithm for localized UQ can be enhanced by increasing the dimension of the
coupling mechanism between the subdomains, yet retaining the data reduction. A higher dimensional random field
representation (i.e., M th) can be considered in the region of interest, while a lower dimensional representation
(i.e., 0th, 1st, 2nd, . . . , (M −1)th) can be assigned elsewhere. In the following example, we study the error introduced
by the finite dimensional representation of the coupling mechanism. In particular, we consider an elastic wave
propagation in a solid dog–bone like specimen as shown in Fig. 16. The computational domain is decomposed into
three subdomains with material and discretization parameters shown in the Fig. 16. We take Young’s modulus to be
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(a) Displacement.

(b) Velocity.

Fig. 14. The mean and ±2 Std of the horizontal component of (a) displacement and (b) velocity at point P . The background light gray shaded area
represents ±2 Std of the full model, while the foreground dark gray shaded area represents ±2 Std of the reduced model.

(a) Displacement. (b) Velocity.

Fig. 15. Magnified insets of the results shown in Fig. 14. The background light gray shaded area represents ±2 Std of the full model, while the
foreground dark gray shaded area represents ±2 Std of the reduced model.

a random field with the exponential covariance function given by Eq. (31) and correlation lengths bx = 5.0 m and
by = 2.0 m, respectively.

In Fig. 17, we show the mean and Std of the displacement and velocity at point P(2.5, 0.5) m. The results are
presented with respect to the dimension of the coupling mechanism (defined as the number of common random
variables in the KLE that are shared among the subdomains). We use six dimensional random field, M = 6, to
represent the Young’s modules in subdomain Ω2, while we reduce the representation in subdomains Ω1 and Ω3 to
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Fig. 16. A dog–bone like specimen impacted at the left end while the right end is fixed. The QOIs are the displacement and velocity at point
P(2.5, 0.5) m.

(a) Mean of displacement. (b) Std of displacement.

(c) Mean of velocity. (d) Std of velocity.

Fig. 17. The mean and Std of the displacement and velocity at point P . Here M indicates the number of random variables in KLE that are common
across subdomains (i.e., the random variables used to represent uncertainty in subdomains Ω1 and Ω3). Note that for all cases six dimensional
random field M = 6 is used in subdomain Ω2.

M = 2, M = 1, and M = 0, respectively. The results suggest that the reduce representation even with M = 0
can capture the mean response reasonably well. However for the Std, the zero order representation M = 0 is able to
capture the overall behavior with less accuracy.

Fig. 18 shows the relative percentage error of the Std of the displacement and velocity at point P with respect to
the dimension of the coupling mechanism. When using a deterministic model in Ω1 and Ω3 (M = 0), the maximum
percentage errors in the Std of the displacement and velocity are about 35% and 40%, respectively. However when
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(a) Std of displacement. (b) Std of velocity.

Fig. 18. The error in the Std of the displacement at point P with respect to the dimension of the coupling mechanism (i.e., the number of common
random variables in KLE). The error is measured using Eq. (32) with MSTD being the Std corresponding to the case when using M = 6 for all of
the subdomains.

using M = 2 in Ω1 and Ω3, the maximum percentage errors are reduced to about 0.2% and 0.8% for the displacement
and velocity, respectively. Thus, enriching the coupling mechanism by adding more random variables to be propagated
across the interfaces leads to an error reduction in the Std.

Next, we show in (Fig. 19) the block sparsity structure of the global dual–primal system, Eqs. (25)–(30), with
respect to the dimension of the coupling mechanism. The block sparsity is due to the orthogonal properties of the PC
representation of the random field. Fig. 19(a) displays the full representation of random field using M = 6 in the three
subdomains, while (Fig. 19(d)) shows the maximum reduction in representation when using a deterministic model for
Ω1 and Ω3 (e.g., see circle highlight in (Figs. 19(a) and (d)) for Ω1 ). As the dimension of the coupling mechanism
increases, off-diagonal blocks are populated at the subdomain level. Note that for M = 0 (Fig. 19(d)), the stiffness
matrices for Ω1 and Ω3 are block diagonal. Furthermore for M = 2, a reduction of 25% in the fill-in of the full system
is obtained (see (Figs. 19(a) and (b)). This leads to faster Schur complement construction, and thus faster and easier
solution time.

As alluded to previously, the identification of the UQ localization region is problem dependent. The region of
interest can be specified based on the localization features of the solution, user define/interest, the correlation length
of the random field and measurement data. For problems where a region of interest is not evident, the Bayesian
inference can be utilized as explained in the Appendix.

Fig. 20 shows the effect of the localization region (assigning random properties to different subdomains) on the
QOIs. In particular, Fig. (20a) presents the log of the probability density function (pdf) of the displacement at point
P at the final time of the simulation T f = 0.2 s. We consider three localization regions to represent the reduced
model: (a) Ω1 is random (M = 2) while Ω2 and Ω3 are deterministic (M = 0), (b) Ω3 is random (M = 2) while
Ω1 and Ω2 are deterministic (M = 0), (c) Ω2 is random (M = 2) while Ω1 and Ω3 are deterministic (M = 0). The
results are compared with the full model where all three subdomains are assigned random properties with (M = 6).
The results suggest that the reduced model (c) (assigning random properties to the region around the QOIs) gives the
most accurate results. To quantify the error in the pdf’s, we show in Fig. (20b) the Kullback–Leibler divergence of the
reduced models pdf’s to that of the full model. The Kullback–Leibler divergence is defined as

DK Ld (πr ∥ π f ) =

∫
πr (z) log

(
πr (z)
π f (z)

)
dz, (35)

where πr and π f are the pdf’s of the reduced and full models, respectively. Clearly, the density of reduced model (c)
is closest to the pdf of the full model.

5.3. Impact problem

For a more realistic engineering application of PASTA-DDM-UQ, we consider a sandwich plate impacted by a
projectile [33,43]. The material properties in both the core and skin plates can be uncertain. However, it was shown



388 W. Subber, K. Matouš / Comput. Methods Appl. Mech. Engrg. 325 (2017) 369–394

(a) M = 6. (b) M = 2.

(c) M = 1. (d) M = 0.

Fig. 19. The sparsity structure of the global dual–primal system, Eqs. (25)–(30), with respect to the dimension of the coupling mechanism (i.e., the
number of common random variables in KLE). The variable nz represents the number of nonzero elements in the matrix. For the deterministic
sparsity structure, please see Fig. 4 in [33].

in [33] that there are two scales of dynamics in this impact problem. A fast dynamics under the impact zone and a slow
wave propagation in the regions away from the projectile impact. This localization feature of the response suggests
that the cost of uncertainty quantification can be reduced by localizing the mesh and time resolutions and confining
the uncertain variability of the material properties within the impact region only.

The following properties are considered for the numerical implementation. The thin skin plates have mean material
properties E = 70 GPa, ν = 0.3, ρ = 2700 kg/m3 and the thick soft core has E = 7.78 GPa, ν = 0.3, ρ = 900 kg/m3.
The physical dimensions are as follows: b1 = 2 mm, b2 = 16 mm, l1 = 80 mm, and l2 = 40 mm. The projectile is
modeled as a traction with a ramp function that reaches its peak value 100 kN/m in 1 × 10−5 s. The final time for the
simulation is T f = 2 × 10−5 s. The subdomain material properties, spatial, and temporal discretization parameters are
given in Table 4.
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(a) Probability density function (pdf). (b) Kullback–Leibler divergence.

Fig. 20. Effect of the localization region: (a) the probability density functions of the displacement at P using the full and reduced models, (b)
Kullback–Leibler distance.

Fig. 21. A schematic diagram of a composite sandwich plate impacted by a projectile. The QOIs are the displacement and velocity at points
P1(100, 1) mm, P2(100, 10) mm, and P3(100, 19) mm. The physical dimensions are b1 = 2 mm, b2 = 16 mm, l1 = 80 mm, and l2 = 40 mm [33].

Table 4
The mean material properties, spatial, and temporal discretizations of the composite plate.

Subdomain Es [GPa] ρs [kg/m3] No. nodes No. elem ∆ts [s]

Ω1 70 2700 78 87 1 × 10−7

Ω2 70 2700 126 166 5 × 10−8

Ω3 70 2700 78 87 1 × 10−7

Ω4 7.78 900 90 136 2 × 10−7

Ω5 7.78 900 239 420 2 × 10−7

Ω6 7.78 900 90 136 2 × 10−7

Ω7 70 2700 78 87 1 × 10−7

Ω8 70 2700 225 341 4 × 10−8

Ω9 70 2700 78 87 1 × 10−7

For this uncertainty quantification study, we consider the Young’s modulus to be a random field defined by KLE.
The correlation lengths used for the exponential covariance function, Eq. (31), are bx = 400 mm and by = 40 mm.
The coefficient of variation is CoV = τ/E0 = 15%. Two random variables and the fourth order PC are used.

The QOIs are the displacement and velocity at points P1, P2, and P3 along the center line x = 100 mm (see marks
in Fig. 21). We consider the following cases: (i) uncertainty is confined in the skin plates Ω1,Ω2,Ω3,Ω7,Ω8,Ω9, (ii)
uncertainty is confined in the core Ω4,Ω5,Ω6, (iii) uncertainty is confined within the subdomains under the impact
zone Ω2,Ω5,Ω8. The mean displacement and velocity of these three cases with ±2 Std error bars are shown in Fig. 22.
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(a) u: case i (skin plates). (b) u̇: case i (skin plates).

(c) u: case ii (core plate). (d) u̇: case ii (core plate).

(e) u: case iii (impact zone). (f) u̇: case iii (impact zone).

Fig. 22. The mean and ±2 Std error bars of the displacement and velocity at points along the center line. The top panel (a & b) uncertainty is
confined in the skin plates (case i). The middle panel (c & d) uncertainty is confined in the core (case ii). The bottom panel (e & f) uncertainty is
confined within the impact zone (case iii). The shaded area represents ±2 Std of the full model.

The background gray shaded area represents ±2 Std of the full model when uncertainty is considered in the entire

domain using fourth order PC. Since the solution has a localized feature manifested in the fast dynamics under the

impact zone, confining the variability of the material properties within the impact zone gives the accurate results with

the smallest computing efforts for case (iii). Figs. 22(e) and (f) indicate that the uncertainty in the material parameters

under the impact zone results in the largest error bars for the output displacements and velocities. Moreover, these

error bars approach the background shaded area which represents ±2 Std of the full model.
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Fig. A.23. One-dimensional bar subjected to an impact loading.

6. Conclusions

We have developed an asynchronous space and time computational algorithm with localized uncertainty quantifi-
cation. The framework is based on the recently proposed PASTA-DDM algorithm in conjunction with the intrusive
polynomial chaos expansion for the stochastic representation that can be efficiently localized to selected subdomains.
The proposed algorithm is customized to reduce the computational cost of uncertainty quantification in problems
featuring localized phenomenon and described by stochastic PDE’s (i.e., PDE’s with random coefficients). In the
region of interest, a rich stochastic model with high mesh and time resolutions is used, while a low dimensional
stochastic representation with coarse spatial and temporal resolutions are allowed apart from the region of interest.
We verify our algorithm with the traditional Monte-Carlo sampling technique and study different scenarios to reduce
the computational cost of uncertainty quantification. For the elastic wave propagation problem, the algorithm shows
second order convergence rate in the mean and standard deviation of both the displacement and velocity with respect to
mesh size and time increment. Furthermore, the first order convergence rate is achieved with respect to the localization
length. The application of PASTA-DDM-UQ to an impact problem shows that localizing the random variability of the
material parameters under the impact zone gives the closest results to the case when uncertainty is considered in the
entire domain.
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Appendix. Data driven decomposition

In this appendix, we highlight a strategy of a model decomposition to localize uncertainty in a region of interest
(see Section 5.1.4). In PASTA-DDM-UQ, there are two levels of domain partitioning: (i) a coarse grain level is the
decomposition according to the material interfaces and the localized features, (ii) a fine grain level is the domain
decomposition driven by the parallelism and the computer hardware requirements (i.e., memory and processors
speed). To obtain the coarse grain level decomposition, we rely on experimental measurements to estimate the optimal
partitioning of the physical domain. To this end, Bayesian inference technique is utilized. In Bayesian inference, the
prior knowledge is updated to posterior using noisy data and uncertain model [6,44]. The update is based on Bayes’
rule which defines the posterior probability density function as

p(χ |d) =
p(χ )p(d|χ )

p(d)
=

p(χ )p(d|χ )∫
p(χ )p(d|χ )dχ

, (A.1)

where χ is the uncertain parameter to be estimated, d is the measurement of an observable quantity, p(χ |d) is
the posterior probability density function, p(χ ) is the prior probability density function, and p(d|χ ) denotes the
likelihood.

To illustrate this idea, we consider a one-dimensional bar subjected to an impact loading as shown in Fig. A.23.
The bar is decomposed into three subdomains and the task is to estimate the length of Ω2 from noisy (experimental)
data. Deterministic material properties are assigned to subdomains Ω1 and Ω3, while in Ω2 the Young’s modulus is
defined as a random variable. We assume the differences between the model and the experimental data be independent
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Fig. A.24. The displacement in the middle of the bar using the mean properties and the noisy measurements.

(a) Probability density function. (b) Error.

Fig. A.25. The posterior probability density function and the error due to the estimated parameters.

and identically distributed Gaussian random variables. This results a likelihood function for the unknown parameters
as the product of normal probability density functions. We define a PC surrogate model [45] for the displacement at
a point in the middle of the domain (at L/2). The Young’s modulus and the decomposition length for the subdomain
Ω2 are defined as:

E(ξ1) = E0(1 + 0.15 ξ1), (A.2)
l(ξ2) = l0(1 + 0.5 ξ2). (A.3)

Here, E0 = 81.9 kPa, l0 = 1.5 m, and ξi ∼ U(−1, 1). The synthetic data is generated based on the mean properties
(E0, l0) and 5% Gaussian noise to mimic the experimental evidence. In practice, this data can come from experiments.
Fig. A.24 shows the response using the mean properties and the sparse noisy data. The two-dimensional fourth order
Legendre polynomial is used for the surrogate model. Markov Chain Monte Carlo (MCMC) sampling technique [46]
is used to estimate the posterior density for the decomposition length as shown in (Fig. A.25a). Note that the estimated
mean of the decomposition length is 1.569 m and the standard deviation is 0.131 m. (Fig. A.25b) shows the relative
error between the mean response and the response using the estimated mean properties of the parameters. The error
is defined as

eux =
umean

x − uestm
x

max(umean
x )

× 100 [%], (A.4)

where umean
x is the solution using the mean properties and uestm

x is the solution using the estimated parameters.
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