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Abstract

We develop a procedure for characterization and reconstruction of periodic unit cells of highly filled, multimodal, particulate com-
posites. Rocpack, a particle packing software, is used to generate the solid propellant microstructures and one- and two-point probability
functions are used to describe its statistical morphology. The reconstruction is carried out using a parallel Augmented Simulated Anneal-
ing algorithm with a novel mutation operator based on a mass–spring system to eliminate overlap and improve the code performance.
Results from the reconstruction procedure, for four-phase random particulate composites of 40–70% packing fraction, are detailed to
demonstrate the capabilities of the reconstruction model. The presented results suggest good convergence and repeatability of the opti-
mization scheme, even for high volume fractions, and good scalability of the algorithm.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It has long been recognized that the macroscopic prop-
erties of a heterogeneous material depend strongly on its
microstructure and a wide range of approaches have been
proposed that take this information into account
[10,9,26,16,34,27]. Some of these approaches use simple
statistics, such as volume fraction [16], while others try to
simplify the problem by replacing a complex microstruc-
ture by a simple hexagonal array of phases [27] or by a peri-
odic unit cell (PUC) [6,18]. It is essential, however, to
realize the inherent randomness of the system to describe
its macroscopic properties. Several procedures have been
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proposed to characterize and reconstruct the microstruc-
ture depending on an application: Povirk [21] suggested
replacing the complex two-phase particulate microstruc-
ture with a simple, yet random periodic unit cell that has
similar statistical characteristics as the original microstruc-
ture. Yeong and Torquato introduced a numerical ‘‘micro-
structure reconstruction’’ procedure [31,32]. Kumar et al.
[14] used similar scheme within the simulated annealing
(SA) framework for ductile iron metals. Sundararaghavan
and Zabaras [24] developed a support vector machine
framework for microstructure classification and recon-
struction from limited statistical information. Quintanilla
and Max Jones used convex quadratic programming to
model random media with Gaussian random fields [22].
Zeman [33], Matouš et al. [19], and Zeman and Šejnoha
[34] applied genetic algorithms to reconstruct PUC of
two-phase fibrous composites.

Traditionally, the microstructures of random composites
are studied from micrographs or topographic data at a high
level of magnification. Although very efficient, such meth-
ods require sometimes costly or complicated experiments
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or image processing. Therefore, computer-generated
microstructures, which are statistically identical, started
to become more popular. For example, Anderson et al.
[1] proposed a grain growth model suitable for polycrystal-
line materials. For heterogeneous solid propellants, Webb
and Lee Davis [30] developed a reduced-dimension particle
packing algorithm based on a ballistic deposition model.
Another packing algorithm that is dynamic in nature,
which can pack spheres or discs of arbitrary sizes, called
Rocpack, was introduced by Kochevets et al. [13] and
Knott et al. [12]. Rocpack has been extensively tested and
validated against available experimental data [12,18]. In
order to be representative of an actual material, such com-
puter-generated packs must be large. Two examples, one in
three dimensions and one in two dimensions, are shown in
Fig. 1. These domains are, however, too big to be fully
numerically resolved, when complex nonlinear processes
such as decohesion and matrix tearing are modeled. The
aforementioned space dimension reduction techniques
are, thus, important to reduce the problem size while pre-
serving the cell statistics.

The objective of this work is to study multimodal, highly
filled, random particulate composites, such as solid propel-
lants, and to reconstruct the PUC, which is geometrically
identical to the original packs generated by packing algo-
rithm (such as Rocpack) or obtained experimentally. The
high content of energetic crystals (�60–80%) and large par-
ticle size variations make the reconstruction complicated
and most of the techniques discussed above are likely to
fail. Therefore, we develop and implement a highly efficient
and parallel reconstruction scheme based on the Aug-
mented Simulated Annealing (AUSA) method, which
attempts to reconstruct a PUC of a m-phase particulate
random composite using one- and two-point probability
functions. In order to eliminate the particle overlap and
its influence on the overall performance of the optimization
scheme, we develop the problem-specific mutation operator
and incorporate it into the Genetic Algorithm (GA)
strategy.
Fig. 1. Examples of (a) 3D and (b) 2D solid
The paper is organized as follows: Section 2 details the
formulation and numerical determination of the statistical
descriptors (probability functions) used in the present
study to characterize the microstructural statistics. One-
and two-point probability functions are used to describe
the statistical details of the particulate composite micro-
structure and the ergodicity, homogeneity and statistical
isotropy assumptions are numerically investigated. The
sampling template technique proposed in [25] is used here
to numerically determine the two-point probability func-
tions. Section 3 describes the optimization procedure to
reconstruct the PUC. The optimization involves formula-
tion of suitably selected objective functions. To account
for the particle overlap, a penalty, or constraint function,
is formulated and a new problem-specific mutation opera-
tor, based on a mass–spring system, is introduced. The par-
allel implementation, crucial for characterization and
reconstruction of large domains with high particle volume
fractions and particle size variations, is also discussed. Sec-
tion 4 summarizes the reconstruction procedure results for
two-dimensional, four-phase, random composites of differ-
ent particle packing fractions (from 40% to 70%).
2. Statistical morphology of random particulate composites

Theoretical foundations to quantify the statistical char-
acteristics of heterogeneous materials have been laid out in
the past 40 years, starting from the seminal work of Beran
[2]. A number of other works address this topic in detail as
well [3,4,28,29,34]. For the sake of completeness, we sum-
marize here the fundamentals of a class of statistical
descriptors – the n-point probability functions, which are
used in the present study to characterize the microstructure
and to reconstruct the PUC. Consider a collection of a
large number of micrographs (that form the ensemble
space S) describing the geometry of a random particulate
material, as shown in Fig. 2. To provide an initial statistical
description of a random material, a function called the
propellant packs generated by Rocpack.
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Fig. 2. Members of the ensemble space, S, for a four-phase random particulate composite with �40% packing fraction generated by Rocpack. The first
pack also shows half of the sampling template used to extract the two-point probability functions Srs.
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indicator function, or the characteristic function vr(x,a), is
defined as follows:

vrðx; aÞ ¼
1 x 2 DrðaÞ;

0 otherwise;

(
ð1Þ

where Dr(a) denotes the domain occupied by rth phase, x is
a point thrown into the random medium and a is the mem-
ber of the ensemble onto which the point is thrown. From
this definition, the n-point probability function Sr1;r2;...;rn ,
which gives the probability of finding phases r1, r2, . . ., rn

simultaneously at points x1, x2, . . .,xn, is given by

Sr1;...;rnðx1; . . . ; xnÞ ¼ vr1
ðx1Þ . . . vrn

ðxnÞ; ð2Þ

where the overbar indicates the ensemble average:

vrðxÞ ¼
Z
S

vrðx; aÞpðaÞda: ð3Þ
Here p(a) denotes the probability density of a in S. In par-
ticular, the one-point and two-point probability functions
read

SrðxÞ ¼ vrðx; aÞ;

Srsðx; x0Þ ¼ vrðx; aÞvsðx0; aÞ:
ð4Þ

In general, evaluation of probability functions can be pro-
hibitively difficult, but can be simplified if the material
under consideration is ergodic, statistically homogeneous
and statistically isotropic. The Ergodic hypothesis requires
that all states available to an ensemble of systems must be
available to every member of the system as well [2]. If the
material is ergodic, then the ensemble average of a given
function, •(x,a), (such as the characteristic function) is
equal to its volume average,Z
S

�ðx; aÞpðaÞda ¼ 1

V

Z
V
�ðx; aÞdV : ð5Þ
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It follows that the probability functions can be evaluated
on only one member of the ensemble instead of the costly
proposition of evaluation of all the probability functions
on each member of the ensemble. Statistical homogeneity
results in the ensemble average of the characteristic func-
tions being independent of translation, while statistical
isotropy implies directional independence. For an ergodic,
statistically homogeneous, and isotropic random heteroge-
neous medium, the one-point and two-point probability
functions reduce to

SrðxÞ ¼ Sr ¼ cr;

Srsðx; x0Þ ¼ Srsðx� x0Þ ¼ Srsðkx� x0kÞ;
ð6Þ

where cr represents the volume fraction of phase r in the
composite and kx � x 0k represents the distance between
points x and x 0.

To numerically determine the one-point probability
function, described by Eqs. (4) and (6), respectively, a sim-
ple Monte-Carlo like simulation can be utilized, i.e., we
throw randomly generated points into the microstructure
and count the number of successful ‘‘hits’’ into the rth
phase. Then, the value of the one-point probability func-
tion can be estimated as

Sr !
n0

nt
; as nt !1; ð7Þ

where n 0 is the number of successful hits and nt denotes the
total number of throws. To compute the two-point proba-
bility functions, the sampling template procedure proposed
by Smith and Torquato [25] is used. Instead of tossing a
line corresponding to x � x 0 into a medium, a circular sam-
pling template is formed. The center of such sampling
template is thrown randomly into the medium under con-
sideration and corresponding successful hits are counted.
Furthermore, if the medium is statistically isotropic,
successful hits found for points located on the same cir-
cumference can be averaged as well, which allows a large
number of tests to be performed within one placement of
the template. One half of a typical sampling template used
in the analysis is shown in Fig. 2a.

2.1. Verification of ergodicity, homogeneity and statistical

isotropy

First, we set out to verify the ergodicity of numerical
generated, multimodal, particulate composites. We focus
on packs consisting of particles of three different radii
(10, 20 and 30 lm) with �40% packing fraction. To test
Table 1
Verification of ergodicity for an ensemble of six 40% packs with three differen
Matrix)

Si
r Pack 1 Pack 2 Pack 3 Pack

P1 0.221 0.210 0.214 0.196
P2 0.111 0.117 0.106 0.095
P3 0.042 0.055 0.044 0.048
M 0.626 0.618 0.636 0.661
the procedure for establishing the ergodic hypothesis, it is
necessary to form the ensemble space S. When sampling
individual members of the ensemble space S, random
packs were generated using Rocpack with an approxi-
mately same volume fraction of each phase, computed
directly from packs. Fig. 2 shows six such individual packs
with volume fraction of 0.37–0.39, obtained by modifying
the sampling window (300 ± 20 lm). This will produce
slightly perturbed packs, which are used here instead of
experimental micrographs. Although the initial packs and
boundary conditions used for computing the statistical
descriptors are periodic, it has been shown by Gajdošı́k
et al. [7] that the boundary conditions have negligible effect
on the two-point probability functions. In the view of the
ergodic hypothesis, we shall require only that

cr � Sr with Sr ¼
1

n̂

X̂n

i¼1

Si
r; ð8Þ

where n̂ is the number of members in the ensemble and cr

represents the mean volume fraction of each of the phases.
The individual first-order probability functions, Si

r, were
computer using 50,000 random throws. Table 1 shows
the evaluated Si

r, Sr and cr. It is evident from Table 1 that
the medium can be assumed ergodic within 1% based
on the one-point probability functions. We opine that the
presented results are sufficient for the medium to be consid-
ered ergodic, provided that the medium is statistically
homogeneous, although, an ultimate justification of an
ergodic assumption would require to prove equality of
higher moments as well [28]. In the sense of the ergodic
assumption, we suggest that a single micrograph be used
for evaluation of the required statistical descriptors.

Next, we validate statistical homogeneity on the pack
shown in Fig. 2a. Since statistical homogeneity implies
translational invariance of a given function, the one-point
probability function is evaluated on this pack for different
coordinate systems. As in previous example, 50,000 random
throws were used to compute the first-order statistical
moment. Thus, we compute the one-point probability func-
tions by translating the origin at (0, 0) to (�L,�L), (�L/
2,�L/2), (�L/4,�L/4), (L/4,L/4), (L/2,L/2) and (L,L),
where 2L is the size of the pack. Table 2 shows the values
of the one-point probability function evaluated for each of
the aforementioned coordinate systems, and its standard
deviation. We can see that the standard deviation of the
evaluated one-point probability functions for different coor-
dinate systems is approximately 3%. Even though it is neces-
sary to establish homogeneity on higher-order probability
t particle radii (P1 – Particle 1, P2 – Particle 2, P3 – Particle 3 and M –

4 Pack 5 Pack 6 Sr cr

0.210 0.218 0.21150 0.20496
0.112 0.114 0.10916 0.11070
0.048 0.047 0.04733 0.04612
0.630 0.621 0.63201 0.63821



Table 2
Verification of statistical homogeneity for a 40% pack with three different particle radii (P1 – Particle 1, P2 – Particle 2, P3 – Particle 3 and M – Matrix)

Sr Origin (�L, � L) Origin � L
2 ;� L

2

� �
Origin � L

4 ;� L
4

� �
Origin L

4 ;
L
4

� �
Origin L

2 ;
L
2

� �
Origin (L,L) Standard deviation

P1 0.245 0.180 0.187 0.180 0.173 0.226 0.0325
P2 0.073 0.105 0.113 0.125 0.126 0.105 0.0194
P3 0.024 0.053 0.049 0.060 0.067 0.064 0.0156
M 0.657 0.657 0.651 0.636 0.635 0.605 0.0198
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functions we take the medium to be statistically homoge-
neous within 3%. Note that for a periodic medium the statis-
tical homogeneity is satisfied by construction. Thus, the
error obtained here is purely numerical. Nevertheless, this
procedure was presented for completeness and generality
of the method, when different media are investigated.

Finally, we establish statistical isotropy from the deter-
mination of the two-point probability distribution func-
tions, using a sampling template of 500 radial points and
100,000 random throws. The two-point probability func-
tion distribution and the coefficient of variation, computed
as the standard deviation of the two-point probability
function in the circumferential direction, is plotted in
Fig. 3a and b, respectively. As one can see, the maximum
variation is <2%.

After establishing ergodicity, statistical homogeneity
and isotropy, the spatial distribution of the two-point
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shown for clarity.
probability functions is computed as a spatial average of
the two-point probability functions in the circumferential
direction and is shown in Fig. 4b. Fig. 4b also attests to
the following limiting cases as applicable to an ergodic,
homogeneous and isotropic medium:

for x! x0 : Srsðx; x0Þ ¼ drsSr ¼ drscr;

for kx� x0k ! 1 : lim
kx�x0k!1

Srsðx; x0Þ ¼ crcs:
ð9Þ

Eq. (9a) is a manifestation of ergodicity, while Eq. (9b)
refers to the length scale of statistical independence of the
heterogeneous material. From Fig. 4b, it can be seen that,
for distances greater than �150 lm, the material points are
statistically independent. This length scale forms the ini-
tial guess of the PUC size in the optimization problem
described in Section 3.

Please note that a discrete sampling template is used to
compute the two-point probability functions of a continuum
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heterogeneous material. Thus, the accuracy of the evaluated
statistics depends on: (a) the number of random throws of
the sampling template and (b) the number of radial points
in the sampling template, which can be related to the small-
est particle radius. Fig. 5a and b show the dependence of the
matrix–matrix two-point probability function on the num-
ber of radial points and the number of throws, respectively.
It can be seen that a good convergence of the two-point
probability function is obtained for 300 radial points (or a
radial spacing of 1.5 lm) and 5000 throws of the sampling
template.

3. Construction of the periodic unit cell (PUC)

3.1. Objective and penalty functions

Once the microstructural statistics of the heterogeneous
material are established, the reconstruction of the PUC is
undertaken. In this study a PUC is geometrically represen-
tative of the original microstructure provided that the one-
and two-point probability functions of the PUC are similar
to those from the original pack. To quantify this similarity,
we introduce two optimization problems:

(a) For a given initial length scale of the PUC Hinit, vol-
ume fractions ci, particle radius ri and number of particles
Ni of phase i, find the PUC dimension H, such that the dif-
ferences in the volume fractions are minimized using the
following objective function:

GðHÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnp

i¼1

ci �
Nipr2

i

H 2

� �2

vuut ; ð10Þ

where np is the number of particle phases in the composite.
This optimization problem can be solved analytically to get
the optimal dimensions of the PUC to be:

dG
dH
¼ 0) H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
Pnp

i¼1N 2
i r4

iPnp

i¼1N ir2
i ci

s
: ð11Þ

This step in the optimization procedure ensures the similar-
ity of the one-point probability functions, since the size of
the PUC is based on the respective particle volume frac-
tions, which are the same as the corresponding one-point
probability functions.

(b) After determining the optimal length scale of the
PUC using Eq. (11), the optimal positions of the particle
centers are found by minimizing the following objective
function, based on the two-point probability distributions:

F ðxN Þ ¼
Xm

r¼1

Xm

s¼1

kSorig
rs � SrskL2

¼
Xm

r¼1

Xm

s¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ H

0

ðSorig
rs � SrsÞ2dr

s
; ð12Þ

where xN = {x1, y1, . . .,xN, yN}T is the vector of the posi-
tions of particle centers, xi and yi correspond to the x-
and y-coordinates of the ith particle, respectively, m is
the total number of phases in the composite that is equal
to np þ 1; Sorig

rs are the two-point probability functions com-
puted for the original microstructure and Srs are the two-
point probability functions computed for the PUC. It is
to be noted here that the objective function, as formulated
in Eq. (12), does not contain any details on the overlap of
particles inside the PUC. Hence, a constraint is added to
ensure that there is no overlap inside the optimized PUC.
Thus, the solution vector xN should comply with,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ

2
q

P ri þ rj; 8i ¼ 1; . . . ;N ;

j ¼ iþ 1; . . . ;N ; ð13Þ

where N denotes the total number of particles, and ri and rj

are the radii of ith and jth particles, respectively.
Based on the distance between the centers of a pair of

particles, we classify the overlap into two types, namely:
partial overlap, if the distance between the centers is less
than the sum of the radii, and complete overlap, if the dis-
tance between the centers is less than either of the radii of
the particles (as shown schematically in Fig. 6a). Let the
number of occurrences of partial overlap be denoted as
Np and the number of occurrences of complete overlap
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be denoted as Nc. The amount of overlap in a potential
solution is described by the parameter g as

g ¼

2
Np

PN
i¼1

PN
j¼i

Aoverlap

ðAiþAjÞ N c ¼ 0;

2
Np

PN
i¼1

PN
j¼i

Aoverlap

ðAiþAjÞ þ 0:5 N c > 0:

8>>><
>>>:

ð14Þ

If no instance of complete overlap occurs (i.e., Nc = 0), the
penalty parameter is a global mean of the ratio of the area
of overlap to the mean area of a pair of particles. The lim-
iting case of this expression is encountered when a particle
center is on the circumference of another particle. For this
limiting case, the value of g is evaluated to be 0.45. Since a
complete overlap is a highly undesirable situation, it is to
be penalized heavily. Hence, on encountering a single
occurrence of a complete overlap, an amount of 0.5 is auto-
matically added to the overlap parameter g, so that the
value of g lies within 0 and 1.

Based on the amount of overlap given by the parameter
g, a constraint function (or a penalty function) is estab-
lished as shown in Fig. 6b. The formulation of the con-
straint function is based on similar one used in [17] and
follows a simple power law,

p ¼
0 g ¼ 0;

g
x

� �b
0 < g < x;

1:0 g P x;

8><
>: ð15Þ

where x is the upper cutoff of overlap above which p = 1
and b is the exponent of the penalty function in the range
0 6 g 6 x.

From the objective function described by (12) and the
constraint function (15), the overall objective function (or
the fitness function) is defined as

f ¼
kSorig

rs � SrskL2

max
P 0

kSorig
rs � SrskL2

þ p; ð16Þ

where max
P 0

kSorig
rs � SrskL2

represents the value of the objec-

tive function of the worst individual of the starting popula-
tion. The value of f always lies between 0 and 2.
It has been shown for a similar system (two-phase
fibrous composites) that the fitness function (such as given
by Eq. (16)) is multimodal and contains a number of local
minima. Hence, an optimization using conventional gradi-
ent-based methods is not appropriate for this case. There-
fore, stochastic optimization methods based on the
principle of evolution such as genetic algorithms (GA)
and simulated annealing (SA) have been used efficiently
to solve such complex optimization problems [19,33]. In
the present work, the Augmented Simulated Annealing

(AUSA) technique, that effectively exploits the essentials
of GA in combination with SA is employed to minimize
the overall objective function. This algorithm is identical
to that used by Matouš and Dvorak [17]. Please note that
the emphasis of this paper is not on the development of a
new generic algorithm, rather on the effective application
of an established stochastic optimization procedure. Never-
theless, for the sake of completeness, we briefly introduce
some of the important concepts of the GA and list the basic
steps in Algorithm 1.

Algorithm 1

Principle of genetic algorithm
1
 t = 0

2
 generate and evaluate P0
3
 while (not termination-condition) {

4
 select Mt from Pt (apply sampling mechanism)

5
 alter Mt (apply genetic operators)

6
 create Pt+1 from Mt (insert new individuals into Pt+1)

7
 t = t + 1

8
 }

For the present unit cell reconstruction, each individual
in the population Pt, which is a set of potential solutions to
the optimization problem, is a possible configuration of
particles inside a unit cell, represented by a real-valued
chromosome Z = {z1, . . .,z2N}, such that

z2i�1 ¼ xi and z2i ¼ yi for i ¼ 1; . . . ;N ; ð17Þ

where xi and yi are the x- and y-coordinates of the ith par-
ticle center. As described in Algorithm 1, the three basic
steps of the GA are as follows: First, an individual is se-
lected for reproduction (line 4) based on the remainder sto-
chastic sampling without replacement (RSSwoR) method,
commonly known as the Roulette Wheel Sampling scheme
[8]. The reproduction (or alteration) step (line 5) makes use
of different types of crossover and mutation operators
applicable to real-valued chromosomes. More details on
these operators can be found in [20]. The replacement step
(line 6) is controlled in the AUSA algorithm using the
Metropolis criterion, which allows a worse child to replace
its better parent with a certain probability. This probability
measure is reduced as the number of iterations increase,
thereby driving the solution to converge to a global mini-
mum. Readers are referred to [8,15,17,19] for detailed
explanation on each of the different steps of a GA cycle.
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3.2. Problem-specific mutation operator

Based on different numerical experiments presented in
Section 4, we observed that with increasing volume frac-
tions the overlap in the optimized PUC is not eliminated
completely and the rate of convergence is slow, especially
for packs of packing fraction 60% or more. Restart of
the AUSA algorithm and reoptimization, as suggested in
[8], can be attempted, but do not yield satisfactory results.
Other possibility is construction of genetic operators that
meet impenetrability constraint directly as done in [34].
Such an approach might, however, limit the random infor-
mation in the population and slow down the convergence
of GA. It might be also difficult to implement for densely
packed multimodal systems. Thus, in order to eliminate
the overlap in the PUC and to improve the convergence
rate, we propose a problem-specific mutation operator,
which is based on a mass–spring system. For a pair of over-
lapping particles, we introduce a stiff repulsive spring to
push the particles away from each other and for a pair of
non-overlapping particles, we introduce a soft attractive
spring to keep particles close together, such that the statis-
tics are not altered substantially by the new operator. We
further assume that the mass of the particle is directly pro-
portional to its area, and that the force–displacement rela-
tion for the springs is linear, with spring stiffnesses of j or �j
for repulsive or attractive springs, respectively, as shown in
Fig. 7a. The separation, dij, between the particles i and j is
computed simply as

dij ¼ kyi � yjk � ðri þ rjÞ; ð18Þ

where yi and ri are the position vector of the center and ra-
dius of particle i, respectively.

The placement of springs in a potential PUC is shown
schematically in Fig. 7b. First, we create the Delaunay tri-
angulation of the set of particle centers. Then, particles
sharing a triangle are identified as neighbors and only
neighbors interact through springs. For example in
Repulsive

κ

κ
Attractive

d

F

ij

y

Fig. 7. (a) Force–displacement (spring) relation. (b) Delaunay triangulation an
between particles i and j, and symbols j and �j represent repulsive and attract
Fig. 7b, particles 1 and 2 are neighbors, while particles 1
and 4 are not. Overlapping neighbors interact through a stiff
repulsive spring, as shown by solid lines in Fig. 7b, while the
soft attractive springs between non-overlapping neighbors
are shown in broken lines. Based on standard spring
dynamics, we construct the equation of motion as follows:

M€uþ Ku ¼ 0; ð19Þ

where u is the displacement vector, M is the diagonal mass
matrix and K represents the global stiffness matrix. The ini-
tial displacement conditions are given by the initial spring
excitations due to the overlap. The vector of initial dis-
placements reads

u0 ¼
1
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where N denotes the number of particles and Ni represents
the number of neighbors for ith particle. The vector dij is
computed as

d ij ¼ dijfcosðhijÞ; sinðhijÞgT ð21Þ

where hij is the angle between the spring ij and the y1-axis
(Fig. 7b). The global stiffness and mass matrices K and
M are constructed from their standard element counter-
parts by usual assembly procedure.

The standard implicit Newmark predictor–corrector
scheme is used for the time integration of (19) because of
its stability and simple implementation [11]. The SuperLU
library is utilized for the LU decomposition [5]. The numer-
ical integration is carried out until the overlap inside a
potential PUC goes to zero or a prescribed number of
time-steps is reached. Please note that in the applications
presented in Section 4 the stiffness of the soft attractive
springs between non-overlapping particles is set to zero.
y
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d position of springs in a potential cell. Symbol dij denotes the separation
ive spring constants, respectively.
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The aforementioned process of changing the positions of
particles inside a potential PUC based on the equation of
motion is implemented as a mutation operator. This muta-
tion operator is applied to those population members hav-
ing only partial overlap, and is activated with a small
probability of 0.05.

3.3. Parallel implementation

The most costly part of the AUSA algorithm is the eval-
uation of the fitness of each individual (either in the popu-
lation at the start of GA or in the mating pool). All the
other steps (sampling, genetic operations, simulated anneal-
ing and evaluation of constraints) do not involve intense
computations. Hence, to accelerate the algorithm, parallel-
ism is introduced in the evaluation of the fitness function.

Initially, Nproc processors are allocated, where Nproc is a
multiple of number of individuals in the mating pool Mt

(Nproc = a · Mt, where a is an integer greater than or equal
to 1). As seen from Fig. 8, the input parameters for the
PUC and the AUSA algorithm are first read on the master
processor (processor 0). Using the input information, a
population of individual unit cells is generated (Step 2 of
Algorithm 1). A set of a processors constitute a sub-com-
munication world, as indicated by the processors enclosed
inside the oval (Fig. 8). Every P/Mt individuals of the ini-
tial population are sent to a processors (sub-worlds) for
evaluation of two-point probability functions and each
processor carries out Nhits/a number of throws of the sam-
pling template on each individual. This information of two-
point probability functions, evaluated for Nhits/a throws, is
then sent to the sub-master processor (master for sub-com-
munication world). At the sub-master processor, all the
two-point probability functions are added and averaged
out (explicit assumption of isotropy), and sent subse-
quently to the global master (processor 0). Thus, the fitness
for all the members in population P0 is calculated.
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Fig. 8. Parallel implementation of AUSA algorithm.
Once the genetic algorithm has started, the master pro-
cessor executes the sampling mechanism and genetic oper-
ations inside the mating pool. Once new offsprings are
created in the mating pool each offspring is sent to a pro-
cessors (corresponding sub-communication world) and
two-point probability functions are evaluated in the same
manner as for the individuals in the initial population, as
described in the previous paragraph. This procedure is con-
tinued throughout the execution of the genetic algorithm.

4. Examples

4.1. Packs with 40% particle volume fractions

We now turn our attention to a set of unit cell recon-
struction problems illustrating the capabilities of the recon-
struction procedure. First, we start with packs containing
40% packing fraction and three different radii (10, 20 and
30 lm), as shown in Fig. 2. Only five of the six micrographs
are selected as the initial packs. All five starting packs have
particle packing fractions around 0.37–0.39 and the ensem-
ble average (mean) of the two-point probability functions
for all five packs, with error bars indicating the spread in
the probability functions, is plotted in Fig. 9. There are
two sources of error in this plot: (a) the different probabil-
ity distributions for each member of the ensemble (arising
from error in the ergodic assumption) and (b) the numeri-
cal error associated with the use of optimal sampling
parameters. The sampling template parameters are cali-
brated to be 1.5 lm radial spacing (300 radial points) and
2500 throws of the sampling template. It should also be
noted that, for the present 40% packs, statistical homoge-
neity and isotropy are assumed explicitly based on the ver-
ification study in Section 2.1, and the ergodicity
assumption will be re-confirmed below. The initial size Hinit

of the PUC for this problem is chosen as 300 lm, from the
results in Fig. 9, and the optimal size is determined to be
296 lm from Eq. (11).
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Fig. 9. Two-point probability function distributions of the initial 40%
pack with error bars representing both numerical and statistical errors.
The radial independence of all Srs for r J 150 lm suggests the use of a
300 lm initial size for the reconstructed PUC.
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The AUSA algorithm described in Section 3 is utilized
to reconstruct the PUC. All the AUSA runs presented
hereafter consist of a population of 600 individuals and
20 individuals in the mating pool. Table 3 lists the values
used for the GA and SA parameters in the present study
and shows that the probability of mutation operators is
greater than crossover operators, as was the case in
[17,33]. We use two different crossover operators: simple
and arithmetic crossover, and four different mutation oper-
ators: uniform, boundary, non-uniform and problem-spe-
cific mutation (introduced in Section 3.2). The probability
of mutation is uniformly distributed between the mutation
operators, except for the problem-specific mutation, which
is invoked with a probability of 0.05. The simulation is
stopped when the maximum number of iterations reaches
10,000 or the tolerance (defined by the difference of the fit-
ness of the worst individual and the best individual) reaches
0.015 and stays there for at least 1000 iterations. The upper
cutoff of overlap x for the evaluation of constraint (see Eq.
(15)) is taken to be 0.05, while the exponent b is set to 5.0.

The fitness evolution of one of the AUSA runs is given
in Fig. 10. As seen there, the worst, mean and the best fit-
ness values have converged for around 8000 iterations. The
final fitness value attained is argued to be the global mini-
mum, since no new offsprings are accepted into the popula-
tion after 7000 iterations. Similarly, in all the other 40%
pack reconstruction runs the minimum is reached within
7000–9000 iterations.

One of the five reconstructed unit cells is plotted in
Fig. 11, showing no overlap and substantial reduction in
0 1500 3000 4500 6000 7500 9000
0

0.4

0.8

1.2

1.6

2

Iterations

F
itn

es
s

Best fitness

Mean fitness

Worst fitness

Fig. 10. Fitness evolution during a AUSA run for the 40% pack.

Fig. 12. Comparison of the two-point probability functions of the original
pack (solid line) and the reconstructed PUC (dashed line) for the 40%
packs shown in Fig. 11.

Table 3
Parameters used in the implementation of the AUSA algorithm

Description Parameter Value

Population size Pt 600
Mating pool size Mt 20
Probability of mutation pmut 0.7
Probability of crossover pcross 0.3
Maximum annealing temperature Tmax 0.05
Minimum annealing temperature Tmin 1E�6
Ratio of cooling Tmult 0.999
the size of the PUC. Fig. 12 depicts the comparison of
the mean of the two-point probability functions of the five
original packs and the corresponding five reconstructed
PUCs. Only selected probability functions are plotted for
clarity there, but similar trend would be observed for the
remaining ones. The thin error bars indicate the spread in
the evaluation of the two-point probability functions
in the five original packs and the thick error bars indicate
the spread in the evaluation of the two-point probability
functions in the corresponding reconstructed PUCs. In
both cases, these error bars arise from ergodic assumption
and from the numerical evaluation of the two-point prob-
ability functions.

The final values of the fitness function given by Eq. (12)
of the optimized PUC for each of the five independent runs
and the number of iterations needed to reach the tolerance
limit of 0.015 are tabulated in Table 4. It can be seen that
the minima reached for all five runs are consistent. Table 4
also shows that the initial best population, generated ran-
domly, is optimized to about 75% by the end of the AUSA
run, which is a substantial amount of improvement on the
initial guess. Also, the final PUC is reduced to about 25%



Table 4
Final values of the objective function F (Eq. (12)) and number of iterations needed to attain the required tolerance for the 40% pack

Pack # Fitness F # of iteration

Before GA After GA

Min Mean Max Min Mean Max

Pack 1 2.102 3.708 8.451 0.616 0.675 0.730 8430
Pack 2 1.081 3.474 8.583 0.571 0.634 0.684 8512
Pack 3 1.938 4.106 9.569 0.545 0.605 0.656 7542
Pack 4 4.447 5.868 13.870 0.574 0.648 0.699 7970
Pack 5 1.746 3.215 8.462 0.608 0.653 0.712 7850
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of the size of the original pack. Even though five different
packs are used as initial packs, the consistency of the final
fitness values and the good agreement of the two-point
probability functions, between the original packs and the
reconstructed unit cells, reinforce the validity of ergodicity
of the random particulate composite under study. Hence,
for further reconstruction simulations (50%, 60% and
70% packing simulations), only one solid propellant pack
is used as the initial pack.

4.2. Packs with 50% particle volume fractions

Now we concentrate on reconstructing a PUC of 50%
packing fraction. The initial pack and the two-point proba-
bility function distributions are shown in Fig. 13a and b,
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Fig. 14. (a) Evolution of fitness values and (b) evolution of the overlap parame
overlap is not completely eliminated and converges to about 0.01.
respectively. The error bars now represent only the numeri-
cal error introduced by the sampling procedure. The param-
eters for the AUSA algorithm are the same as for the 40%
packing simulations. However, the maximum number of
iterations is set to 20,000 and the tolerance is increased to
0.02 to accommodate for the increase in the packing frac-
tion. Since the maximum number of iterations is increased,
the value of Tmin is reduced to 1E�8. The sampling template
parameters used for the current simulations are 2.0 lm
radial spacing (225 radial points) and 3000 throws of the
sampling template. Since the particle packing fraction is
higher, we relax the overlap constraint by increasing the
upper cutoff of overlap x to 0.3 and selecting the exponent
b equal to 1.0, leading to a linear penalty function. These
particular values are selected after experimenting with
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associated two-point probability function distributions (right).
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ter g during GA run for the 50% pack. Although significantly reduced, the
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several combinations of x and b. Ergodicity, statistical
homogeneity and isotropy are assumed explicitly for the
50% pack simulations. From the two-point probability func-
tion distributions (Fig. 13b), the initial size of the PUC is
chosen to be 450 lm and the optimized size H given by
(11) yields 448 lm.

The fitness evolution during one of the AUSA runs is
shown in Fig. 14a. As expected, because of the higher pack-
ing fraction, this run involves a larger number of iterations
than the 40% pack runs. From Fig. 14b, it can be seen that
the value of overlap (g) converges to about 0.01 towards
Table 5
Final values of the objective function F, number of iterations needed to attain

Run # Fitness F

Before GA After GA

Min Mean Max Min

Run 1 1.700 3.240 7.579 0.873
Run 2 2.042 3.472 8.170 0.824
Run 3 2.295 4.147 8.690 0.877
Run 4 2.325 3.698 8.130 0.901
Run 5 1.886 3.834 7.611 0.861
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Fig. 15. (a) Initial 50% pack considered for reconstruction and (b) the
reconstructed periodic unit cell plotted on the same scale (all dimensions in
lm).
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Fig. 16. Comparison of the two-point probability functions of the original
pack (solid line) and the reconstructed PUC (dashed line) for the 50%
pack.
the end of the simulation. Fig. 15 shows the initial 50%
pack and the reconstructed PUC from one of the AUSA
runs, emphasizing the size reduction. Fig. 16 shows the
comparison of the two-point probability function distribu-
tions of the original pack and the reconstructed PUC.
Good agreement can be again observed. Here, the thin
error bars correspond to the scatter in the two-point prob-
ability function distribution of the original pack due to the
numerical errors, while the thick error bars correspond to
the scatter in the two-point probability function distribu-
tions of the optimized PUC due to both numerical and sta-
tistical errors (average of five runs). The final value of the
objective function of the optimized PUC and the number
of iterations needed to reach the tolerance limit of 0.02
are tabulated in Table 5.

Table 5 shows that the initial best population, generated
randomly, is optimized to about 70% by the end of the
AUSA run. However, it is also observed that out of the five
runs, four of them resulted in unit cells with a small overlap
(~g). Here we use the physical overall overlap ~g, rather than
its computational counterpart g given by (14), defined as

~g ¼ Ao

At
; ð22Þ

where Ao is the area of overlap and At is the total particle
area. Although the physical value of overlap ~g is relatively
small for all five runs, it becomes more and more pro-
nounced as the packing fraction increases.

Similar reconstruction is attempted for a pack of 60%
packing fraction. Table 6 shows the number of iterations
needed for convergence for each of the 60% PUC recon-
struction runs and the final overlap. Reoptimization or a
restart of the GA run can be carried out to further improve
the solution, but when attempted, it did not show any
the required tolerance and overall overlap for 50% pack

# of iteration Overall overlap (~g)

Mean Max

0.901 0.942 15,678 2.2868E�4
0.916 0.973 15,532 1.141E�4
0.973 1.034 16,243 3.323E�4
0.959 1.047 16,216 0.000
0.888 0.948 14,561 1.235E�5

Table 6
Number of iterations needed for convergence and final value of the overall
overlap parameter for 60% pack reconstruction runs

Run# # of iteration Overall overlap (~g)

Run 1 26,700 5.140E�2
Run 2 23,300 5.451E�2
Run 3 25,224 3.102E�1
Run 4 23,715 1.302E�1
Run 5 25,366 8.524E�2

Maximum number of iterations was increased for this study to 30,000 due
to the convergence problems.
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marked improvements. When reconstruction is attempted
on a 70% pack, GA run did not converge at all, as the over-
lap plays a dominant role in the optimization procedure.
Hence, we employ the new problem-specific mutation oper-
ator described in Section 3.2 for the 60% and 70% packing
fractions. This is described next.
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Fig. 19. Comparison of the two-point probability functions of the original
pack (solid line) and the reconstructed PUC (dashed line) for 60% pack
with the new mutation operator.
4.3. Packs with 60% and 70% particle volume fractions

For the reconstruction of PUC of 60% and 70% packs,
all the parameters of the AUSA algorithm and the penalty
function are the same as in the 50% pack reconstruction
simulations. As mentioned in Section 3, the new mutation
operator is activated with a small probability of 0.05. The
convergence results for one of the 60% pack AUSA runs,
with the new mutation operator, are shown in Fig. 17.
One can readily see, from Fig. 17b, that the overlap in
the PUC solution is completely eliminated and from
Fig. 17a that the optimization procedure has converged
in around 7500 iterations. Fig. 18a shows the original
60% pack considered for reconstruction and Fig. 18b
shows the reconstructed PUC. The two-point probability
functions of the original pack and the reconstructed unit
cell are compared and plotted in Fig. 19. One can observe
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Fig. 18. (a) Initial 60% pack considered for reconstruction and (b)
reconstructed periodic unit cell plotted on the same scale (all dimensions in
lm).
that the two-point probability functions of the PUC com-
pare well with those of the original pack, even with the
new mutation operator. This fact is reiterated in Table 7,
which shows the initial and final values of the objective
function (Eq. (12)), the number of iterations needed for
convergence and the value of overall overlap ~g for the
60% reconstruction. From the final values of the fitness
function, we can see that the best population member is
optimized to about 70% by the end of the AUSA run. It
should also be noted that the overlap is completely elimi-
nated in all five reconstruction attempts.

Since the effectiveness of the new mutation operator is
established for the reconstruction of the 60% PUC, we
now apply it to reconstruct the PUC of 70% packing frac-
tion. The new mutation operator is shown to be effective
for the 70% reconstruction simulations also, as observed
from Table 8. We can see that the initial randomly gener-
ated best member is optimized to about 70% by the end
of the AUSA run, similar to the previous reconstruction
trials. The overlap is eliminated completely in four of the
five AUSA runs and the fifth one contains a small overlap
only. Fig. 20a and b show the initial 70% pack and the
reconstructed PUC of one of the five AUSA runs, while



Table 7
Final objective function values, number of iterations needed for convergence and overall overlap for 60% pack

Run # Fitness F # of iteration Overall overlap (~g)

Before GA After GA

Min Mean Max Min Mean Max

Run 1 3.477 5.651 9.827 0.985 1.084 1.157 8885 0.000
Run 2 3.053 4.885 9.230 0.817 0.901 0.970 10,870 0.000
Run 3 2.468 4.837 9.312 1.113 1.208 1.258 9565 0.000
Run 4 2.860 4.852 9.591 0.957 1.035 1.088 9825 0.000
Run 5 2.540 4.901 9.490 1.025 1.115 1.178 10,920 0.000

Table 8
Final objective function values, number of iterations needed for convergence and overall overlap for the 70% pack

Pack # Fitness F # of iteration Overall overlap (~g)

Before GA After GA

Min Mean Max Min Mean Max

Run 1 3.450 6.967 12.219 1.168 1.320 1.450 19,672 0.0000
Run 2 4.258 7.122 11.246 1.375 1.496 1.565 23,211 0.0000
Run 3 4.211 7.070 11.950 1.157 1.351 1.467 20,080 0.0000
Run 4 3.260 7.053 11.210 0.946 1.030 1.061 23,065 0.0000
Run 5 3.783 7.064 11.412 1.296 1.351 1.452 24,090 1.0E�4
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Fig. 21. Comparison of the two-point probability functions of the original
pack (solid line) and the reconstructed PUC (dashed line) for the 70% pack
with the new mutation operator.
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reconstructed periodic unit cell plotted on the same scale (all dimensions in
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Fig. 21 presents a comparison of the two-point probability
functions. Very good agreement between the statistics of
the original pack and the PUC is observed again.

4.4. Performance and scalability

In this section, we discuss the performance of the opti-
mization scheme with respect to the packing fraction and
scalability of the parallel algorithm. As apparent in
Fig. 22a, there is a strong dependence of the number of
iterations required for convergence on the packing fraction
(solid line in Fig. 22a). Since a substantial part of the com-
putational effort is spent on reducing the particle overlap,
the adoption of the new mutation operator for the higher
volume fraction cases (60% and 70%) significantly reduces
the number of iterations needed to achieve convergence of
the GA optimization, as apparent from the dashed line in
Fig. 22a.

Finally, the speedup characteristics of the parallel imple-
mentation (described in Section 3.3) of the AUSA algo-
rithm are investigated by measuring the CPU time
needed for 1000 iterations on 40, 80, 120 and 160 proces-
sors for the 50% PUC reconstruction. The time required
for completion of 1000 iterations on each set of processors
is plotted in Fig. 22b (line with circles). The speedup factor
is calculated from the reference time taken on 40 processors
and is also plotted in Fig. 22b (line with squares). We
can see that the parallel code exhibits almost linear scala-
bility with increasing number of processors. Because of
the almost ideally parallel nature of the problem, this
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scalability is expected for reconstruction of PUCs of differ-
ent packing fractions as well.
5. Conclusions

An effective method has been presented to characterize
and reconstruct the complex microstructure of a random
highly packed, multimodal, particulate composite by a sim-
plified periodic unit cell that is statistically (geometrically)
similar to the original microstructure. It is important to
note that the reconstructed periodic unit cells are only rep-
resentative from a geometrical statistics point of view and
that the representativity of the PUC must also account
for the physical processes of interest (Swaminathan and
Ghosh [23]). However, the construction of a geometrically
equivalent periodic unit cell is an important first step in
describing behavior of complex particulate materials, such
as solid propellants. In this work, the micrographs have
been computationally generated using a packing software
called Rocpack, which has been tested and compared to
available experimental data. For the present study, one-
and two-point probability functions have been identified
as the suitable statistical descriptors and the assumptions
of ergodicity, homogeneity and statistical isotropy have
been numerically assessed.

A stochastic optimization method called Augmented
Simulated Annealing has been used to optimize the posi-
tions of particles inside the periodic cell, such that proba-
bility functions are similar to those from the original
pack. The optimization scheme has been implemented in
parallel allowing for the study of large data sets with large
particle size variations and high packing content. A new
mutation operator, based on a mass–spring system, has
been developed to eliminate the particle overlap and to
speed up the computations.

Reconstruction of periodic unit cells has been performed
on four-phase random particulate composite packs of 40–
70% packing fractions. The reconstruction results show
good convergence and repeatability of the genetic algo-
rithm and the statistics of the reconstructed cells compare
well with those of the original packs.
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