
Comput Mech (2016) 57:211–235
DOI 10.1007/s00466-015-1228-0

ORIGINAL PAPER

Asynchronous space–time algorithm based on a domain
decomposition method for structural dynamics problems
on non-matching meshes

Waad Subber1 · Karel Matouš2

Received: 18 May 2015 / Accepted: 18 November 2015 / Published online: 7 December 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Large-scale practical engineering problems fea-
turing localized phenomena often benefit from local control
of mesh and time resolutions to efficiently capture the spa-
tial and temporal scales of interest. To this end, we propose
an asynchronous space–time algorithm based on a domain
decomposition method for structural dynamics problems on
non-matching meshes. The three-field algorithm is based on
the dual-primal like domain decomposition approach uti-
lizing the localized Lagrange multipliers along the space
and time common-refinement-based interface. The proposed
algorithm is parallel in nature and well suited for a hetero-
geneous computing environment. Moreover, two-levels of
parallelism are embedded in this novel scheme. For linear
dynamical problems, the algorithm is unconditionally stable,
shows an optimal order of convergence with respect to space
and time discretizations as well as ensures conservation of
mass, momentum and energy across the non-matching grid
interfaces. The method of manufactured solutions is used to
verify the implementation, and an engineering application is
considered, where a sandwich plate is impacted by a projec-
tile.

B Karel Matouš
kmatous@nd.edu

Waad Subber
wsubber@nd.edu

1 Center for Shock Wave-processing of Advanced Reactive
Materials (C-SWARM), University of Notre Dame, 117
Cushing Hall, Notre Dame, IN 46556, USA

2 Department of Aerospace and Mechanical Engineering,
Center for Shock Wave-processing of Advanced Reactive
Materials (C-SWARM), University of Notre Dame, 367
Fitzpatrick Hall of Engineering, Notre Dame, IN 46556, USA

Keywords Asynchronous time integration · Multi-time-
step methods · Local Lagrange multipliers · Domain
decomposition methods · Non-matching grids · High-
performance computing

1 Introduction

Large-scale multi-physics simulations on parallel comput-
ers often require a localized treatment of the space and
time resolutions. Multiple spatial and temporal scales in
structural dynamics problems usually arise from material het-
erogeneities, e.g. composite panels with stiff skin and soft
core [35], complex loading conditions, such as in impact
[62] or shock [57], and many other scenarios. To effectively
capture the multiscale behavior of such problems, it is neces-
sary to locally control the spatial and temporal resolutions of
the numerical scheme. High spatial and temporal resolutions
may be only required in a small part of the computational
domain where fast dynamics or localized phenomena are
exhibited, whereas a coarser discretization is sufficient in
the majority of the structure. Therefore, computing power
should be directed toward the high resolution regions of the
computational domain.

Modern advances in high-performance computing facili-
tate parallel simulations of large-scale scientific and engi-
neering problems using domain decomposition methods
[41,53,58,63]. Domain decomposition may arise naturally
from partitioning the computational domain into subregions
based on physical considerations, such as in particulate
composites [36], partitioning to accommodate parallel com-
puting [41,58], or due to temporal and spatial scales of
interest [1,52]. To accommodate these local spatial and
temporal scales, the computational subdomains should be
independently refined in the spatial and temporal dimen-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-015-1228-0&domain=pdf


212 Comput Mech (2016) 57:211–235

sions. However, this localized resolution treatment leads to
subdomains with non-matching meshes along the interfaces
and time integration with unequal time steps. Therefore, we
present a novel algorithm based on the three-field domain
decomposition technique to effectively address the issues
of non-matching localized meshes and asynchronous time
increments.

One of the popular domain decomposition methods for
parallel computing, FETI, was proposed initially for elliptic
boundary value problems by Farhat and Roux [17], and it
was later extended to transient simulations [13]. Typically,
in the dual domain decomposition methods, the continuity is
enforced by global Lagrange multipliers (the dual-variables).
Park et al. [45–47] proposed an alternative approach that
departs from the direct subdomain-to-subdomain constraint.
In particular, local Lagrange multipliers are used to con-
strain domains to an intermediate interface or a frame. Such
an intermediate interface is employed by Brezzi and Marini
[8] to handle domains with non-matching meshes. A crucial
component of these schemes is the selection of the frame
(interface) between the subdomains. A zero moment rule
which preserves a constant state of stress along the interface
was proposed in [45,56]. An alternative procedure for the
frame or a “common” interface is the common-refinement-
based approach proposed by Jiao and coworkers [29,30]. The
common refinement technique minimizes a certain L2 norm
between the source and target functions and preserves phys-
ical quantities along the interface [29,30]. Another popular
class of domain decomposition methods for non-matching
meshes is the mortar method. The mortar method allows
nonconforming decomposition of the global domain and pro-
vides an optimal coupling between the subdomains [2,3,41].
A discussion on the mortar based domain decomposition for
fluid-structure interaction problems and its computational
cost is provided in [16,56]. For a comparison among differ-
ent methods for data transfer between non-matching meshes,
see [11,29].

The non-matching mesh resolution may necessitate asyn-
chronous time integration. In other words, in order to satisfy
the stability and accuracy requirements of the localized time
integration scheme, stiff subdomains (i.e. subdomains with a
small mesh size) may require much smaller time steps than
those occupying the rest of the structure, where larger time
steps might be permitted. Mixed implicit-explicit time inte-
gration also may be desirable. To this end, Belytschko and
Mullen [4,5] proposed a nodal partitioning mixed explicit-
implicit method while Hughes and Liu [26,27] introduced an
element-based partitioning scheme. Moreover, several sub-
cycling methods for both first- and second-order problems
were proposed in [6,43,59,60]. Recognizing the potential of
domain decomposition methods, the FETI-like transient inte-
grator was developed by Combescure and Gravouil [10,21]
for subdomains with matching interfaces. This algorithm

is unconditionally stable for synchronous time integration,
but can be energy dissipative in the case of asynchronous
time stepping. Prakash and Hjelmstad [51] and Prakash et
al. [52] proposed a stable and non-dissipative sub-cycling
scheme based on binary trees for parallelism. Unfortu-
nately, the sequential time flow makes this method less
desirable for high-performance computing. Very recently,
Karimi and Nakshatrala [34] presented an approach for
multi-time stepping on many subdomains combining the
works of Combescure and Gravouil [21] and Prakash and
Hjelmstad [51]. Gates et al. [20], and Beneš and Matouš
[7] proposed a computational scheme for non-linear prob-
lems with both synchronous and asynchronous time stepping
utilizing the variational integrators and localized Lagrange
multipliers. While this method is highly parallelizable, it is
only conditionally stable for asynchronous time steps and
requires matching spatial discretizations. A general method-
ology to couple different classes of time integration schemes
with different time steps is described in [22,39], and this
methodology is extended to the case of non-matching meshes
marching in time with synchronous [24] and asynchronous
[18] time integration. Such a framework is based on the
mortar method while discretizing the Lagrange multipliers
directly on an interface mesh. Since the kinematic con-
straint is interpolated between the adjacent subdomains, a
dissipation of the interface energy may occur when using
asynchronous time stepping. Furthermore, the method is
based on the tree/linked decoupling approach, which is a
serial algorithm where one subdomain needs to be solved
first followed by the solution to the adjacent one.

In this work, we develop the parallel asynchronous space–
time algorithm based on the domain decomposition method
(PASTA-DDM) for structural dynamics problems on non-
matching meshes. This three-field algorithm is based on the
dual-primal like domain decomposition approach, whereby
we define a global primal variable and use a local dual vari-
able to enforce the continuity requirements. Our approach
circumvents the need to interpolate the kinematic con-
straints between the adjacent subdomains with coarse and
fine timescales (such as in [7,10,20,21,51,52]). Instead fol-
lowing the localized Lagrange multipliers methodology, we
interpose a common interface among the subdomains and
define a second global primal variable (the frame velocity).
This technique enables a local coupling along the interface
and leads to high-degree of parallelism in spatial dimension.
For accuracy and fulfillment of the conservation require-
ments, we discretize the common interface (the frame) using
the common-refinement-based technique. For asynchronous
time integration, we extend the concept of the common
refinement to the temporal direction, and employ a general-
ized α like method for the local Lagrange multiplier field. In
other works [7,20,51,52], the frame velocity is interpolated
between the coarse and fine timescales which may limit the
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stability and parallelism of the asynchronous time integration
algorithm. In our approach however, the temporal discretiza-
tion leads to favorable conservation properties and enables a
fine grain time-based parallelism within each subdomain. In
particular, the synchronization time step in PASTA-DDM can
be viewed as the coarse time grid correction in the Parareal
algorithm [19,37]. Therefore, the PASTA-DDM algorithm
offers two-levels of inherent parallelism. For linear prob-
lems, we prove by energy method that the PASTA-DDM
is an unconditionally stable and energy preserving scheme
in discrete sense. Moreover, we verify the jump conditions
along the non-matching interfaces and show that PASTA-
DDM ensures conservation of mass, momentum and energy
along the common interface. For the engineering applica-
tion, we consider a sandwich plate impacted by a projectile.
In this problem, we employ the mixed implicit-explicit inte-
gration with heterogeneous time steps and non-matching
meshes. Based on the physical properties and local elastic
wave speeds of the problem, the computational domain is
split into multiple non-overlapping subdomains (i.e. 9 sub-
domains with cross points) leading to a large degree of spatial
and temporal asynchrony.

We organize our paper as follows. In Sect. 2, we present
the formulation of the three-field dual-primal like domain
decomposition approach and introduce the semi-discrete as
well as fully-discrete forms. In Sect. 3, we discus the inter-
face problem of the PASTA-DDM scheme and propose it
as a nested solve. The stability analysis of PASTA-DDM is
presented in Sect. 4. Numerical verification studies and appli-
cation to a real engineering problem are presented in Sect. 5.
Finally, some conclusions are drawn in Sect. 6.

2 Mathematical formulation

Consider an elastic body occupying a bounded domain Ω ⊂
R
d(d = 1, 2, 3) with boundary ∂Ω satisfying the Lipschitz

condition. Further, let ∂Ωu and ∂Ωt , denote a portion of the
boundary where the displacement and surface traction are
prescribed, and ∂Ωu

⋂
∂Ωt = ∅ (see Fig. 1a). The tran-

sient behavior of the elastic body during the time of interest
t ∈ [0, T f ] is governed by the following equation of motion
together with boundary and initial conditions:

ρü(x, t) = ∇ · σ + b in Ω × [0, T f ],
u(x, t) = ū on ∂Ωu × [0, T f ],
σ · n = t̄ on ∂Ωt × [0, T f ],
u(x, 0) = u0 in Ω,

u̇(x, 0) = u̇0 in Ω,

(1)

where ρ is the mass density, σ is the stress tensor, u is the
displacement field, b is the body force, ū is the prescribed
displacement on ∂Ωu , t̄ is the prescribed traction on ∂Ωt , n is

b

∂Ωu

∂Ωt

Ω Γ1

Γ2

b
Γu̇1

ψ̇

u̇2

Ω1

Ω2 ∂Ωt

∂Ωu

(a) (b)

Fig. 1 A diagram showing an arbitrary computational domain Ω and
its partitioning into two non-overlapping subdomains Ω1 and Ω2. The
local interfaces of Ω1 and Ω2 are denoted by Γ1 and Γ2, while the global
interface is denoted by Γ . The velocities on the boundaries Γ1, Γ2 and
Γ are denoted by u̇1, u̇2 and ψ̇ , respectively. a Spatial domain, Ω . b
Domain decomposition, Ω = Ω1

⋃
Ω2

a unit normal to the surface, and u0 and u̇0 are the initial dis-
placement and velocity, respectively. For small deformation,
the infinitesimal strain ε tensor is given by

ε = 1

2

(
∇u + ∇uT

)
, (2)

and for elastic behavior, the constitutive equation is expressed
as

σ = D : ε, (3)

where D is the linear elasticity tensor.
The Lagrangian of the system can be defined as

L(u, u̇) = T (u̇) − V (u), (4)

where the kinetic T (u̇) and elastic potential V (u) energies
are given by:

T (u̇) = 1

2

∫

Ω

ρu̇ · u̇ dΩ, (5)

V (u) = 1

2

∫

Ω

ε : D : ε dΩ −
∫

Ω

u · b dΩ −
∫

∂Ωt

u · t̄ dΓ .

(6)

It is common for large-scale dynamical problems with
complex localized features to solve the equation of motion,
Eq. (1), on parallel computers using domain decomposition
methods. In domain decomposition techniques, the physical
domain Ω is partitioned into ns non-overlapping subdomains
(Ωs, 1 ≤ s ≤ ns) (see Fig. 1b, e.g. for the case of two
subdomains) such that [41,58,63]:

Ω =
ns⋃

s=1

Ωs, Ωs

⋂
Ωr = ∅, (7)
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Γ =
ns⋃

s=1

Γs, Γs = ∂Ωs\∂Ω. (8)

To obtain the weak form, we transform the original problem,
Eq. (1), into the following constrained minimization form.
Find us such that:

L(us, u̇s) =
ns∑

s=1

(
1

2

∫

Ωs

ρs u̇s · u̇s dΩ

− 1

2

∫

Ωs

εs : D : εs dΩ +
∫

Ωs

us · bs dΩ (9)

+
∫

∂Ωt

us · t̄s dΓ

)
→ min,

subject to:
∫

Γ

(u̇s − ψ̇) dΓ = 0, s = 1, . . . , ns,

(10)

where u̇s is the local subdomain velocity and ψ̇ is the velocity
of the common (frame) interface (see Fig. 1b).

Note that a continuity constraint in the aforementioned
minimization problem can be imposed on the displacement,
velocity or acceleration fields [7,10,14,20]. However, to
guarantee energy conservation and for flexibility in coupling
different types of time integration schemes, enforcing the
continuity of the velocity across the interface seems most
appropriate [10,14,15]. Thus, we impose a kinematic con-
straint on the velocity field among the portioned subdomains
as defined in Eq. (10).

In the kinematic constraint, Eq. (10), the common inter-
face variable ψ̇ is global, while the subdomain interface
variable u̇s is local. To enforce such a constraint, we utilize
local Lagrange multipliers [48,50,56]. The variable on the
common interface is the primal kinematic variable (defined
globally) and the local Lagrange multipliers are the dual
variable (defined locally), and thus the subdomains do not
share information directly, but only communicate through the
common interface [48,50,56]. Accordingly, the augmented
Lagrangian associated with the constrained minimization
problem can be expressed as

L̄(us, u̇s,λs, ψ̇) =
ns∑

s=1

(
1

2

∫

Ωs

ρs u̇s · u̇s dΩ

− 1

2

∫

Ωs

εs : D : εs dΩ +
∫

Ωs

us · bs dΩ

+
∫

∂Ωt

us · t̄s dΓ

+
∫

Γ

λs · (u̇s − ψ̇) dΓ

)
, (11)

where we introduce the local Lagrange multiplier λs to
enforce the kinematic constraint. Note that for the case of

a velocity constraint (Eq. 10), the local Lagrange multiplier,
λs , represents a generalized momentum [7].

The first variation of the augmented Lagrangian with
respect to the field variables (us, u̇s,λs, ψ̇) gives

δL̄ =
ns∑

s=1

(∫

Ωs

ρsδu̇s · u̇s dΩ −
∫

Ωs

δεs : D : εs dΩ

+
∫

Ωs

δus · bs dΩ +
∫

∂Ωt

δus · t̄s dΓ

+
∫

Γ

δλs · (u̇s − ψ̇) dΓ +
∫

Γ

δu̇s · λs dΓ

−
∫

Γ

δψ̇ · λs dΓ

)
. (12)

Hamilton’s principle requires that the action integral (the
integral of the Lagrangian from initial to final times [0 , T f ])
is stationary for all possible paths:

∫ T f

0

( ns∑

s=1

(∫

Ωs

ρsδu̇s · u̇s dΩ +
∫

Γ

δu̇s · λsdΓ

−
∫

Γ

δψ̇ · λsdΓ +
∫

Ωs

δus · bs dΩ

−
∫

Ωs

δεs : D : εs dΩ +
∫

∂Ωt

δus · t̄s dΓ

+
∫

Γ

δλs · (u̇s − ψ̇) dΓ

))
dt = 0. (13)

Next, we integrate by parts the first three terms in Eq. (13) and
apply the boundary conditions δu(0) = δψ(0) = δu(T f ) =
δψ(T f ) = 0, which leads to the following three equations
for a typical subdomain Ωs .

The constrained equation of motion:

∫

Ωs

ρs üs · δus dΩ +
∫

Ωs

σ s : δεs dΩ +
∫

Γs

λ̇s · δus dΓ

=
∫

Ωs

δus · bs dΩ +
∫

∂Ωt

δus · t̄s dΓ (14)

The kinematic constraint coupling all the subdomains:

∫

Γ

δλs · (u̇s − ψ̇) dΓ = 0. (15)

The equilibrium equation among the subdomains:

ns∑

s=1

−
∫

Γ

δψ · λ̇s dΓ = 0. (16)

2.1 Spatial discretization

In this subsection, we seek an approximate solution to the
weak form in the spatial dimension using the finite element
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method. Thus, let each subdomain Ωs be discretized by a cell
with a maximum element size h, and letXh ,Yh andZh be the
finite element subspaces for the displacement field, Lagrange
multipliers and the common interface variable defined as

Xh = span{N1
u(x), N2

u(x), . . . , Nnu
u (x)}, (17)

Yh = span{N1
λ(x), N2

λ(x), . . . , Nnλ

λ (x)}, (18)

Zh = span{N1
ψ(x), N2

ψ(x), . . . , N
nψ

ψ (x)}, (19)

where {Ni
u(x)}nui=1, {Ni

λ(x)}nλ

i=1 and {Ni
ψ(x)}nψ

i=1 are piecewise
linear finite element basis functions. Then the finite element
approximate solutions uh

s ∈ Xh , λh
s ∈ Yh and ψh

s ∈ Zh can
be written as

uh
s =

nu∑

i=1

Ni
u ũi

s(t), λh
s =

nλ∑

i=1

Ni
λλ̃

i
s(t),

ψh
s =

nψ∑

i=1

Ni
ψ ψ̃

i
s(t). (20)

For stability analysis of the finite element spaces and optimal
error estimates for the three-field formulation, the multiscale
mortar finite elements, and the discontinuous stabilized mor-
tar formulation, in the context of domain decomposition, we
refer to [2,8,23].

Substituting the discrete representations of the field vari-
ables, Eq. (20), in the weak form, Eqs. (14), (15) and (16),
leads to the following semi-disecretized dual-primal linear
system

Ms üs(t) + Ksus(t) + ET
s λ̇s(t) = fs(t),

Es u̇s(t) − Bsψ̇(t) = 0,

ns∑

s=1

−BT
s λ̇s(t) = 0, (21)

where we drop the nodal finite element association marking
(tilde) for brevity of the representation. Here, Ms and Ks

are the traditional subdomain mass and stiffness matrices,
respectively. The subdomain vector fs(t) represents the pre-
scribed forces. The mass like projection matrices Es and Bs

are defined as

Es =
∫

Γs

NT
λ Nu dΓ , (22)

Bs =
∫

Γ

NT
λ Nψ dΓ . (23)

2.1.1 Non-matching grids

In principle, each subdomain can be discretized in space
independently using a suitable mesh size based on the multi-
scale features of the problem. However, this local treatment

Γ1

Γ2
λ1

λ2

Γ

Ω2

Ω1 Γ1

Γ2

Γc

λ1

λ2

Ω1

Ω2

(a) (b)

Fig. 2 Matching and non-matching subdomains meshes at the inter-
face. Γc is the common-refinement-based interface for data transfer
between non-matching spatial discretizations. a Matching subdomains
meshes. b Non-matching subdomains meshes

of the spatial resolution can lead to non-matching meshes
along the interface Γ . For optimal accuracy and to ful-
fill the conservation requirement of physical quantities, a
common-refinement-based interface [29,30] is utilized for
non-matching meshes. The common-refinement-based inter-
face denoted by Γc is a surface (in 3D) or a line (in 2D)
that provides a discretization for the interface such that the
L2 norm of the error between the source and target field
is minimized. Details of an efficient and robust algorithm
for constructing a common-refinement-based interface are
provided in the work of Jiao and Heath [31,32]. Thus, this
approach leads to an accurate integration of the interface
mass-like coupling matrix (see Fig. 2b). The local Lagrange
multipliers are discretized on a low dimensional mesh that
is a restriction of the subdomain discretization on the local
interface boundary (i.e., Nλ(x) = Nu(x),∀x ∈ Γs). It fol-
lows that Eq. (22) and Eq. (23) become:

Es =
∫

Γs

NT
u Nu dΓ , (24)

Bs =
∫

Γc

NT
u Nψ dΓ . (25)

It is worth mentioning that the zero-moment rule is another
approach available in the literature that can be used to provide
a discretization of the common interface [45,56]. A review of
different techniques for data transfer between non-matching
meshes is provided in [11].

As discussed briefly in the previous section, the selec-
tion of the finite element spaces, Eqs. (17)–(19), is crucial
especially for elliptic problems. For transient analysis, how-
ever, the problem is regularized by the positive definite mass
matrix. Nevertheless, the ratio of continuity over coercivity
(i.e. ellipticity) constants may be very large (for example,
when using a small time step). In such a case, better regular-
ization needs to be considered.

In the context of a domain decomposition with matching
grids, it has been shown that the continuity condition, Eq. (21-
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b), is not required to be such that the discrete hybrid system of
Eqs. (21-a) and (21-c) satisfies the Ladyzhenskaya-Babuška-
Brezzi (inf-sup) condition [38]. In the case of matching
meshes the discrete trace operators, Es = Bs , can be inter-
preted as restriction matrices [38]. This is not the case if
different trace operators are used as in Eq. (24) and Eq. (25),
and we provide the inf-sup analysis of our scheme in the
elliptic setting in Appendix 1.

2.2 Temporal discretization

To obtain the fully discrete dual-primal transition linear sys-
tem, a time discretization scheme is required. Thus, in the
following subsections, we address the time discretization of
the dual primal system (see Eq. (21)).

2.2.1 Synchronous time integration

For time discretization with a unified time step for all subdo-
mains (i.e. synchronous time integration), let the integration
time of interest [T0, T f ] be divided into n f time steps. Next,
we define the synchronization time step (the global time step)

T as


T = T f − T0

n f
. (26)

Consequently, the fully discrete representation of the dual
primal system, Eq. (21), at a discrete instant of time n + 1
can be expressed as

Ms ün+1
s + Ksun+1

s + ET
s �n+1

s = fn+1
s ,

Es u̇n+1
s − Bs�

n+1 = 0, n = 0, 1, . . . n f − 1
ns∑

s=1

−BT
s �n+1

s = 0, (27)

where for simplicity of notation, we denote �s(t) = λ̇s(t)
and � = ψ̇(t).

To advance the system one time step, we use the Newmark
algorithm (potentially with local integration parameters γs
and βs), that is

u̇n+1
s = u̇n

s + (1 − γ )
T ün
s + γ
T ün+1

s , (28)

un+1
s = un

s + 
T u̇n
s +

(
1

2
− β

)

T 2ün

s + β
T 2ün+1
s .

(29)

At this stage, it is worth emphasizing that other time integra-
tion schemes (e.g. geometric integrators [33]) can be used
within the PASTA-DDM framework provided that the sub-
domains local stability criteria are satisfied.

Combining the fully discrete dual primal system, Eq. (27),
with the Newmark scheme, Eqs. (28) and (29), gives the
following transition linear problem

⎡

⎢⎢⎢⎣

As RT
s 0

Ls 0 −Bs

0
ns∑

s=1

−BT
s 0

⎤

⎥⎥⎥⎦

⎧
⎨

⎩

Us

�s

�

⎫
⎬

⎭

n+1

=
⎧
⎨

⎩

Fn+1
s − CsUn

s
0
0

⎫
⎬

⎭ ,

(30)

where for compact representation, we define

As =
⎡

⎣
Ms 0 Ks

−γ
T I I 0
−β
T 2I 0 I

⎤

⎦ ,

Cs =
⎡

⎣
0 0 0
−(1 − γ )
T I −I 0
− ( 1

2 − β
)

T 2I −
T I −I

⎤

⎦ ,

Us =
⎧
⎨

⎩

üs

u̇s

us

⎫
⎬

⎭ , Fs =
⎧
⎨

⎩

fs
0
0

⎫
⎬

⎭ ,

RT
s =

⎡

⎣
I
0
0

⎤

⎦ ⊗ ET
s , Ls = [

0 I 0
] ⊗ Es .

Here I is the identity matrix.

2.2.2 Asynchronous time integration

For time discretization using different time steps in each
subdomain (i.e. multi-time stepping, asynchronous time inte-
gration), we extend the idea of spatial common-refinement-
based interface into the temporal dimension. In particular,
we define a temporal common refinement as a union of the
two different time scales of adjacent subdomains (see Fig. 3).
The common time scale serves as a bridge that links the asyn-
chronous time steps of the subdomains.

Thus for asynchronous time discretization, let the global
time step 
T be decomposed into multiple sub steps as


ts = 
T

nts
, (31)

where nts is the local number of time steps for subdomain Ωs .
The system time step 
T can be viewed as a synchronization
time step whereby all the subdomains reach this directly, but
with different number of time steps.

Next, we employ the Newmark scheme, Eqs. (28) and
(29), in terms of local integration parameters (γs and βs) and
subdomain time increment 
ts as
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Fig. 3 Temporal common refinement time integration scheme. Here

T represents the synchronization time step, while 
t1 and 
t2 are
the subdomain time increments. The superscript k and n indicate the
subdomain (Ω1,Ω2) and the system (synchronization) time step indices,
respectively

u̇k+1
s = u̇k

s + (1 − γs)
ts ük
s + γs
ts ük+1

s , (32)

uk+1
s = uk

s + 
ts u̇k
s +

(
1

2
− βs

)

t2

s ük
s + βs
t2

s ük+1
s ,

(33)

where k is the local time stepping index for a typical subdo-
main Ωs .

Proposition 1 For the local Lagrange multipliers, we use a
generalized α like method for the temporal discretization

�k
s = Sk�n

s + T k�n+1
s , (34)

where �n
s and �n+1

s are the Lagrange multipliers at the syn-
chronization time step, and the linear functions Sk and T k

are given as

Sk = 1 − tk

T

= 1 − k

nts
, (35)

T k = tk

T

= k

nts
, (36)

since tk = k
ts and 
T = nts
ts . Note that Sk + T k = 1.

Proposition (1) is formulated based on the fact that the
Lagrange multipliers can be viewed as lumped quantities
at the beginning and end of one synchronization time step
[51]. Furthermore, we notice that for synchronous time inte-
gration, the Lagrange multiplier varies linearly over one
synchronization time step.

Combining the local time discretization scheme, Eqs. (32),
(33) and (34), and the constrained discrete dual-primal equa-
tions, Eq. (27), gives the following transition linear system

AsUk+1
s + T k+1RT

s �n+1
s = Fk+1

s − CsUk
s − Sk+1RT

s �n
s ,

(37)

LsUk+1
s − Es�

k+1
s = 0, if k 
= nts − 1 (38)

LsUk+1
s − Bs�

n+1 = 0, if k = nts − 1 (39)
ns∑

s=1

−BT
s �n+1

s = 0, (40)

where we redefine the amplification and the right-hand matri-
ces in terms of the local parameters γs , βs and 
ts as

As =
⎡

⎣
Ms 0 Ks

−γs
tsI I 0
−βs
t2

s I 0 I

⎤

⎦ ,

Cs =
⎡

⎣
0 0 0
−(1 − γs)
tsI −I 0
− ( 1

2 − βs
)

t2

s I −
tsI −I

⎤

⎦ .

Note that �k+1
s represents an intermediate frame veloc-

ity, while �n+1 is the synchronization frame velocity shared
among the subdomains (see Fig. 3). The intermediate frame
velocity, �k+1

s , is local and defined at the subdomain time
increments. Since the intermediate frame velocity is local,
we define a local constraint in Eq. (38) that can be viewed as
a mechanism to transfer information between the local time
step and the global synchronization step. On the other hand,
the global frame velocity �n+1 is defined at the synchroniza-
tion time step, where the spatial common-refinement-based
interface is described. At the synchronization time step, a
global constraint Eq. (39) is introduced to transfer infor-
mation among the subdomains. In other works [7,10,20,21,
51], the intermediate frame velocity, �k+1

s , is interpolated
between the coarse and fine timescales which may lead to
undesirable energy conservation properties.

Remark 1 The fully discrete dual-primal transition linear
system, Eqs. (37) to (40), is full rank and consistent, and
thus it has a unique solution.

As an illustrative example, for the case of two subdomains
with time steps nt1 = 2 and nt2 = 3, the global dual-primal
transition system can be written as
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1
1
2 RT

1
C1 A1 RT

1
L1 −E1

L1 0 −B1

A2
1
3 RT

2
C2 A2

2
3 RT

2
C2 A2 RT

2
L2 −E2

L2 −E2

L2 0 −B2

−BT
1 0 −BT

2 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1
1

U2
1

�n+1
1
�1

1
U1

2
U2

2
U3

2
�n+1

2
�1

2
�2

2
�n+1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1
1 − C1U0

1 − 1
2 RT

1 �n
1

F2
1

0
0

F1
2 − C2U0

2 − 2
3 RT

2 �n
2

F2
2 − 1

3 RT
2 �n

2
F3

2
0
0
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(41)

Recall that the subscript indicates subdomain number,
while the superscript refers to time step index (e.g., U2

1 =
Uk=2
s=1), and n is the synchronization time step index (see

Fig. 3).
Note that the global dual-primal system, Eq. (41), does

not need to be assembled explicitly. The local subdomain
unknowns can be obtained concurrently after solving the
interface problem. In the following section, we show how
to efficiently solve the interface problem in PASTA-DDM.

3 The Interface Problem in PASTA-DDM

In essence, domain decomposition algorithms can be viewed
as iterative schemes for solving the reduced interface sys-
tem, often, by a preconditioned Krylov subspace method
[41,53,58,63]. Therefore, the efficiency and scalability of
any domain decomposition technique mainly depend on the

method for handling the interface problem. In what follows,
we simplify the interface problem in PASTA-DDM and show
how it can be tackled efficiently by a nested solver.

For a typical subdomain Ωs with nts time steps, the
dual-primal transition system, Eqs. (37) to (40), over one
synchronization time step (from n to n + 1) can be cast in a
concise form as

[As Bs

CT
s 0

]{Us

�

}n+1

=
{Fs

0

}n

, (42)

where we define the following matrices and vectors

As =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

As T k+1RT
s

Cs As T k+2RT
s

. . .
. . .

...

Cs As T nts RT
s

Ls 0 −Es

Ls 0 −Es
. . .

. . .
. . .

Ls 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (43)

Bs =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
0
...

−Bs

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

0
Bs

]
, Bs =

[
0

−Bs

]
, (44)

CT
s = [

0 · · · 0 −BT
s 0 · · · 0

] = [
0 C

T
s

]
, C

T
s = [−BT

s 0
]
,

(45)

Us =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uk+1
s

Uk+2
s
...

Unt
s

�n+1
s

�k+1
s

�k+2
s
...

�
nts −1
s

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, Fs =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fk+1
s − CsUk

s − Sk+1RT
s �n

s
Fk+2
s − Sk+2RT

s �n
s

...

F
k+nts
s − Snts RT

s �n
s

0
0
0
...

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(46)

For ns subdomains, global assembly of the local system,
Eq. (42), leads to the following generic form:
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⎡

⎢⎢⎢⎢⎢⎣

A1 B1

A2 B2
. . .

...

Ans Bns

CT
1 CT

2 · · · CT
ns 0

⎤

⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U1

U2
...

Uns
�

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

n+1

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F1

F2
...

Fns
0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

n

. (47)

Clearly, the linear system in Eq. (47) is highly paralleliz-
able. Once the global interface variable � is available, the
subdomain unknowns Us can be obtained independently and
hence in parallel. Thus, since A−1

s is invertable, a concurrent
block Gaussian elimination reduces the system in Eq. (47) to
the following interface problem for the global variable �

AΨ � = FΨ , (48)

where the condensed interface matrix AΨ and the corre-
sponding right-hand side FΨ are defined as

AΨ =
ns∑

s=1

CT
s A−1

s Bs, (49)

FΨ =
ns∑

s=1

CT
s A−1

s Fs . (50)

Having the interface variable �, the interior unknowns Us

can be obtained concurrently by solving the following local
problem on each subdomain

Us = A−1
s (Fs − Bs�). (51)

The primary task at hand in our PASTA-DDM is to solve
the interface problem Eq. (48). To simplify the condensed
interface matrix AΨ , we notice that for a typical subdomain,
the local contribution CT

s A−1
s Bs to AΨ can be written as

CT
s A−1

s Bs = [
0 C

T
s

]

[
Ints ⊗ As + Ints −1 ⊗ Cs Ic ⊗ R

T
s

Ints ⊗ Ls Ints +1 ⊗ Es

]−1 [ 0
Bs

]
,

(52)

where we define the following generalized permutation
matrices,

Ints =

⎡

⎢⎢⎢⎣

1
1

. . .

1

⎤

⎥⎥⎥⎦ ∈ Rnts×nts ,

Ints+1 =

⎡

⎢⎢⎢⎣

0 1
0 1

. . .
. . .

0

⎤

⎥⎥⎥⎦ ∈ Rnts×nts , (53)

Ints−1 =

⎡

⎢⎢⎢⎣

0
1 0

. . .
. . .

1 0

⎤

⎥⎥⎥⎦ ∈ Rnts×nts ,

Ic =

⎡

⎢⎢⎢⎢⎣

1
nts
2
nts
...
nts
nts

⎤

⎥⎥⎥⎥⎦
∈ Rnts×1, (54)

and restriction matrices

R
T
s = [

RT
s 0

]
. (55)

Using the Schur complement approach, Eq. (52) can be fac-
torized as

CT
s A−1

s Bs =C
T
s

[
(Ints+1 ⊗ Es) − (Ints ⊗ Ls)

[
Ints ⊗ As + Ints−1 ⊗ Cs

]−1
(Ic ⊗ R

T
s )

]
Bs .

(56)

We can show that for a linear problem the term
[
Ints ⊗ As +

Ints−1 ⊗ Cs
]−1 can be calculated using one factorization of

the subdomain amplification matrix As as

[
Ints ⊗ As + Ints−1 ⊗ Cs

]−1

=
nts−1∑

i=0

(−1)i Ints−i ⊗ A−1
s (BsA−1

s )i , (57)

where (BsA−1
s )i represents a regressive solve.

After substituting Eq. (57) back into Eq. (56) and manip-
ulating the terms, we obtain

CT
s A−1

s Bs = C
T
s

⎡

⎣Int+1 ⊗ Es −
nts−1∑

i=0

(−1)i Ints−i Ic

⊗ LsA−1
s (BsA−1

s )iRT
s )

⎤

⎦Bs,

= C
T
s As

ΨBs . (58)

Similarly, we can obtain the subdomain condensed right-
hand side as

CT
s A−1

s Fs = C
T
s

⎡

⎣Ints+1 ⊗ Es −
nts−1∑

i=0

(−1)i Ints−i Ic

⊗ LsA−1
s (BsA−1

s )iRT
s )

⎤

⎦Fs,

= C
T
s As

ΨFs, (59)
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where the local condensed interface matrix is defined as

As
Ψ =

⎡

⎣Ints+1 ⊗ Es −
nts−1∑

i=0

(−1)i Ints−i Ic

⊗ LsA−1
s (BsA−1

s )iRT
s )

]
. (60)

Finally, the condensed interface problem for the global vari-
able �, Eq. (48), becomes:

ns∑

s=1

C
T
s As

ΨBs� =
ns∑

s=1

C
T
s As

ΨFs . (61)

Remark 2 The condensed interface problem, Eq. (61), can
be solved either by using factorization of the subdomain
amplification matrix or more efficiently by a recycling Krylov
subspace method for a sequence of linear systems with mul-
tiple right-hand sides.

For a particular case of two subdomains with non-
matching grids and asynchronous time stepping, we show
in Figs. 4 and 5 the sparsity structure and spectrum of the
eigenvalues of the global system, Eq. (47), the condensed
interface system, Eq. (61), and the local subdomain contri-
butions, Eq. (60). Clearly, the condensed interface system is
dense, but much smaller in size and better conditioned than
its global counterpart.

Note that in practice, the condensed interface primal
system, Eq. (61), itself does not need to be constructed
explicitly, and only a procedure for matrix-vector product
is required. Specifically, a preconditioned Krylov subspace
iterative method is often used to solve the interface problem.
At each iteration of the iterative solver loop, only the action
of the local condensed interface matrix, Eq. (60), on a vec-
tor is needed. This matrix-vector product can be obtained in
parallel by solving local problems on each subdomain and
gathering the resulting vectors. Moreover, the rate of conver-
gence of the iterative method can be generally improved by a
suitable preconditioner [41,53,58,63]. Devising a two-level
scalable preconditioner that can exploit the block structure of
the subdomain transition system and nested solve is essen-
tial for efficient parallel implementation of PASTA-DDM.
For example, the Balancing Domain Decomposition by Con-
straints (BDDC) technique [40,61] can be considered in this
aspect. Since the primary goal of this article is formulation of
the asynchronous space and time algorithm, at this stage we
construct the interface problem, Eq. (61), and solve it using
a direct solver.

Considering the mathematical structure of the solver,
(Eqs. (48) to (51)), and the vast amount of parallel imple-
mentation strategies [8,38,41,53,63], we note the parallel
nature of this scheme. Moreover, it is worth mentioning that

nz = 35540
0 1500 3000 4303

0

1500

3000

4303

Ω1 : nt1 = 3

Ω2 : nt2 = 5

nz = 676
0 10 20 27

0
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20

27

nz = 664
0 15 30 43

0

15

30

43

nz = 3676
0 35 70 105 131

0
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70

105

131

(a) (b)

(c) (d)

Fig. 4 The sparsity structure of (a) the global dual-primal linear sys-
tem given in Eq. (47), (b) the condensed interface primal system defined
in Eq. (61), and (c), (d) the local contribution Eq. (60) for the case
of two subdomains with non-matching grids (h1 = 0.1768 m and
h2 = 0.0884 m) and asynchronous time stepping (
t1:
t2 = 3:5).
The geometry and physical properties used are from the first example
in Sect. 5.1. The variable nz represents the number of non-zero entries. a
The global system, Eq. (47). b The condensed interface system, Eq. (61).
c The local contribution from Ω1, Eq. (60). d The local contribution
from Ω2, Eq. (60)

we implemented our PASTA-DDM algorithm in a virtual par-
allel environment. That is, all the subdomains construct their
local mass, stiffness, amplification and restriction matrices
independently. Furthermore, the intermediate temporal states
of the subdomains are computed independently after solving
the interface problem.

Finally, it is noteworthy that PASTA-DDM offers two-
levels of parallelization (see Fig. 4). A global coarse grain
parallelism due to the spatial decomposition and a fine grain
time-based parallelism within each subdomain. The local
fine grain parallelism can be achieved efficiently utilizing the
Parareal algorithm [19,37], for example. The synchroniza-
tion time step in PASTA-DDM can be viewed as the coarse
time grid correction in the Parareal algorithm.

4 Stability analysis of PASTA-DDM

In this section, the stability analysis of PASTA-DDM based
on the energy method is presented [10,25,51]. Specifically,
we prove that for the linear problem considered in this work,
PASTA-DDM is an unconditionally stable scheme.
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Fig. 5 The spectrum of the eigenvalues of (a) the global dual-primal
linear system given in Eq. (47), (b) the condensed interface primal
interface system defined in Eq. (61) and (c), (d) the local contribution,
Eq. (60), for the case of two subdomains with non-matching grids
(h1 = 0.1768 m and h2 = 0.0884 m) and asynchronous time stepping
(
t1:
t2 = 3:5). The geometry and physical properties used are from

the first example in Sect. 5.1. In this figure, the variables λM and λm
are the maximum and minimum eigenvalues, respectively. a The global
system, Eq. (47). b The condensed interface system, Eq. (61). c The
local contribution from Ω1, Eq. (60). d The local contribution from
Ω2, Eq. (60)

Lemma 1 The increment of the discrete mechanical energy
of a dynamical system (which is decomposed into ns subdo-
mains each of which has nts time steps and without external
force) over the time interval from tn to tn+1 can be expressed
as�

1

2
üT Qü + 1

2
u̇T Ku̇

�n

= −
ns∑

s=1

nts∑

k=1

(
γs − 1

2

)
�üT

s �kQs�üs�k

−
ns∑

s=1

nts∑

k=1

1


ts
�u̇T

s �kET
s ��s�k . (62)

Here we denote

Qs = Ms + 
t2
s (βs − 1

2
γs)Ks, (63)

and the mean 〈•〉 and difference �•� operators are defined as

〈•〉 = 1

2
(•k+1 + •k),

�•�k = (•k+1 − •k), �•�n = (•n+1 − •n), (64)

where k is the local and n is the global (synchronization) time
step (see Fig. 3).

Proof For a typical subdomain Ωs , without external force,
the equation of motion in terms of the difference operator
can be written as

Ms�üs�k + Ks�us�k + ET
s ��s�k = 0. (65)

Note that Newmark’s equation in terms of the mean and dif-
ference operators can also be expressed as

�u̇s�k = 
ts〈üs〉 +
(

γs − 1

2

)

ts�üs�k, (66)

�us�k = 
ts〈u̇s〉 +
(
βs − 1

2
γ
)

t2

s �üs�k . (67)
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Premultiplying Eq. (65) by �u̇T
s �k and then substituting New-

mark’s Eqs. (66) and (67) in Eq. (65) and rearranging the
terms give

1

2
�üT

s Qs üs�k + 1

2
�u̇T

s Ks u̇s�k = −
(

γs − 1

2

)
�üT

s �kQs�üs�k

− 1


ts
�u̇T

s �kET
s ��s�k,

(68)

where we use the identity 〈üs〉T Qs�üs�k = 1
2 �üT

s Qs üs�k .
Summing up Eq. (68) over all subdomains yields

�
1

2
üT Qü + 1

2
u̇T Ku̇

�n

= −
ns∑

s=1

nts∑

k=1

(
γs − 1

2

)
�üT

s �kQs�üs�k

−
ns∑

s=1

nts∑

k=1

1


ts
�u̇T

s �kET
s ��s�k . (69)

�

Lemma 2 The total energy increment of a system decom-
posed into ns subdomains with nts time steps is given as

�
1

2
üT Qü + 1

2
u̇T Ku̇

�n

= −
ns∑

s=1

nts∑

k=1

(
γs − 1

2

)
�üT

s �kQs�üs�k

− 1


T

ns∑

s=1

�u̇T
s �nET

s ��s�n . (70)

Proof Recall that in Proposition (1) (see Eq. (34)), the inter-
mediate local Lagrange multipliers are computed as

�k
s =

(
1 − k

nts

)
�n

s +
(

k

nts

)
�n+1

s , (71)

and thus

��s�k = �k+1
s − �k

s = 1

nts
(�n+1

s − �n
s ) = 1

nts
��s�n,

(72)

where the local and global jump operators are given in
Eq. (64). Utilizing Eq. (72), the last right-hand side term
of Eq. (69) reads

nts∑

k=1

�u̇T
s �kET ��s�k =

nts∑

k=1

1

nts

(
(u̇k+1

s )T − (u̇k
s )

T
)

ET ��s�n

= 1

nts
�u̇T

s �nET ��s�n . (73)

Substituting Eq. (73) into Lemma (1) and noting that 
T =
nts
ts give

�
1

2
üT Qü + 1

2
u̇T Ku̇

�n

= −
ns∑

s=1

nts∑

k=1

(
γs − 1

2

)
�üT

s �kQs�üs�k

− 1


T

ns∑

s=1

�u̇T
s �nET

s ��s�n . (74)

�
Theorem 1 PASTA-DDM is energy conservative scheme,
provided that the underlying integration methods for the
subdomains are energy preserving (i.e., for Newmark’s inte-
gration parameter γs = 1/2). The total increment of the
mechanical energy of the system is zero:

�
1

2
üT Mü + 1

2
u̇T Ku̇

�n

= 0. (75)

Proof From the compatibility and equilibrium equations (see
Eq. (27)), we can write the following expressions

Es�u̇s�n = Bs���n, (76)
ns∑

s=1

−BT
s ��s�n = 0. (77)

Substituting Eqs. (76) and (77) into Lemma (2) and using
Newmark’s integration parameter without numerical dissi-
pation (γs = 1/2) lead to

�
1

2
üT Mü + 1

2
u̇T Ku̇

�n

= 0. (78)

Therefore, PASTA-DDM conserves the total discrete energy
and is an unconditionally stable scheme. �

5 Numerical results

In this section, we present verification studies and an engi-
neering application of a sandwich plate impact problem.
First, we consider the Method of Manufactured Solutions
(MMS) to evaluate the spatial and temporal order of con-
vergence of PASTA-DDM (see [55]). Second, we verify
the fulfillment of the jump conditions along the common
refinement interface (i.e., to illustrate mass, momentum and
energy conservation properties of PASTA-DDM across the
non-matching meshes). Next, to demonstrate the applicabil-
ity of PASTA-DDM to practical engineering problems, we
consider a sandwich plate impacted by a projectile. In such
simulations, local treatment of both the mesh and time res-
olutions is crucial to preserve accuracy and efficiency in a
heterogeneous parallel computing environment.
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Ω1 Ω2

P

L = 1m

L
=

1
m

Fig. 6 A diagram of the computational domain for mesh size and time
increment convergence studies. P is a point on the interface having
coordinates x = 0.5 m and y = 0.5 m

5.1 Spatial and temporal order of convergence

As shown in Fig. 6, a unit square computational domain
that is decomposed into two non-overlapping subdomains
at x = 0.5 m is considered for the convergence studies. The
material properties for both subdomains are: Young’s mod-
ulus E = 210 GPa, Poisson’s ratio ν = 0.3 and density
ρ = 7800 kg/m3. The implicit Newmark algorithm is used
for both subdomains. Furthermore, the following manufac-
tured displacement field is used:

u∗(x, t) =
{
x(L − x)y(L − y)
x(L − x)y(L − y)

}
sin(ωt) sin(2ωt). (79)

For non-matching meshes (h1/h2 = 2) and asynchronous
time stepping (
t1:
t2 = 1:3), Fig. 7 shows snapshots of

Fig. 7 Snapshots of the
displacement magnitude at
different synchronization time
steps. In this figure,
h1 = 0.0884 m, h2 =
0.0442 m,
t1:
t2 = 1:3 and

T = 0.0375 s. a T = 0.6 s.
b T = 0.9 s. c T = 1.2 s.
d T = 1.5 s

(a) (b)

(c) (d)
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Fig. 8 Time history of the vertical component of the displacement field
and phase space diagram at point P . The manufactured solution at point
P is denoted by u∗

y , while the PASTA-DDM solution from subdomain

Ω1 and Ω2 on the interface is denoted as uP
y |Γ1 and uP

y |Γ2 . a Time his-
tory. b Phase space diagram
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Fig. 9 Rate of convergence of PASTA-DDM for displacement, veloc-
ity and acceleration fields with respect to mesh size h for matching
and non-matching meshes with synchronous 
t1:
t2 = 1:1 and asyn-

chronous 
t1:
t2 = 1:3 time stepping. The synchronization time is

T = 0.0375 s. a Matching meshes. b Non-matching meshes

the displacement magnitude at different synchronization time
steps. Note that the fields are continuous across the interface
in the weak sense.

For the case of non-matching grids (h1/h2 = 2) and asyn-
chronous time stepping (
t1:
t2 = 1:3), in Fig. 8 we show
the time history of the vertical component of the displace-
ment field and phase space diagram at point P (see Fig. 6).
The results from PASTA-DDM are compared to the manu-
factured solution in Eq. (79).

For both cases of matching and non-matching grids, the
convergence properties of PASTA-DDM with respect to the
mesh resolution are illustrated in Fig. 9. The spatial error at
a given instant of time is computed as

‖eh‖ =
√√√√

ns∑

s=1

∫

Ωs

(
u∗(x, T f ) − us(x, T f )

)2 dΩ, (80)

where T f = 15 s. Note that for transient analysis, measuring
the spatial error at a given time is typical [12,42,44,54], and
the time integration of Eq. (80) only adds a constant shift.
For the error in velocity, the same error measure, Eq. (80),

is used with the appropriate manufactured velocity field, u̇∗,
obtained from Eq. (79) and the corresponding velocity field
u̇s define in Eq. (32). For the Newmark time integration
method (a constant average acceleration scheme) to achieve a
second order accuracy for the acceleration, a post-processing
step is required [9,22,64,65]. Therefore, the average accel-
eration within a synchronization time step is calculated as

ün+1/2
s (
T ) = 
T


ts

nts∑

k=1

(
ük+1
s − ük

s

2

)
, (81)

where k is the local and n is the global (synchronization)
time step (see Fig. 3). We use Eq. (81) together with the
appropriate manufactured acceleration field, ü∗ (Eq. (79)),
to compute the spatial error given by Eq. (80).

In Fig. 9a, we refine both subdomain meshes simultane-
ously, while in Fig. 9b the ratio of mesh size (h1/h2 = 2) is
kept constant and both subdomains are refined at the same
time. For clarity of the presentation, in Fig. 9b we plot the
norm of the error against the average mesh size. For the linear
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Fig. 10 Rate of convergence of PASTA-DDM for displacement, veloc-
ity and acceleration with respect to the synchronization time incre-
ment 
T for matching and non-matching meshes with synchronous

t1:
t2 = 1:1 and asynchronous 
t1:
t2 = 1:3 time stepping.

For matching grids (a), h1 = h2 = 0.1768 m and for non-matching
grids (b), h1 = 0.2750 m and h2 = 0.1768 m. a Matching meshes. b
Non-matching meshes
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Fig. 11 Rate of convergence of PASTA-DDM for the local Lagrange
multipliers with respect to mesh size h for matching and non-matching
meshes with synchronous 
t1:
t2 = 1:1 and asynchronous 
t1:
t2 =

1:3 time stepping. The synchronization time is 
T = 0.0375 s. a
Matching meshes. b Non-matching meshes

finite elements used, PASTA-DDM achieves the optimal sec-
ond order convergence properties (in displacement, velocity
and average acceleration) with respect to the spatial mesh
size for both matching and non-matching grids as well as
synchronous and asynchronous time integration.

In Fig. 10, we demonstrate the rate of convergence of
PASTA-DDM (in displacement, velocity and acceleration)
with respect to the time increment for both matching and
non-matching meshes, and synchronous and asynchronous
time stepping. The temporal error is computed as

‖et‖ =
√√√√

ns∑

s=1

∫

Ωs

∫

T

(
u∗(x, t) − us(x, t)

)2 dt dΩ. (82)

For consistency, the error norms are plotted against the syn-
chronization time step 
T . The time integration interval is
T ∈ [0, 150] s. Once again for the error in velocity, the same
error measure, Eq. (82), is used with the appropriate manufac-
tured velocity field, u̇∗, obtained from Eq. (79), and the corre-
sponding velocity field, u̇s , defined in Eq. (32). Moreover, the
error in the acceleration is computed using Eq. (82), whereby

the manufactured acceleration field, ü∗, is obtained from
Eq. (79), and the corresponding averaged acceleration field,
üs , is calculated using Eq. (81). As shown in Fig. 10, PASTA-
DDM maintains the second order convergence properties
in displacement, velocity and average acceleration of the
underlying implicit Newmark scheme with the conservative
integration parameters (γs = 1/2, βs = 1/4) [25]. Note that
the convergence results in Fig. 10b are tailing off slightly for
the last time step increment due to the spatial error pollution.

Figure 11 shows the convergence rate of the local
Lagrange multipliers in PASTA-DDM with respect to mesh
size for matching and non-matching meshes with synchro-
nous and asynchronous time stepping. The spatial error of the
Lagrange multipliers at a given instant of time is calculated as

‖eh‖ =
√√√√

ns∑

s=1

∫

Γs

(
�∗(x, T f ) − �s(x, T f )

)2 dΓs, (83)

where T f = 15 s. The manufactured solution, Eq. (79),
is used to compute �∗ and �s is the vector of sub-
domain Lagrange multipliers. For matching meshes with
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Fig. 12 Rate of convergence of PASTA-DDM for the Lagrange mul-
tipliers with respect to the synchronization time increment 
T for
matching and non-matching meshes with synchronous 
t1:
t2 =
1:1 and asynchronous 
t1:
t2 = 1:3 time stepping. For matching

meshes (a), h1 = h2 = 0.1768 m and for non-matching meshes (b),
h1 = 0.1768 m and h2 = 0.0884 m. a Matching meshes. b Non-
matching meshes

synchronous and asynchronous time stepping, the Lagrange
multipliers exhibit the quadratic convergence rate with
respect to mesh size (Fig. 11a). However, for non-matching
discretization the Lagrange multipliers show a first order con-
vergence rate (Fig. 11b). Note that the stress field is piecewise
constant in our analysis and also first order convergent.

The time convergence of the Lagrange multipliers with
respect to the synchronization time step is shown in Fig. 12.
The temporal error of the local Lagrange multipliers is com-
puted as

‖et‖ =
√√√√

ns∑

s=1

∫

Γs

∫

T

(
�∗(x, t) − �s(x, t)

)2 dt dΓs . (84)

As shown in Fig. 12, for matching and non-matching meshes
with synchronous and asynchronous time stepping, the
Lagrange multipliers show a linear convergence rate with
respect to the synchronization time step.

5.2 Verification of the jump conditions

Due to non-matching meshes on both sides of the inter-
face, the global field variables do not satisfy the continuity
conditions at the interface, and thus suffer finite jump discon-
tinuities. In this case, the global balance laws imply that the
jump conditions must hold on the interface, where the field
variables do not maintain the classical degree of smoothness
[28]. Accordingly, the mass balance, linear momentum bal-
ance and the first law of thermodynamics require that the
following jump conditions hold on the interface (material
singular surface):

�u̇�Γc
=

∫

Γc

(
u̇|Γ1 − u̇|Γ2

)
dΓc = 0, (85)

���Γc =
∫

Γc

(
�|Γ1 − �|Γ2

)
dΓc = 0, (86)

t
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3

m

Fig. 13 A cantilever beam decomposed into two subdomains with non-
matching meshes at the interface. The interface is inclined by 75.964◦

�u̇T��Γc
=

∫

Γc

(
u̇|TΓ1

�|Γ1 − u̇|TΓ2
�|Γ2

)
dΓc = 0, (87)

where Γ1, Γ2 and Γc are the left, right and common interfaces,
respectively. Analogously, the kinematic continuity reads:

�u�Γc
=

∫

Γc

(
u|Γ1 − u|Γ2

)
dΓc = 0. (88)

To verify the fulfillment of the jump conditions and energy
conservation properties of PASTA-DDM across the interface,
we consider a cantilever beam clamped at the right-hand side,
while a time-dependent horizontal traction is applied on the
left end. The beam is decomposed into two non-overlapping
subdomains glued together by an inclined surface creat-
ing non-matching meshes across the interface as shown in
Fig. 13.

For the numerical implementation, we consider the fol-
lowing material properties for both subdomains: Young’s
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Fig. 14 Snapshots of the
magnitude of the displacement
field at different synchronization
time steps.
a T = 0.675 × 10−3 s.
b T = 1.962 × 10−3 s.
c T = 3.235 × 10−3 s.
d T = 3.975 × 10−3 s
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Fig. 15 Verification of the jump conditions in PASTA-DDM: (a) displacement and (b) velocity along the interface, 
t1 : 
t2 = 1:3 and
h1 = 0.0301 m, h2 = 0.0255 m. a Jump in displacement. b Jump in velocity

modulus E = 210 GPa, Poisson’s ratio ν = 0.3 and den-
sity ρ = 7800 kg/m3. The traction reaches its full value of
5.0×109 kN/m in 2.5×10−5 s. The finite element discretiza-
tions for subdomain Ω1 and subdomain Ω2 consist of 1759
and 2775 elements, respectively. The system is integrated
up to T f = 0.01 s with time steps 
t1 = 1.25 × 10−5 s
and 
t2 = 3.75 × 10−5 s for Ω1 and Ω2, respectively. The
implicit Newmark integrator is used for both subdomains.

Figure 14 shows the displacement magnitude at different
synchronization time steps. Figures 15 and 16 show the jump
in the displacement, velocity, local Lagrange multipliers and

power across the interface (see Eqs. (85) to (88)). For clar-
ity of presentation, the quantities related to the second local
interface, Γ2, are plotted with a negative sign. The maximum
absolute values in displacement, velocity, Lagrange multiples
and power jumps across the common-refinement interface
are �u�Γc

= 3.136 × 10−5 m, �u̇�Γc
= 3.835 × 10−7 m/s,

���Γc = 1.601×10−6 N, and �u̇T��Γc
= 1.156×10−1 J/s.

As shown in Figs. 15 and 16, PASTA-DDM satisfies the
jump conditions across the interface. Thus, PASTA-DDM
preserves the mass, momentum and energy balance across
the interface.
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Fig. 16 Verification of the jump conditions in PASTA-DDM: (a) Lagrange multipliers and (b) power along the interface, 
t1:
t2 = 1:3 and
h1 = 0.0301 m, h2 = 0.0255 m. a Jump in Lagrange multipliers. b Jump in power

T [s]
0 0.002 0.004 0.006 0.008 0.01

u
[m

]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
u|Γ1

−u|Γ2

u Γc

T [s]
0 0.002 0.004 0.006 0.008 0.01

u̇
T
Λ

[J
/
s]

×1011

-3

-2

-1

0

1

2

3
u̇T |Γ1Λ|Γ1

−u̇T |Γ2Λ|Γ2

u̇TΛ Γc

(a) (b)

Fig. 17 Verification of the jump conditions in PASTA-DDM: (a) displacement and (b) power on the interface, 
t1:
t2 = 1:10 and h1 = 0.0301 m,
h2 = 0.0255 m. a Jump in displacement. b Jump in power

To verify the jump conditions with respect to a larger time
asynchrony ratio 
t1:
t2, in Fig. 17, we show the jump in
the displacement and power along the interface using one
order of magnitude of the asynchrony ratio 
t1:
t2 = 1:10.
Although not shown (for the brevity of the article), similar
results are obtained for the jump in velocity and the local
Lagrange multipliers, and no distinction can be made with
the results previously shown for 
t1:
t2 = 1:3 in Figs. 15
and 16.

Figure 18 displays the total mechanical energy balance of
the system. As can be seen, PASTA-DDM conserves the total
energy of the system. Again, we verified the total mechanical
energy balance using the asynchrony ratio 
t1:
t2 = 1:10,
and no discrepancy can be seen between the results of

t1:
t2 = 1:3.

5.3 Error assessment of the interface quantities

In this subsection, we continue the analysis of the exam-
ple introduced in Subsect. 5.2. In particular, we quantify the
error in jump conditions due to the non-matching meshes
and asynchronous time stepping. Four different meshes with

T [s]
0 0.002 0.004 0.006 0.008 0.01

E
[J

]

×107

0

5

10

15
Ve

T
W
E

Fig. 18 The total energy balance of PASTA-DDM, 
t1:
t2 = 1:3
and h1 = 0.0301 m, h2 = 0.0255 m. Here, Ve = 1

2 uT Ku is the elastic
energy, T = 1

2 u̇T Mu̇ is the kinetic energy, W = uT f represents work
due to external forces, and E = T + Ve − W denotes the total energy
of the system

increasing amount of non-matching discretizations along the
interface are considered as shown in Fig. 19. The mesh in
Fig. 19a represents the case of matching grids, while the
subsequent meshes carry larger and larger degree of mesh
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(a) (b) (c) (d)

Fig. 19 Magnified insets of the subdomain meshes around the inter-
face showing the amount of mesh incompatibility. The mesh density in
subdomains Ω1 and Ω2 is: a h1 = 0.1515 m and h2 = 0.1294 m,

b h1 = 0.1008 m and h2 = 0.0949 m, c h1 = 0.0551 m and
h2 = 0.0530 m and d h1 = 0.0301 m and h2 = 0.0255 m
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Fig. 20 The relative error convergence with respect to the mean mesh
size for both (a) synchronous 
t1:
t2 = 1:1 and (b) asynchronous

t1:
t2 = 1:3 time integration. The synchronization time step is


T = 1.25 × 10−5 s. The markers (a) to (d) indicate the meshes
used in the analysis (see Fig. 19). a Synchronous time integration. b
Asynchronous time integration

incompatibility (see Fig. 19b–d). Thus, as we refine the
meshes, the degree of mesh incompatibility increases along
the common interface (i.e., several small interface segments
are created along the common-refinement). The relative error
due to mesh incompatibility at a given time is defined as

E(•)|Γc =
∫
Γc

(•|Γ1(x, T f ) − •|Γ2(x, T f )
)

dΓc

1
2

∫
Γc

(•|Γ1(x, T f ) + •|Γ2(x, T f )
)

dΓc
, (89)

where T f = 0.01 s is the end of time integration period.
Convergence of the relative error with respect to the

amount of non-matching meshes for both synchronous and
asynchronous integration is shown in Fig. 20. For consis-
tency, the relative error is plotted with respect to the average
mesh size. In both cases of synchronous and asynchronous
time integration, the results indicate that the equilibrium
between the subdomains is satisfied strongly (up to the
machine precision) regardless of the amount of non-matching
discretization. As expected, the relative error in the kine-
matic constraint, u and u̇, (which is enforced weakly) grows
as the degree of mesh incompatibility increases. Moreover,
the displacement error is more pronounced, since the com-
mon interface is solved in terms of velocities. However,

the error growth saturates as meshes are refined, which is
a consequence of the common-refinement-based projection
properties [29,30]. In addition, Fig. 20b displays the conse-
quence of the asynchronous time stepping. Error in velocities
and the local Lagrange multiplies are largely unaffected
(error stays around 10−10). However, the displacement errors
suffer a constant shift in value, since they are being integrated
using a global (i.e. common refinement) time increment 
T .

Next in Fig. 21, we quantify the error due to the
time-step asynchrony ratio 
t1:
t2 for both matching and
non-matching grids. Here, we study asynchrony ratio up
to 1:20. Note that a large time asynchrony ratio 
t1:
t2
should be considered in conjunction with accuracy require-
ment. This is analogous to mesh incompatibility (i.e. h1:h2).
Large time step differences (e.g. 
t1:
t2 = 1:100), should
be bridged with care using several nested transition zones
(5 × (
t1:
t2 = 1:20)). As shown in Fig. 21, the relative
error in the local Lagrange multipliers, for both cases, is zero
(up to the machine precision). Increasing the ratio of asyn-
chrony does not change the magnitude of the relative error in
the velocity. However, the non-matching meshes introduce a
constant error shift. In both cases, the relative error in dis-
placements shows a mild growth when increasing the time
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Fig. 21 The relative error convergence with respect to time-step asyn-
chrony ratio 
t1:
t2, for both matching and non-matching meshes. For
case of matching interface, we use the mesh shown in Fig. 19a, while

for non-matching case we use the mesh shown in Fig. 19b. The syn-
chronization time step is 
T = 1.25 × 10−5 s. a Matching meshes. b
Non-matching meshes
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Fig. 22 A schematic diagram of a projectile impacting a sand-
wich plate. The points of interest have coordinates P1 =
(0.1, 0.001) m, P2 = (0.1, 0.01) m and P3 = (0.1, 0.019) m

asynchrony ratio. Once more, this is expected due to the fact
that the overall accuracy of the solution is bounded by the
global synchronization time step 
T . Note again that the
error in all fields saturates as 
t1:
t2 grows.

5.4 Engineering impact problem with multiple
subdomains and implicit/explicit time integration

As an illustration of PASTA-DDM to practical engineer-
ing problems, we consider a sandwich plate composed of
stiff and soft materials impacted by a projectile. This exam-
ple is inspired by Prakash et al. [52]. In this multi-scale
problem, the subdomain meshes and time steps are selected
based on the local dynamics. This leads to non-matching
meshes at the interfaces and subdomains advancing in time
asynchronously. Moreover, a mixed time integration scheme
(i.e., implicit and explicit Newmark’s algorithms) is uti-
lized.

A diagram detailing the impact problem is shown in
Fig. 22. The composite plate is made from a stiff skin and

a soft core. The material properties of the stiff skin are
E = 70 GPa, μ = 0.3, ρ = 2700 kg/m3 and of the core
are E = 7.78 GPa, μ = 0.3, ρ = 900 kg/m3. The phys-
ical dimension are as follows b1 = 2 mm, b2 = 16 mm,
l1 = 80 mm and l2 = 60 mm. The projectile effect is mod-
eled as a traction with a ramp function that reaches its peak
value 100 kN/m in 1 × 10−5 s. The final time for the simu-
lation is T f = 2 × 10−5 s.

The impact problem contains two time scales. Fast dynam-
ics below the impact zone and slow dynamics away from
the region around the projectile [52]. While considering the
physical properties of the problem, we partition the compu-
tational domain into 9 non-overlapping subdomains (due to
symmetry, we only mark 5 subdomains in Fig. 22 for clarity).
Note that the cross points (a node shared among more than
two subdomains), as shown in the mesh insert of Fig. 22, do
not require any special treatment in the framework of local
Lagrange multipliers, because the non-uniques of the con-
straint is eliminated [47–49]. Fine mesh resolution is used for
the subdomains near the impact zone (subdomains Ω3, Ω4

and Ω5). Moreover, as the dynamics are slow in the regions
far from the impact zone, subdomains with coarser meshes
are used away from the region of interest (subdomains Ω1

and Ω2). To estimate the required time step that captures the
dynamics of the problem, we use the material wave propa-
gation speed cs = √

Es/ρs . Given the wave speed in each
subdomain, we employ the Courant-Friedrichs-Lewy (CFL)
condition to select the time step 
ts = hs/cs for each sub-
domains.

Since dynamics in the region under the projectile are faster
than in regions away from the impact zone, the time resolu-
tion under the impact zone is governed by accuracy rather
than stability. Thus, we use the explicit Newmark scheme
(i.e. γs = 1/2, βs = 0) in Ω5, whereas the implicit New-
mark scheme (i.e. γs = 1/2, βs = 1/4) is employed for the
rest of the subdomains.
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Table 1 Physical, spatial and
temporal parameters for a
composite plate impact problem

Subdomain No. nodes No. elem 
ts [s] Es [GPa] ρs [kg/m3] cs [m/s]
Ω1 78 87 
T/2 70 2700 5.0918 × 103

Ω2 90 136 
T 7.78 900 2.9401 × 103

Ω3 126 166 
T/4 70 2700 5.0918 × 103

Ω4 239 420 
T 7.78 900 2.9401 × 103

Ω5 225 341 
T/5 70 2700 5.0918 × 103

1e-5 2e-5 3e-5 4e-50 4.7e-5

u [m]

(a)

(b)

(c)

(d)

Fig. 23 Snapshots of the displacement field magnitude at different synchronization time steps for PASTA-DDM solution. The mesh displacements
are 50× magnified. a T = 6 × 10−6 s. b T = 1.2 × 10−5 s. c T = 1.6 × 10−5 s. d T = 2 × 10−5 s

For the sake of comparison, first the problem is solved
using the smallest mesh size for all subdomains (i.e. hmin =
0.5 mm), which leads to 6, 058 nodes and 10, 691 elements.
Note that the CFL condition for this case yields a critical
time step Tcr = 9.4×10−8 s. Therefore, to obtain an accurate
solution we use 
T = 4×10−8 s for all the subdomains. We
identify this approach as Direct Numerical Modeling (DNM).

Next, we employ PASTA-DDM and use localized mesh
size and asynchronous time stepping. The number of time
steps to synchronize is calculated based on the CFL condition
of the impact zone, Ω5, where the mesh size is kept as h =
0.5 mm, while coarser meshes are used for the rest of the
subdomains as shown in Table 1. Note that in this case, we use
a synchronization time step 
T such that 
t5 = 
T/5 =
4×10−8 s (i.e. 
T = 2×10−7 s), where the number of time
steps nts = 5 for subdomain Ω5. This approach gives 1, 082
nodes and 1, 547 elements.

In Fig. 23, snapshots of the displacement field magnitude
are shown at different synchronization time steps. Figure 24
displays the response at points P1, P2 and P3 along the center
line x = 0.1 m (as shown in Fig. 22). In the plot, we compare
the displacement and velocity trajectories at points (P1, P2

and P3) obtained from DNM and PASTA-DDM. As clearly
shown in the figure, PASTA-DDM achieves the same accu-
racy of the high resolution model, but with smaller number
of elements and faster solution time.

6 Conclusions

We develop the Asynchronous Space-Time Algorithm based
on the Domain Decomposition Method for structural dynam-
ics problems on non-matching meshes. The methodology
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Fig. 24 Displacement and
velocity at points along the
center line x = 0.1 m. The
DNM results are identified as
û|Pi and ˙̂u|Pi , while
PASTA-DDM results are
denoted by u|Pi and u̇|Pi . a
Displacement. b Velocity
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Fig. 25 The smallest eigenvalue ϕm = min(ϕ) and the local Lagrange
multipliers. The mesh characteristics for discretizations (a), (b), (c) and
(d) are given in Fig. 19. The mesh densities in (e) are h1 = 0.0150 m
and h2 = 0.0128 m; (f) are h1 = 0.0075 m and h2 = 0.0064 m; (g) are

h1 = 0.0038 m and h2 = 0.0032 m. For clarity of presentation, we plot
ϕm against the mean mesh size h = (h1 + h2)/2. The local Lagrange
multiplier fields are plotted for mesh density (d). a Smallest eigenvalue.
b Local Lagrange multipliers

is based on the dual-primal like domain decomposition
technique utilizing the localized Lagrange multipliers. For
optimal accuracy and preserving physical quantities, the
interface between the non-matching meshes is discretized
using the common-refinement-based technique. Moreover,
we extend the idea of common refinement to the tempo-
ral dimension and introduce a generalized α method for
the local Lagrange multipliers. The algorithm offers two-
levels of parallelism and is well suited for a heterogeneous
computing environment. For linear dynamical problems,
PASTA-DDM is an unconditionally stable scheme and pre-
serves mass, momentum and energy along the common
interface. Furthermore, PASTA-DDM maintains the optimal
rate of convergence with respect to mesh size and time incre-
ment for displacement, velocity and averaged acceleration.
The computer implementation is verified using the method
of manufactured solutions, and rigorous assessment of mass,
momentum and energy jump conditions across the common
refinement is performed. A projectile impact problem shows
potential of PASTA-DDM for a variety of engineering appli-
cations.
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Appendix 1: Inf-sup test

In what follows, we give a brief description of the numerical
test for checking the inf-sup conditions of the three-field dis-
cretization given by Eq (27). This inf-sup analysis is taken
from work of Brezzi and Marini [8]. The numerical test
consists of two generalized eigenvalue problems. The first
inf-sup problem corresponds to the local Lagrange multipli-
ers and the displacement field discretizations and is local to
each subdomain. The second inf-sup problem is a global one,
and is associated with the local Lagrange multipliers and the
common-interface variable discretization. In this section, we
neglect the inertia forces and consider only an elliptic sys-
tem.

Since the first generalized eigenvalue problem is associ-
ated with the local Lagrange multipliers and local displace-
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ment field, the corresponding trace matrix, Es (see Eq. (24)),
is a restriction operator [38]. This is a consequence of
the common-refinement-based interface discretization with
Nu = Nλ,∀x ∈ Γs . Therefore, this inf-sup problem is triv-
ially satisfied and not reported here.

The second inf-sup problem is related to the discretization
spaces between the common-interface variable, �, and the
local Lagrange multipliers, �s . This generalized eigenvalue
problem reads [8]:

WQ−1WT m = ϕHm, (90)

where

W =
∫

Γ

NT
ψNΓ1+Γ2

λ dΓ , (91)

Q = lΩ
μ

∫

Γ

(
NΓ1+Γ2

λ

)T
NΓ1+Γ2

λ dΓ , (92)

H = μ

lΩ

∫

Γ

NT
ψNψdΓ . (93)

Here μ is the Lamé parameter and lΩ is a typical length of the
domain, for instance the diameter of Ω . When constructing
the matrix NΓ1+Γ2

λ , we take a basis for the whole space Zh

(see Eq. (19)), which means taking into account both ZΓ1
h

and ZΓ2
h .

To address the global inf-sup condition, we select the
example presented in Sect. 5.3 with an inclined common
interface. In particular, we compute the generalized eigen-
value problem, Eq. (90), for the sequence of meshes (a) to
(d) from Fig. 19. Moreover, we add three more finer dis-
cretizations that are generated by repeatedly halving the
mesh in (d). Figure 25a shows the convergence of the
smallest eigenvalue for meshes (a) to (g). The smallest eigen-
value is ϕm(g) = 6.932 × 10−2 and has been obtained
for mesh (g). As clearly shown in Fig. 25a, the small-
est eigenvalue is positive and converges to a constant as
we refine the meshes. Thus, the inf-sup test is satisfied.
Note that for mesh density (a), which represents the case
of matching grids, we obtain the smallest eigenvalue of
ϕm(a) = 1.0. This is a consequence of matching discretiza-
tion for which the inf-sup condition is trivially satisfied
[38] and the Es = Bs matrices are the restriction opera-
tors. Finally, we note that the results presented in Sect. 5.2
are on the converged mesh (d). This verifies the analysis in
Sect. 5.2.

Next using the mesh density (d) in Fig. 19, we plot the local
Lagrange multipliers on the common interface in Fig. 25b.
The local Lagrange multipliers are smooth and well con-
verged indicating the stable solution of the common-based
discretization using our three-field method.

References

1. Abedi R, Hawker MA, Haber RB, Matouš K (2010) An adaptive
spacetime discontinuous Galerkin method for cohesive models of
elastodynamic fracture. Int J Numer Methods Eng 81(10):1207–
1241

2. Arbogast T, Pencheva G, Wheeler MF, Yotov I (2007) A multi-
scale mortar mixed finite element method. Multiscale Model Simul
6(1):319–346

3. Becker R, Hansbo P, Stenberg R (2003) A finite element method
for domain decomposition with non-matching grids. ESAIM. Math
Model Numer Anal 37(02):209–225

4. Belytschko T, Mullen R (1978) Mesh partitions of explicit-implicit
time integration. In: Bath K, Oden J, Wunderlich W (eds) Formula-
tions and computational algorithms in finite element analysis. MIT
Press, Cambridge, pp 673–690

5. Belytschko T, Mullen R (1978) Stability of explicit-implicit
mesh partitions in time integration. Int J Numer Methods Eng
12(10):1575–1586

6. Belytschko T, Yen HJ, Mullen R (1979) Mixed methods for time
integration. Comput Methods Appl Mech Eng 17:259–275

7. Beneš M, Matouš K (2010) Asynchronous multi-domain varia-
tional integrators for nonlinear hyperelastic solids. Comput Meth-
ods Appl Mech Eng 199(2932):1992–2013

8. Brezzi F, Marini LD (2005) The three-field formulation for elas-
ticity problems. GAMM-Mitteilungen 28(2):124–153

9. Brun M, Gravouil A, Combescure A, Limam A (2015) Two feti-
based heterogeneous time step coupling methods for newmark and
α-schemes derived from the energy method. Comput Methods Appl
Mech Eng 283:130–176

10. Combescure A (2002) G.A.: a numerical scheme to couple subdo-
mains with different time-steps for predominantly linear transient
analysis. Comput Methods Appl Mech Eng 191:1129–1157

11. De Boer A, Van Zuijlen A, Bijl H (2007) Review of coupling meth-
ods for non-matching meshes. Comput Methods Appl Mech Eng
196(8):1515–1525

12. Falcone M, Ferretti R (1998) Convergence analysis for a class of
high-order semi-lagrangian advection schemes. SIAM J Numer
Anal 35(3):909–940

13. Farhat C, Chen PS, Mandel J (1995) A scalable lagrange mul-
tiplier based domain decomposition method for time-dependent
problems. Int J Numer Methods Eng 38(22):3831–3853

14. Farhat C, Crivelli L, Géradin M (1995) Implicit time integration of
a class of constrained hybrid formulationspart i: Spectral stability
theory. Computer methods in applied mechanics and engineering
125(1):71–107

15. Farhat C, Crivelli L, Roux FX (1994) A transient FETI method-
ology for large-scale parallel implicit computations in structural
mechanics. Int J Numer Methods Eng 37(11):1945–1975

16. Farhat C, Lesoinne M, Le Tallec P (1998) Load and motion
transfer algorithms for fluid/structure interaction problems with
non-matching discrete interfaces: Momentum and energy con-
servation, optimal discretization and application to aeroelasticity.
Comput Methods Appl Mech Eng 157(1):95–114

17. Farhat C, Roux FX (1991) A method of finite element tearing and
interconnecting and its parallel solution algorithm. Int J Numer
Methods Eng 32(6):1205–1227

18. Faucher V, Combescure A (2003) A time and space mortar method
for coupling linear modal subdomains and non-linear subdomains
in explicit structural dynamics. Comput Methods Appl Mech Eng
192(5):509–533

19. Gander MJ, Vandewalle S (2007) Analysis of the parareal timepar-
allel timeintegration method. SIAM J Sci Comput 29(2):556–578

123



234 Comput Mech (2016) 57:211–235

20. Gates M, Matouš K, Heath MT (2008) Asynchronous multi-domain
variational integrators for non-linear problems. Int J Numer Meth-
ods Eng 76(9):1353–1378

21. Gravouil A, Combescure A (2001) Multi-time-step explicit-
implicit method for non-linear structural dynamics. Int J Numer
Methods Eng 50(1):199–225

22. Gravouil A, Combescure A, Brun M. (2014) Heterogeneous asyn-
chronous time integrators for computational structural dynamics.
Int J Numer Methods Eng

23. Hauret P, Le Tallec P (2007) A discontinuous stabilized mortar
method for general 3d elastic problems. Comput Methods Appl
Mech Eng 196(49):4881–4900

24. Herry B, Di Valentin L, Combescure A (2002) An approach to
the connection between subdomains with non-matching meshes
for transient mechanical analysis. Int J Numer Methods Eng
55(8):973–1003

25. Hughes T (2000) The finite element method: linear static and
dynamic finite element analysis., Dover civil and mechanical engi-
neeringDover Publications, Mineola

26. Hughes T, Liu W (1978) Implicit-explicit finite elements in tran-
sient analysis: implementation and numerical examples. J Appl
Mech 45:375–378

27. Hughes T, Liu W (1978) Implicit-explicit finite elements in tran-
sient analysis: stability theory. J Appl Mech 45(2):371–374

28. Hutter K, Johnk K (2004) Continuum methods of physical model-
ing. Springer, New York

29. Jaiman RK, Jiao X, Geubelle PH, Loth E (2005) Assessment of con-
servative load transfer for fluid-solid interface with non-matching
meshes. Int J Numer Methods Eng 64(15):2014–2038

30. Jiao X, Heath MT (2004) Common-refinement-based data transfer
between non-matching meshes in multiphysics simulations. Int J
Numer Methods Eng 61(14):2402–2427

31. Jiao X, Heath MT (2004) Overlaying surface meshes, part I: algo-
rithms. Int J Comput Geom Appl 14(06):379–402

32. Jiao X, Heath MT (2004) Overlaying surface meshes, part II: Topol-
ogy preservation and feature matching. Int J Comput Geom Appl
14(06):403–419

33. Kane C, Marsden JE, Ortiz M, West M (2000) Variational integra-
tors and the newmark algorithm for conservative and dissipative
mechanical systems. Int J Numer Methods Eng 49(10):1295–
1325

34. Karimi S, Nakshatrala K (2014) On multi-time-step monolithic
coupling algorithms for elastodynamics. J Comput Phys 273:671–
705

35. Kim JS, Arronche L, Farrugia A, Muliana A, Saponara VL (2011)
Multi-scale modeling of time-dependent response of smart sand-
wich constructions. Compos Struct 93(9):2196–2207

36. Kruis J, Zeman J, Gruber P (2013) Model of imperfect interfaces in
composite materials and its numerical solution by FETI method. In:
Bank R, Holst M, Widlund O, Xu J (eds) Domain decomposition
methods in science and engineering XX., Lecture notes incompu-
tational science and engineeringSpringer, Berlin

37. Maday Y, Turinici G (2005) The parareal in time iterative solver: a
further direction to parallel implementation. In: Barth T, Griebel M,
Keyes D, Nieminen R, Roose D, Schlick T, Kornhuber R, Hoppe R,
Priaux J, Pironneau O, Xu J (eds) Domain de-composition methods
in science and engineering, vol 40., Lecture notes in computational
scienceand engineeringSpringer, Berlin, pp 441–448

38. Magouls F, Roux FX (2006) Lagrangian formulation of domain
decomposition methods: a unified theory. Appl Math Model
30(7):593–615 (Parallel and vector processing in science and engi-
neering)

39. Mahjoubi N, Gravouil A, Combescure A (2009) Coupling subdo-
mains with heterogeneous time integrators and incompatible time
steps. Comput Mech 44(6):825–843

40. Mandel J, Dohrmann CR (2003) Convergence of a balancing
domain decomposition by constraints and energy minimization.
Numer Linear Algebra Appl 10(7):639–659

41. Mathew T (2008) Domain decomposition methods for the numeri-
cal solution of partial differential equations, vol 61., Lecture notes
in computational science and engineeringSpringer, Berlin

42. Nakshatrala K, Prakash A, Hjelmstad K (2009) On dual Schur
domain decomposition method for linear first-order transient prob-
lems. J Comput Phys 228(21):7957–7985

43. Neal MO, Belytschko T (1989) Explicit-explicit subcycling with
non-integer time step ratios for structural dynamic systems. Com-
put Struct 31(6):871–880

44. Oberkampf WL, Trucano TG (2002) Verification and validation in
computational fluid dynamics. Prog Aerosp Sci 38(3):209–272

45. Park K, Felippa C, Rebel G (2002) A simple algorithm for localized
construction of non-matching structural interfaces. Int J Numer
Methods Eng 53(9):2117–2142

46. Park K, Felippa CA (1998) A variational framework for solu-
tion method developments in structural mechanics. J Appl Mech
65(1):242–249

47. Park K, Felippa CA (2000) A variational principle for the formu-
lation of partitioned structural systems. Int J Numer Methods Eng
47(1–3):395–418

48. Park K, Felippa CA, Ohayon R (2001) Partitioned formulation of
internal fluidstructure interaction problems by localized lagrange
multipliers. Comput Methods Appl Mech Eng 190(2425):2989–
3007 (Advances in computational methods for fluid–structure
interaction)

49. Park KC, Felippa CA, Gumaste UA (2000) A localized version of
the method of lagrange multipliers and its applications. Comput
Mech 24(6):476–490

50. Park KC, Felippa CA, Rebel G (2002) A simple algorithm for
localized construction of non-matching structural interfaces. Int J
Numer Methods Eng 53(9):2117–2142

51. Prakash A, Hjelmstad KD (2004) A FETI-based multi-time-step
coupling method for Newmark schemes in structural dynamics. Int
J Numer Methods Eng 61(13):2183–2204

52. Prakash A, Taciroglu E, Hjelmstad KD (2014) Computationally
efficient multi-time-step method for partitioned time integration of
highly nonlinear structural dynamics. Comput Struct 133:51–63

53. Quarteroni A, Valli A (1999) Domain decomposition methods for
partial differential equations. Numerical mathematics and scientific
computation. Oxford University Press, New York

54. Radu F, Pop IS, Knabner P (2004) Order of convergence estimates
for an euler implicit, mixed finite element discretization of richards’
equation. SIAM J Numer Anal 42(4):1452–1478

55. Roache PJ (1998) Verification and validation in computational sci-
ence and engineering. Hermosa, Albuquerque

56. Ross MR, Sprague MA, Felippa CA, Park K (2009) Treatment
of acoustic fluid-structure interaction by localized lagrange mul-
tipliers and comparison to alternative interface-coupling methods.
Comput Methods Appl Mech Eng 198(9):986–1005

57. Scovazzi G, Love E, Shashkov M (2008) Multi-scale Lagrangian
shock hydrodynamics on Q1/P0 finite elements: theoretical frame-
work and two-dimensional computations. Comput Methods Appl
Mech Eng 197(912):1056–1079

58. Smith B, Bjorstad P, Gropp W (1996) Domain decomposition: par-
allel multilevel methods for elliptic partial differential equations.
Cambridge University Press, New York

59. Smolinski P, Sleith S (1992) Explicit multi-time step methods for
structural dynamics. In: New methods in transient analysis, pp. 1–4.
ASME. PVP-Vol. 246 /AMD-Vol. 143

60. Smolinski P, Sleith S, Belytschko T (1996) Stability of an explicit
multi-time step integration algorithm for linear structural dynamics
equations. Comput Mech 18(3):236–244

123



Comput Mech (2016) 57:211–235 235

61. Sousedik B, Sistek J, Mandel J (2013) Adaptive-multilevel BDDC
and its parallel implementation. Computing 95(12):1087–1119

62. Souza F, Allen D, Kim YR (2008) Multiscale model for predicting
damage evolution in composites due to impact loading. Compos
Sci Technol 68(13):2624–2634

63. Toselli A, Widlund O (2005) Domain decomposition meth-
ods: algorithms and theory, vol 34., Computational mathematic-
sSpringer, Berlin

64. Wiberg NE, Li X (1993) A post-processing technique and an a pos-
teriori error estimate for the newmark method in dynamic analysis.
Earthq Eng Struct Dyn 22(6):465–489

65. Zeng LF, Wiberg NE, Li X, Xie Y (1992) Posteriori local error
estimation and adaptive time-stepping for newmark integration in
dynamic analysis. Earthq Eng Struct Dyn 21(7):555–571

123


	Asynchronous space--time algorithm based on a domain decomposition method for structural dynamics problems  on non-matching meshes
	Abstract
	1 Introduction
	2 Mathematical formulation
	2.1 Spatial discretization
	2.1.1 Non-matching grids

	2.2 Temporal discretization
	2.2.1 Synchronous time integration
	2.2.2 Asynchronous time integration


	3 The Interface Problem in PASTA-DDM
	4 Stability analysis of PASTA-DDM
	5 Numerical results
	5.1 Spatial and temporal order of convergence
	5.2 Verification of the jump conditions
	5.3 Error assessment of the interface quantities
	5.4 Engineering impact problem with multiple subdomains and implicit/explicit time integration

	6 Conclusions
	Acknowledgments
	Appendix 1: Inf-sup test
	References




