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Abstract
This paper proposes a novel method to accurately and efficiently reduce a microstructural mechanical model using a wavelet
based discretisation. The model enriches a standard reduced order modelling (ROM) approach with a wavelet representation.
Although the ROM approach reduces the dimensionality of the system of equations, the computational complexity of the
integration of the weak form remains problematic. Using a sparse wavelet representation of the required integrands, the
computational cost of the assembly of the system of equations is reduced significantly. This wavelet-reduced order model
(W-ROM) is applied to the mechanical equilibrium of a microstructural volume as used in a computational homogenisation
framework. The reduction technique however is not limited to micro-scale models and can also be applied to macroscopic
problems to reduce the computational costs of the integration. For the sake of clarity, the W-ROMwill be demonstrated using
a one-dimensional example, providing full insight in the underlying steps taken.

Keywords Model reduction · Wavelets · Numerical integration · Micro-mechanics · Multi-scale analysis · Computational
homogenisation

1 Introduction

An increasing amount of engineering applications rely on
materials with complex microstructures to achieve desired
material properties that are tailored to the application [25].
Computational homogenisation provides an accurate and
efficient framework to investigate the macroscopic proper-
ties arising from the microstructure using the Hill–Mandel
conditions [22] to establish the scale transition. An overview
of recent advances in computational homogenisation is pre-
sented by Geers et al. [16].
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Advanced microstructural models enable the analysis of
highly nonlinear materials, which are strongly path and his-
tory dependent. This naturally entails models necessitating
the computation and storage of internal variables, so-called
history variables. Suchmicrostructural models become com-
putationally demanding in terms of CPU-time and memory
usage due to the large number of degrees of freedom and his-
tory variables involved. The complexity propagates from the
array of microstructural models (to be solved repeatedly) to
the considered macroscopic problem. The term FE2, coined
by Feyel and Chaboche [13] for the nested solution of the
two resulting boundary value problems, illustrates the nature
of the complexity of a computational homogenisation frame-
work [29].

The Reduced Order Modelling (ROM) technique, pro-
posed by Almroth et al. [1] and Noor et al. [31], is applied to
reduce the dimensionality and computational costs of solving
the microstructural model, i.e. PDE. For nonlinear problems
however, the computational complexity of the constitutive
equations in the reduced problem remains unaffected, i.e.
ODE, as pointed out by Rathinam and Petzold [34], since
the integration scheme itself is not reduced. For the nonlin-
ear reduced order models, the achieved speed-up is marginal
compared to the reduction in number of degrees of freedom.
Furthermore, the use of constitutive equations that involve
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internal variables describing the constitutive behaviour of
the material on each integration point in the model imposes
strong requirements on the available memory.

To remedy this, several methods have been proposed
in the literature to reduce the computational costs of the
assembly, such as the Missing Point Estimation approach
(MPE) [2], the Discrete Empirical Interpolation Method
(DEIM) [5], hyper reduction with reduced internal variables
[35], TransformationFieldAnalysis (TFA) [11],Nonuniform
Transformation Field Analysis (NTFA) [28], potential-based
Reduced Basis Model Order Reduction (pRBMOR) [15],
High-Performance Reduced Order Modelling (HP-ROM)
[21], Energy-Conserving mesh Sampling and Weighting
(ECSW) [12] and the Empirical Cubature Method (ECM)
[20], among many others.

Following Hernández et al. [20], the hyper-reduction
methods can be divided into two classes. On the one hand
the nodal vector approximations that approximate the inte-
gral by introducing a global basis to represent the integrand.
This allows the basis to be evaluated only once (offline),
thereby reducing costs of the subsequent evaluations of the
integral. This basis is weighted using coefficients that min-
imise the interpolation error between the nonlinear integrand
and its modal approximation on a set of sampled points in
the least-squares sense. Examples of this class are DEIM
and MPE [2,5]. On the other hand the integral (quadra-
ture) approaches approximate the integral using a reduced
set of integration points which have empirically determined
weights in the methods ECM or ECSW [12,20]. A com-
parison of the Empirical Interpolation Method, in particular
High-Performance Reduced Order Modelling [21], and the
Empirical Cubature Method [20] for solving micromechan-
ical equilibrium problems is presented in [38].

Besides Reduced Order Models, the computational costs
have also been reduced using numerically efficient solvers,
e.g. the Fast Fourier Transform [30] or wavelet bases to
reduce the number of equations by projecting a fully discre-
tised multi-scale problem onto a lower dimensional space,
e.g. [3,9,17,19]. Some alternative wavelet-based reduction
methods can be found in literature. The wavelet-based MOR
[14] has been proposed to provide an alternative subspace,
for those problems where there is no time to build a POD
basis or when a global POD basis cannot adequately repre-
sent the local behaviour. However, this alternative approach
does not attain significant compression ratios that are char-
acteristic for POD. In this work, we will therefore still rely
on a POD for the first reduction.

In this paper, the dimensionality of the problem is
first tackled using the classical Reduced Order Modelling
approach. Next, a novel integration scheme is proposed
to limit the number of function evaluations by adaptively
selecting the quadrature points using a sparse wavelet rep-
resentation of the integrand. Due to the hierarchical nature

of the wavelet bases, local refinement comes naturally with a
wavelet representation. This approach can be considered as a
form ofmulti-resolution analysis (MRA) used to perform the
local refinement similar to Meyer [27] and Mallat [24]. The
multi-resolution analysis provides control over the approxi-
mation accuracy of local phenomena [3] using a pre-defined
tolerance.

A combined approach of ROM and MRA reduces the
computational costs of both the assembly and solution of
the microstructural models. Furthermore, it requires only a
tolerance to indicate the required accuracy of the approxima-
tion, allowing to bound introduced errors. The introduction
of an a priori determined reduced integration scheme for the
high-dimensional parameter space is thereby omitted, greatly
reducing the dimensionality of the snapshot space.

This paper is outlined as follows. First, the mechani-
cal problem and the corresponding standard Reduced Order
Model are introduced in Sects. 2 and 3 respectively. In Sect. 4,
a one-dimensional mechanical model is introduced, aiming
for a comprehensive analysis of the proposed method. Evi-
dently, a 1Dproblemmaynot be as convincing in reproducing
a state not captured in the snapshot space as a 2D problem
might. Therefore, more convincing examples will be pro-
vided in 2D in forthcomingwork. The section shortly outlines
Reduced Order Modelling, after which the wavelet reduced
model usingMRA is introduced.As no assumptions aremade
with respect to the spatial dimensionality of the problem and
multi-dimensional adaptive wavelet transforms are available
in literature [32], the method can be readily extended to
two or three dimensional problems. The presentation in a
1D context however, allows the reader to fully comprehend
the underlying principles and added value of themethod. The
extension to a wavelet reducedmulti-dimensional model will
be discussed in a following publication. Section5 presents
the results of the wavelet reduced analysis of two one-
dimensional elasto-plastic microstructural models, whereby
the accuracy and the reduction in computational costs are
discussed. The paper closes with the conclusions in Sect. 6.

1.1 Notation

First the mechanical model is described in general context
using a tensorial notation. Vectors and tensors are typeset
using a boldface symbol, e.g. w, ε, σ etc. Spaces are noted
using a calligraphic font S and columns and matrices are
denoted by single and double underlined symbols, e.g. col-
umn vector c and matrix M .

Single and double contractions between vector or tensor
valued quantities are denoted with a dot or a double dot
respectively, e.g. a · b = s and ∇q(x) : σ = s where s
represents a scalar quantity.

Furthermore all basis functions N (x) and R(x) are
denoted in uppercase. The corresponding coefficients that
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Fig. 1 Schematic outline of a two-scale mechanical model for a macroscopic cantilever beam loaded with force F composed of a material with
inclusions on the micro-scale

are not reduced are denoted with lowercase characters, e.g.
w. Their reduced equivalent coefficients are written in upper-
case, e.g. W.

Scaling function coefficients are denoted with s ji [ f (x)]
where i indicates the index and j the level of the scaling func-
tion. The shorthand notation f j

i is used to denote the scaling

function coefficient s ji [ f (x)]. The grid point of the corre-
sponding scaling function on a dyadicwavelet grid is denoted
by x j

i in the wavelet coefficients, the notation d j
i [ f (x)] is

introduced where i and j are the index and the level of the
wavelet function. The integrands occurring in the weak form
of the linear momentum balance are denoted using Greek
symbols, e.g. the force and stiffness integrands are denoted
by ϕ and κ respectively.

A short-hand notation is employed for time discretised
parameters, such as the history parameters. The time-step on
which the parameter is sampled is denoted by a superscript
t for the current time step and t + Δt for the next time step,
e.g. ξ t = ξ(t) and ξ t+Δt = ξ(t + Δt).

2 Mechanical model

To outline the principles of W-ROM, this work considers
a two-scale model similar to those presented in [13,16,29].
The model is comprised of a macro-mechanical model and
a micro-mechanical model representing the topological and
material information on the correspondingmacro- andmicro-
scale. The subscript M and m are introduced to distinguish

1

2

3
4

O

x(t)

x

V
S

Fig. 2 Outline of the micro-mechanical model

between macro- and micro-scale quantities respectively. The
loading in the macro-scale model is transferred to the micro-
scale model via periodic boundary conditions and the stress
state in the macro-scale model is given by the volume aver-
aged stress in the micro-scale model, conforming to the
Hill-Mandel condition [23]. This procedure is schematically
depicted in Fig. 1.

The reduced order approach is illustrated using a micro-
scalemechanicalmodel depicted inFig. 2,where aLagrangian
description is employed with x the position vector of a mate-
rial point x(t) at time t , V and S denote the microstructural
domain and its boundary respectively and O is the origin.
Neglecting the inertia and body-forces, the linear momen-
tum balance for this problem is given by
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∇ · σ (ε, ξ) = 0 in V (1)

where σ is the Cauchy stress tensor and ξ are the his-
tory parameters describing the local material state. The
model is formulated in a small strain framework. The local
micro-scale strain tensor ε consists of a contribution of the
macroscopic strain εM and the symmetric gradient of the
micro-fluctuations w(x). This leads to the following defini-
tion of the micro-scale strain ε(εM, x, t)

ε(εM, x, t) = εM(t) + ∇sw(x, t) in V (2)

2.1 Weak formulation

After multiplication of Eq. (1) with weighting function q(x)
and integration by parts, the standardBubnov–Galerkinweak
form is obtained
∫
V

∇q(x) · σ (ε, ξ) dV
︸ ︷︷ ︸

f int(w)

=
∫
S
q(x) · t(x) dS

︸ ︷︷ ︸
fext

(3)

where V is the domain of the microstructural model with
boundary S, on which an outward pointing unit normal n is
defined. The traction t is defined as t = n·σ . The internal and
external forces are denoted by f int(w) and fext respectively.

Themicro-fluctuation fieldw(x) is constrained using peri-
odic boundary conditions at the boundary S and the macro-
scopic strain εM(t) results from the macro-scale kinematics.
Using Hill–Mandel, the macroscopic stress is obtained by
volume averaging the microstructural stress σ (ε, ξ), i.e.

σM(εM) = 1

|V|
∫
V

σ (ε, ξ) dV (4)

where |V| denotes the volume of the microstructure.

2.2 Spatial discretisation

The microstructural model is discretised using a standard
Lagrangianfinite element basis. Theweighting and trial func-
tions q and w in the weak form of the linear momentum
balance (3) are approximated using the discretised weight-
ing and trial functions qh and wh respectively.

qh(x) =
∑
i

Ni (x)qi (5)

wh(x) =
∑
j

N j (x)w j (6)

where N (x) is a set of Lagrangian interpolation functions.
After substitution of the discretised weighting and trial func-
tions, the finite element problem can be solved for different

macroscopic strains εM(t) using the Newton–Raphson pro-
cedure.

3 Reduced order modelling

To reduce the dimensionality of the finite element discretisa-
tion, the microstructural model is reformulated using a set of
reduced basis functions. In the traditional FE discretisation,
the spatial accuracy of the model is proportional to h−p for
p > 0, where h and p are the element size and order respec-
tively. The number of physical deformation modes present in
themicrostructure is oftenmuch lower than the number of FE
shape functions required to accurately capture the deforma-
tion field. Therefore, the number of degrees of freedom can
be reduced using a set of global shape functions which are
sufficiently detailed to capture the local phenomena occur-
ring in the microstructural model. The number of degrees of
freedom required for the discretisation is thereby no longer
proportional to the spatial accuracy of the basis.

3.1 Proper orthogonal decomposition

The applied Reduced Order Modelling technique makes use
of the Proper Orthogonal Decomposition (POD) by Pearson
[33] and Schmidt [36] to extract essential physical modes
from a set of solutions constructed using the original dis-
cretisation. Snapshots of the discretised micro-fluctuation
coefficients w are collected in a snapshot-matrix X. The
snapshot matrix is then decomposed into proper orthogo-
nal modes and corresponding eigenvalues λ using the POD.
The normalised eigenvalues represent the contribution of the
corresponding mode to the snapshot matrix and are used to
truncate the reduced basis to V , consisting of the first nm

modeswith a contribution above the predetermined tolerance
δRB. This process is schematically depicted in Fig. 3.

3.2 Construction of the reduced basis

The snapshot matrix X is obtained by collecting snapshots
of the micro-fluctuation coefficients w under ns different
macroscopic strains εM as columns in a snapshot matrix

X =
[
w(ε1M),w(ε2M), . . . ,w(εn

s

M)
]
, after which the POD

yields the modal coefficients v j and corresponding eigenval-
uesλ j . The reducedbasis functions R(x) are then constructed
out of a linear combination of the Lagrangian basis

R j (x) =
∑
i

vi j Ni (x) (7)
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Fig. 3 Extraction of the reduced basis using POD

The weighting and trial functions are then discretised using
the reduced basis functions only.

qh(x) =
∑
i

Ri (x)Qi wh(x) =
∑
j

R j (x)Wj (8)

Substitution of the reduced weighting and trial functions (8)
into the weak form (3) yields the ROM [41]:

f̂
int

(W ) =
∫
V

∇sR(x) : σ (ε(W), ξ) dV (9)

From the equations it is clear that the integration can not

be performed a priori since the internal force f̂
int

(W ) is non-
linearly dependent on the reduced micro-fluctuations. The
integration scheme requires the stresses σ at every integra-
tion point in the microstructure. Therefore the integration
procedure is still proportional to the number of elements
used to discretise the microstructural problem and the reduc-
tion in memory usage and floating point operations (FLOPs)
required to assemble and solve the microstructural problem
is only marginal.

This problem can be resolved using, for example, hyper-
reduction techniques such as HP-ROM [21] or ECM [20]. In
the first approach, not only the displacement-field but also
the stress-field is projected onto a reduced basis. The modal
contributions are determined in a least-squares sense by sam-
pling the stresses in a reduced set of integration points. The
latter approach reduces the integration scheme itself directly
by choosing a subset of integration points and optimising
the quadrature weights based on snapshots of the integrands.
Both schemes rely on snapshots of either the stress-field or
the complete integrand to reduce the integration.

4 Wavelet-Reduced Order Model

The Wavelet-Reduced Order Modelling technique will be
demonstrated on a one-dimensional microstructural model.
The 1D setting provides a transparent view of all underly-
ing principles and implementation aspects, which assists the
reader in getting a full comprehensive view of the method
proposed. To obtain the 1D model, all previous equations
are simplified to scalar expressions, e.g x becomes x , ε

becomes ε, σ becomes σ etc. The homogenisation of the
1D micro-structural problem leads to a homogenised force
instead of a homogenised stress. This model with length 


and spatially varying cross-sectional area A(x) is schemat-
ically depicted in Fig. 4. An elasto-plastic model is used to
describe thematerial behaviour. Themicrostructure is loaded
with a macroscopic strain εM = Δ




with Δ
 the increase in

length of the microstructure.
To reduce the computational integration costs, the inte-

grands in the reduced order model are approximated using
wavelets. In this case, the approximation is performed
using Deslauriers–Dubuc interpolating wavelets [7,8,10].
This wavelet family was chosen because it yields a com-
pact interpolating scheme. Furthermore the basis functions
are smooth and therefore compatible with the smooth fields
often present in mechanical problems.

The W-ROM relies on several wavelet techniques, such
as wavelet synthesis, wavelet analysis, MRA and data com-
pression. These concepts are briefly explained in Appendix
A. The interested reader is also referred to the book by
Goedecker [18].

4.1 Wavelet representation of the integrand

The Reduced Order Model requires an integration step to

determine the reduced internal forces f̂
int

and the corre-

sponding tangent stiffness K̂ . To approximate these integrals
efficiently, the integrands are projected on the wavelet
grid using MRA. The MRA automatically determines the
sampling points for interpolation, and the integration is
performed on the wavelet approximation of the reduced inte-
grand.

0 xmax
A(x)

x

VS
n n

S

Fig. 4 Microstructure of length 
 with a varying cross-sectional area
A(x)
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Fig. 5 Schematically depicted
finite element grid and dyadic
wavelet grid used for the
integration of internal force and
stiffness. The integrand is
projected onto the dyadic grid
and expressed in terms of
coefficients s0i and d j

i using

basis functions φ0
i (x) and ψ

j
i (x)

on resolution levels j = 0 to
jmax

s0i

d0i

d1i

Finite Element Grid

Dyadic Wavelet Grid

d2i

Periodic Node

xi

Refine until jmax

f̂
int

(W ) =
∫
V

ϕ(ε, ξ) dV (10)

K̂
int

(W ) =
∫
V

κ(ε, ξ) dV (11)

The integrands ϕ(ε, ξ) and κ(ε, ξ) for the internal force and
stiffness are defined in (12) and (13) respectively.

ϕ(ε, ξ) = ∂x R(x)σ (ε, ξ) (12)

κ(ε, ξ) = ∂x R(x)
∂σ

∂ε
(ε, ξ)

(
∂x R(x)

)T (13)

For the present analysis, periodicity of the microstruc-
tural model is used to approximate the function values at the
boundary of the domain. Note, however, that wavelets are not
limited to periodic boundary conditions. For the treatment of
general boundary conditions using awavelet basis, the reader
is referred to Vasilyev et al. [40].

In order to approximate the integrand ϕ(ε, ξ) of the inter-
nal force using wavelets, the gradients of the reduced basis
functions ∂x R(x) are required on the points in the dyadic
wavelet grid. The gradients are found by sampling the finite
element discretised gradient at every dyadic grid point in the
wavelet basis using an inverse mapping of the physical to the
isoparametric coordinate. Both discretisations are schemati-
cally depicted in Fig. 5.

In this work, second order Lagrangian finite elements are
used to obtain the full-order finite element solution yield-
ing a piecewise linear approximation of the strain field. This
finite element basis is sufficiently smooth to be sampled
directly using the Deslauriers–Dubuc interpolating wavelets.
When discontinuous strain fields are required to capture the
homogenised behaviour accurately, a discontinuous wavelet
transform [39] could be used to interpolate the stress and
strain fields.

4.2 Multi-resolution wavelet approximation

The integrands ϕ(ε, ξ) and κ(ε, ξ) are projected onto
Deslauriers–Dubuc interpolating wavelet basis. The basis is
constructed out of multiple grid levels j = 0, 1, . . . , jmax.
Each level contains a set of scaling functions φ

j
i (x) and

wavelets ψ
j
i (x) with index i = 0, 1, . . . , 2 j n and grid level

j = 0, 1, . . . , jmax. The scaling functions and wavelets
are derived from the scaling function φ(x) and mother
wavelet ψ(x) by scaling their width by a factor 1/2 at
each increasing level and translating them with a step of
the grid size Δx j corresponding to the level j . The scaling
function and wavelet coefficients are found by project-
ing the integrands onto the corresponding scaling function
φ
j
i (x) or wavelet ψ

j
i (x). They are denoted by s ji [ f (x)]

and d j
i [ f (x)] respectively. Note that the Deslauriers–Dubuc

scaling functions are interpolating. Therefore, the scaling
function coefficient is given directly by the function val-
ues sampled on the wavelet grid point, i.e. s ji [ f (x)] =
f (x j

i ).

Using the reduced basis gradient ∂x R(x j
i ) sampled on

the dyadic wavelet grid, the local strain in each grid point
is computed using ε

j
i = εM + ∂x R(x j

i ) · W . The his-

tory coefficients ξ
j
i = ξ t (x j

i ) are discretised using the
same multi-resolution sparse wavelet grid. This allows
for the wavelet interpolation of the history parameters on
newly added grid points avoiding the need to store the
history coefficients of every dyadic wavelet grid point.
Using the strain ε

j
i and the history ξ

j
i , the stress σ

j
i =

σ(ε
j
i , ξ

j
i ), the internal force integrand ϕ

j
i = ϕ(ε

j
i , ξ

j
i )

and the tangent stiffness integrand κ j
i

= κ(ε
j
i , ξ

j
i ) are

computed on the wavelet grid. This enables a MRA of
the internal force integrand ϕ(ε, ξ) associated with the
reduced micro-fluctuations W on the wavelet-grid. Dur-
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ing the MRA, the analysis of the grid points is conducted
on each level in the hierarchy. The analysis of subse-
quent levels by evaluating and wavelet transforming the
neighbouring points of current level grid points enables
the error control, which other hyper-reduction methods
ignore.

s ji [ϕ(ε
j
i , ξ

j
i
)] = s ji

[
∂x R(x j

i )σ (ε
j
i , ξ

j
i
)
]

(14)

Note that for an accurate approximation of the internal force
and tangent stiffness integrands the initial wavelet grid needs
to be sufficiently fine such that the adaptive refinement
scheme detects regions requiring local refinement. In princi-
ple the initial grid should be as coarse as possible, yet still
resolving the presence of fine-scale features, e.g. in a het-
erogeneous microstructure there need to be grid points in
the neighbourhood of the microstructural features to pick up
their influence on the initial grid, even if this is still very
inaccurate.

4.3 Integration of the wavelet representation

The internal force and tangent stiffness matrix required
for the Newton–Raphson procedure result from integrat-
ing the wavelet representations of the internal force inte-
grand ϕ(ε

j
i , ξ

j
i ) and stiffness integrand κ(ε

j
i , ξ

j
i ). The MRA

approximation of an integrand approximation f̃ (x) is defined
using a set of coarse scaling coefficients and a sparse set
of wavelet coefficients, s0i [ f (x)] and d j

i [ f (x)] respectively.
The field f̃ (x) is then given by:

f̃ (x) =
n∑

i=0

s0i [ f (x)]φ0
i (x) +

jmax∑
j=0

∑
i

d j
i [ f (x)]ψ j

i (x) (15)

To evaluate the integral of the weak form the unit-integral
property of the Deslauriers–Dubuc interpolating wavelets is
used [37]. The integral of the mother scaling function φ(θ)

constructed on a dyadic wavelet grid with sufficient grid
points (≥ 2m − 1), coordinate θ and a grid spacing Δθ = 1
is given by [4].

∫ ∞

−∞
φ(θ) dθ = 1 (16)

Using the biorthogonal refinement relations [18] the mother
wavelet function is expressed as a function of the scaling
function.

ψ(θ) =
m∑

i=−m

giφ(2θ − i) (17)

For Deslauriers–Dubuc interpolating wavelets this simplifies
to the following expression.

ψ(θ) = −φ(2θ − 1) (18)

Mapping the coordinate θ onto the physical coordinate x ,
the integrals of the Deslauriers–Dubuc scaling functions and
wavelets on an equidistant dyadic grid, with Δx j the grid
spacing on level j , are given by:

∫
x
φ
j
i (x) dx = Δx j (19a)

∫
x
ψ

j
i (x) dx = − 1

2Δx j (19b)

Substitution yields the following simple summation of the
coefficients times the grid size at the coefficient level.

∫
V

f̃ (x) dV =
n∑

i=0

s0i [ f (x)A(x j
i )]Δx0

−
jmax∑
j=0

∑
i

1
2d

j
i [ f (x)A(x j

i )]Δx j (20)

Combining the wavelet approximation of the integrands
ϕ and κ and the integration and substitution into a Newton–
Raphson procedure to solve the linear momentum balance
leads to the W-ROM outlined in Algorithm 1. Note that
the integration grid is rebuilt within every iteration. When
the history coefficients from the previous increment or
iteration are required, the wavelet representation thereof
is stored. Upon refinement, the history variables need to
be interpolated between the available grid points when
the history is required on newly added grid points. The
Deslauriers–Dubuc basis functions used to discretise the
integrands are also used to interpolate the history vari-
ables.
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Algorithm 1 Wavelet Integration for Reduced Order Models
Require: The external force f ext , the macroscopic strain εM, the Newton-Raphson and MRA tolerances δNR and δw, the sampled strain modes

∂x R(x j
i ) and the wavelet representation of the history variables s0i [ξ t ] and d j

i [ξ t ].
Initialise j ← 0, f int ← 0, r ← 1 and K ← 0

while ‖r‖2/‖ f ‖2 > δNR do
ε0i = εM + ∂x R(x0i ) · W � Compute local strain
ξ0
i

← ξ t (x0i ) � Retrieve the current material history

σ 0
i ← σ(ε0i , ξ

0
i
) � Compute stress, history ξ t+1 and tangent stiffness

s0i [ϕ] ← ϕ(ε0i , ξ
0
i
) � Store the internal force integrand

ϕmax ← max |s0i [ϕ]|
s0i [κ] ← κ(ε0i , ξ

t
i
) � Store the stiffness

s0i [ξ t+1] ← ξ t+1(x0i ) � Store the new history parameters

f int ← f int + ∑
i Δx0s0i [ϕA(x j

i )]
K ← K + ∑

i Δx0s0i [κA(x j
i )]

I ← [0, n] � Refine intermediate grid points
while I �= ∅ and j ≤ jmax do

I∗ = ∅
for i ∈ I do

ε
j
i = εM + ∂x R(x j

i ) · W � Compute local strain

ξ
j
i ← s ji [ξ t ] � Use wavelet synthesis to retrieve interpolated values

σ
j
i ← σ(ε

j
i , ξ

j
i ) � Compute stress, history ξ t+1 and tangent stiffness

ϕ
j
i ← ϕ(ε

j
i , ξ

j
i ) � Store the internal force integrand

Retrieve s ji [ϕ] and s ji [ξ t+1] using wavelet synthesis (25b) using d j−1
i [•] = 0.

if any |ϕ j
i − s ji [ϕ]|/ϕmax > δw then

d j−1
i [ϕ] ← s ji [ϕ] − ϕ

j
i � Store internal force integrand

d j−1
i [κ] ← s ji [K ] − κ(ε0i , ξ

t
i
) � Store the stiffness

d j−1
i [ξ t+1] ← s ji [ξ t+1] − ξ t+1 � Store the new history parameters

f int ← f int − 1
2Δx j d

j
i [ϕA(x j

i )]
K ← K − 1

2Δx j d
j
i [κA(x j

i )]

I∗ = {2i, 2i + 1} ∪ I∗ � Refine surrounding grid points
end if

end for
I ← I∗ � Next level
j ← j + 1

end while

r ← f ext − f int

ΔW ← K−1r
W ← W + ΔW

end while

5 Numerical examples

To evaluate the performance of the W-ROM, a one-
dimensional microstructure with elasto-plastic material
behaviour is modelled. The required integration points are
monitored to assess the computational costs. The accuracy
of the resulting macroscopic forces fM(εM) of the full order
model (FOM), the ROM and the W-ROM are compared.

The accuracy with respect to the standard ROM is evalu-
ated by comparing the micro-fluctuation coefficients W . To
demonstrate the flexibility of the wavelet integration a sec-
ond microstructure consisting of two domains with different
material parameters is modelled. The spatially dependent
cross-sectional area given by Eq. (21) is used for both mod-
els. An average cross-sectional area of Aavg = 0.1mm2 and
an area fluctuation of ΔA = 0.02mm2 are used for both
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examples. A wavelength of L = 0.5mm is selected for a
microstructure with length 
 = 1mm. The cross-sectional
area is then given by:

A(x) = Aavg + ΔA cos
(
2π

x

L

)
(21)

To homogenise the one-dimensional problem, the following
relation between the macroscopic strain εM and the macro-
scopic force fM is introduced.

fM(εM) = 1




∫ 


0
σ(x; εM)A(x) dx (22)

The full-order model is discretised with 1000 quadratic
Lagrangian elements and the weak form is integrated using 2
Gauss-Legendre quadrature points per element. The dyadic
wavelet grid has 9 points at level j = 0 such that the 4th
degree Deslauriers–Dubuc scaling functions and wavelets
are fully supported within the domain. Note however that
a finer initial grid may be used when this is required. Peri-
odic boundary conditions are employed for both the finite
element and the wavelet discretisations.

5.1 Example I: Micro-structural model with one
material

The first example consists of a unit-cell, schematically
depicted in Fig. 6, with an elasto-plastic material having a
Young’s modulus of E = 1.0GPa, a yield-stress of σy =
0.02GPa, and a hardening coefficient of K = 0.4GPa.

Themodel is loadedwith amacroscopic strain εM increas-
ing from 0 to 0.1 in 10 equidistant increments. Snapshots
of the resulting micro-fluctuation fields w(x) are stored in
the snapshot-matrix X to extract the modes constituting the
reduced basis R(x). Using the POD, the modes and their
corresponding eigenvalues required to formulate the reduced
basis R(x) are retrieved. The modes and singular values are
plotted in Fig. 7. In this example, 3 modes are used to capture
the micro-fluctuation field. After the derivation of a reduced
basis, it is projected onto the dyadic wavelet grid to complete
the W-ROM.

The accuracy of the reduced models is assessed by com-
paring the reduced micro-fluctuation coefficients and the
resulting integrated macroscopic force obtained using the
ROM and W-ROM (using Algorithm 1) with the results
obtainedusing theFOM.The relationbetween computational
cost and accuracy of the W-ROM is investigated by adopting
different tolerances and comparing the corresponding sparse
wavelet grids.

5.1.1 Accuracy

To assess the accuracy, themacroscopic strain εM is increased
from 0 to 0.1 in 20 equal increments. Note that the macro-
scopic strain is applied in twice the number of increments, i.e.
every odd strain increment lies in the middle of two strains
used to generate the snapshots X such that the ROM needs
to interpolate between the available modes. The resulting
micro-scale stress and strain fields obtained with the FOM,

Fig. 6 Example I:
microstructural domain with
length 
 and varying
cross-sectional area A(x)

xmin xmax
A(x)

x
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n
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n
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Mode #
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Fig. 7 Corresponding strains of micro-fluctuation modes and singular values extracted from the snapshots X for the microstructure loaded with a
macroscopic strain εM = 0.1 in 10 equivalent increments
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Fig. 8 Microscopic stress, strain and force fields for the FOM, ROM and W-ROM (δw = 10−2). A section of the force curve is enlarged 5× to
visualise the small deviations in the force equilibrium

ROM, and W-ROM are plotted in Fig. 8 for load increments
5, 7 and 20 (using a tolerance δw = 10−2).

Due to the limited number of snapshots and modes used,
theROM is not able to represent the force equilibrium exactly
close to the plastic deformation front. Small deviations of the
force equilibrium are visible between the ROM and FOM
results. Since the W-ROM relies on the same basis, these
small deviations are also present here. In order to obtain
a more accurate representation of the strain field close to
the plastic deformation front, more snapshots are required to
obtain the missing modes to construct the ROM. Moreover,
if the ROMproblemwould be solved with a wavelet approxi-
mation as well, this concern would be completely alleviated.
This will be explored in future work.

Note, however, that theW-ROMapproximates the reduced
order model accurately using only a reduced set of integra-
tion points. The strains of the W-ROM are compared to the
lossless integrated result of the ROM. Since both models
make use of the same basis (in the wavelet representation the
strains are sampled from the reduced basis directly), it suf-
fices to compare the reduced coefficients. The evolution of
the coefficients over the load increments is plotted in Fig. 9,
where the integration error in the coefficients of the W-ROM
model is defined with respect to the ROM model as follows.

εW = ‖WW−ROM − WROM‖2
‖WROM‖2

(23)

To investigate the influence of the wavelet representation
on the macroscopic force fM, the macroscopic force–strain
curve for the FOM, ROM and W-ROM is shown in Fig. 10.
The error ε fM in the approximation of the macroscopic force
fM using the ROM and W-ROM model with respect to the
FOM model is defined as

ε fM = | f ∗
M − f FOMM |
| f FOMM | (24)

where f ∗
M is the macroscopic force approximated with either

the fully integrated ROM or W-ROM model.
Even though the tolerance δw = 10−4 only applies to the

approximation of the internal force, the error in the wavelet
representation of the macroscopic force remains of approxi-
mately the same order. The ROM captures the macroscopic
force fM exactly up to numerical precision in the linear
regime and in the post-yielding regime up to the given tol-
erance. In this regime, the wavelet representation proves
sufficiently accurate to maintain the ROM accuracy.
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Fig. 9 The evolution of the reduced strain coefficients W of the ROM and W-ROM (δw = 10−4) and the integration error εW of the W-ROM
relative to the fully integrated ROM
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Fig. 10 The macroscopic force–strain curve of the FOM, ROM and W-ROM (δw = 10−4) of the microstructure and the relative error εσM using
ROM and W-ROM

Fig. 11 The error in the
macroscopic force–strain curves
approximated using W-ROM

The influence of the applied tolerance on the macro-
scopic force fM is investigated by approximating the internal
forces in the W-ROMmodel using different tolerances δw =
10−2, 10−3, . . . , 10−6. The resulting errors of the ROM and
W-ROMwith respect to the FOM case are plotted in Fig. 11.

A stricter tolerance consistently leads to a better force
approximation. The errors for the tolerances δw = 10−5 and
δw = 10−6 are plotted in dashed lines since thewavelet repre-
sentation reached the maximum level (here set to jmax = 12)
and accordingly the reduction in error stagnates. A larger

jmax would allow to capture more details, through which the
approximation of the internal force integrand ϕ(x0) becomes
even more accurate resulting in a more accurate force inte-
gral.

This becomes clear by considering the sparse wavelet
grids for the various tolerances δw, as depicted in Fig. 12.
At tolerance δw = 10−4 the maximum level is reached and
the grid starts to fill in. The accuracy of the approximation
can be enhanced using a higher maximum level jmax, or by
increasing the order of the bases.
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Fig. 12 Sparse dyadic grids used for the wavelet representation using various tolerances δw

5.1.2 Reduction

The sparsity of the wavelet representation allows the approx-
imation of the micro-scale stress and internal force integrand
fields using a limited number of sample points. Depending on
the tolerance, the algorithm automatically identifies points at
locationswhere refinement is needed, thereby eliminating the
need for an a priori determined set of integration points [20]
or modal reconstruction of the micro-scale stress field [21].
The wavelet basis enables an approximation up until a pre-
set tolerance picking up local phenomena in high detail while
using few sample points in regions without significant fluc-
tuations. When the maximum level is reached, the wavelet
coefficient gives an indication of the order of magnitude of
the remaining approximation error.

The number of points required for an approximation
with tolerance δw is depicted in Fig. 13. For a tolerance of
δw = 10−2 in the internal force integrand only 76 inte-
gration points are required, compared to the original FEM
problem with 2000 integration points. The method gains on
the full order model up to a tolerance δw = 10−5, which is
remarkable considering there are only limited regions with-
out strong fluctuations in the force integrand field in the
one-dimensional example model.

Note, that for a tolerance δw ≤ 10−5 the wavelet represen-
tation of the integrand requires more integration points than
the original Gauss scheme to project the integrand onto the
wavelet basis. The accuracy of the integrand in theFOMhow-

10−6 10−5 10−4 10−3 10−2

Tolerance δw

101

102

103

104

#
p
o
in
ts

Number of sparse grid points

W-ROM
FOM

Fig. 13 The number of points in the sparse wavelet grid for various
tolerances δw. The dashed line denotes the number of integration points
used in the FOM model

ever is also limited by the element size of order O (
10−3

)
.

When using a tolerance δw lower than the accuracy of the
FOM the wavelet representation will approximate the arte-
facts of the original Lagrangian discretisation of the finite
element problem. This locally requires extra sampling points
which do not yield extra accuracy of the physical solution,
but merely in the discretised solution. If a higher accuracy
is desired a finer finite element mesh discretisation for the
FOM needs to be employed first.

Evidently, this emphasises again that the tolerance used
in the wavelet reduction/approximation should be balanced
with respect to the underlying discretisation error of the
FOM. Note that this problem will no longer exist if wavelets
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Fig. 14 Example II: Two-phase microstructural composite rod with
length 
 and varying cross-sectional area A(x). The Young’s modulus
of the elasto-plastic material is E = 1GPa. The left side (red) has a

yield stress σy = 0.04GPa and hardening rate of K = 0.2GPa. The
right side (blue) has a yield stress of σy = 0.02GPa and hardening rate
of K = 0.4GPa
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Fig. 15 The evolution of the micro-scale strain (left-hand side), stress (middle) force (right-hand side) approximated with a FOM, ROM and
W-ROM model for increments 5, 7 and 20. A section of the force curve is enlarged × 5 to visualise the small deviations in the force equilibrium

are used to solve the BVP for the FOM/ROM as will be done
in future work.

5.2 Example II: Two-phasemicrostructural
composite rod

Next, a somewhat more complex microstructure is con-
sidered. Similar to the first case, this problem consists
of an expanding plastically deformed zone. However, this
microstructure consists of two phases of elasto-plastic mate-
rial which yield at different stress-levels with a different
hardening rate, resulting in adiscontinuousmicro-scale strain
field. Themicrostructure is schematically depicted in Fig. 14.

The resultingmicro-scale stresses and strains are plotted in
Fig. 15 for the load increments 5, 7 and 20. At increment 5 the
onset of plastic deformation is visible on the right hand side
of the microstructure, at increment 7 the right phase shows a
significant plastically deformed zone and at the final incre-
ment 20 both phases reveal plasticity. When both phases are
deforming plastically, a strain discontinuity originates due to
the difference in yield stress and hardening parameters. Here
one can see a small approximation error in the ROM and the
W-ROM stress, strain and force field. This error is however
localised due to the (automatically) refined wavelet grid near
the discontinuity and hardly influences the integrated macro-
scopic stress. As stated before, this problem can be solved by
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Fig. 16 The evolution of the reduced micro fluctuation coefficients W of the ROM and W-ROMmodel over the increments (left). Integration error
in the W-ROM model relative to the fully integrated ROM (right)
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Fig. 17 Macroscopic force resulting from the microstructure loaded with εM approximated using FOM, ROM and W-ROM. The error in the ROM
and W-ROM models with respect to the FOM model ε fM are plotted on the right

adopting a wavelet family which allows for discontinuities
[39].

Figure16 shows the resulting micro-fluctuations resolved
with ROM and W-ROM. Comparing the W-ROM method
relative to the fully integrated ROM method, the errors in
the reduced micro-fluctuation parameters W are of the order
O (

10−4
)
, which is much smaller than the imposed tolerance

of δw = 10−3.
When looking at the macroscopic force–strain curve in

Fig. 17 of the FOM, ROM and W-ROM models, a similar
trend is observed. In the plastic regime, the error in the ROM
and W-ROMwith respect to the FOM are of orderO (

10−4
)

using approximately 300 integration points. This is consid-
erably smaller than the imposed tolerance.

The wavelet grid used for the W-ROM approximation
presented in Fig. 18 shows that the discontinuities at the
boundaries and centre of the domain are adequately picked
up by the automatic refinement strategy until the maximum
wavelet level jmax is used. The W-ROM model uses ∼ 300
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Fig. 18 The sparse wavelet grid used to approximate the micro-scale
variables in the microstructural problem

integration points to integrate the internal force vector, stiff-
ness matrix and macroscopic force. The FOM and ROM are
integrated using a Gaussian quadrature with 2000 integration
points.
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Due to the C0 kinks originating at the plastic front, the
refinement algorithm locally uses a lot of sampling points.
In this work it is shown that the local high accuracy can be
obtained. If a high reduction factor is favoured, the user has
several options to fine tune the compression: (i) choosing the
maximumwavelet level lower; (ii) a less strict tolerance; (iii)
using higher order bases. This implies that (i) the minimum
width of the wavelets increases or (ii) the approximation
does not refine that much in narrow regions around kinks
and discontinuities; (iii) fine scale details are approximated
using less sampling points. Options (i) and (ii) will give a
locally less accurate microscale solution. Note however, that
the error defined locally is quite strict when one is interested
in the homogenised stresses or forces, since the error made
in the homogenised result is often lower than the local error.

6 Conclusions

This paper presents a novel hyper-reduced method by intro-
ducing a wavelet basis and a MRA to integrate the weak
form up to a pre-set tolerance. The innovative aspects of the
proposed method are:

– The wavelet reduced integration does not require an
offline calibration step using a second set of (stress-
based) snapshots to construct the reduced integration
scheme. This reduces the input parameters required to
construct the integration scheme to the strain modes only
(projected on the dyadic wavelet grid) and a tolerance to
control the level of approximation.

– The reduced integration uses the wavelet-based MRA to
enable an adaptive and local refinement of the dyadic grid
used to integrate the stress, internal forces and stiffness.
Conversely, the adaptive dyadic grid will also coarsen
when smooth functions are to be approximated.

– The error in the integration is controlled using a pre-set
tolerance. This is verified by quantifying the microfluc-
tuation error of the W-ROM relative to the FOM. The
resulting error in micro-fluctuation coefficients is typi-
cally bounded by the imposed tolerance.

The reduction of the number of stress evaluations to
perform the integration with respect to the original Gauss
integration scheme used in the ROM is demonstrated and
the compression is shown to be inversely proportional to the
tolerance.

Hyper-reduced models such as Empirical Interpolation
Methods and Empirical Cubature Methods rely on offline
determined integration points, and sometimes a basis for
the integrand. This allows for a higher compression ratio,
but requires a detailed sampling of the high-dimensional
snapshot space including the history parameters for path

dependent materials, to ensure that no physical modes are
missing since the integration scheme is constructed a priori.
Many hyper-reduction techniques combine the sampling of
the non-linear terms, such as the stress field σ or the inter-
nal force integrand ϕ, with the sampling of the kinematics.
Therefore no additional computations are required for the
construction of the snapshots of the nonlinear term.The accu-
racy of the reduced integration of history dependent material
models however, requires extensive sampling of both the
kinetics and the kinematics present in the parameter space.

The Wavelet-Reduced Order Model, on the other hand,
adaptively determines the points required for accurate inte-
gration in-situ and only requires prior accurate sampling of
the kinematics. The sampled kinematics are required to con-
struct the symmetric gradient of the reduced basis ∇2R(x)
and is therefore less sensitive to the sampled snapshots, and
algorithmic choices to select integration points.

Note that there is no theoretical limitation to expand W-
ROM to two or three dimensional microstructural models.
This 1D model provides a transparent view of all underlying
principles and implementation aspects of the method pro-
posed. Expanding the method to multiple dimensions will
however require multi-dimensional adaptive wavelet trans-
forms as presented by Paolucci et al. in [32] and more
elaborate storage solutions for the internal variables and
modes by approximating each variable independently on a
separate wavelet grid to allow fast wavelet transforms while
still limiting the memory usage.
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A Wavelet analysis and synthesis

A.1 Multi resolution analysis using wavelets

Wavelet families are constructed using a mother wavelet
ψ(x) and scaling functionφ(x). Thewavelet basis is spanned
by scaling functions and wavelets formed by scaling and

translation the scaling function φ
j
i (x) = φ

(
2 j

Δx0
x − i

)
and

mother wavelet ψ
j
i (x) = ψ

(
2 j

Δx0
x − i

)
, respectively. This

process is illustrated for the Haar scaling functions and
wavelets in Fig. 19.
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Fig. 19 The scaled and
translated Haar scaling
functions and wavelets

Fig. 20 Schematically depicted
hierarchical relations between
the Haar scaling functions and
wavelets on level j and j + 1
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To approximate the integrands, a sequence of approxi-
mation spaces is used, V j containing the scaling functions
φ
j
i (x). The scaling function spaces in the sequence are sub-

spaces of their successors, i.e. V j ⊂ V j+1. The wavelet
spacesW j complement the scaling function spaces V j such
that the combination of both spaces V j ⊕ W j are spanning
the (more detailed) space V j+1. This hierarchical relation
between the wavelets and scaling functions on different lev-
els is schematically depicted in Fig. 20.

In this work, the wavelets are translated along grid points
on level j spaced Δx j apart. At each level the wavelet is
scaled down using a factor 1

2 in width for each subsequent
level forming a dyadic wavelet grid. The basis consisting
of coarse scaling functions and increasingly fine wavelet
functions living on multiple levels is formed. In each sub-
sequent level j , the wavelet functions ψ

j
i (x) ∈ W j and

scaling functions φ
j
i ∈ V j are respectively scaled by a factor

1
2 in width and translated, allowing each new level to capture
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Wavelet approximation: each level adds detail to the approximation

sisehtnyS
sisy lan

A

Fig. 21 A schematic representation of the multi-resolution analysis of function f (x) using Haar scaling functions and wavelets

higher frequency components in the field. The union of all the
approximation spaces ∪∞

k=1V j spans the complete Lebesgue
space L2(R).

To perform a MRA on a function f (x), without con-
sidering the computational efficiency, the function can be
projected onto the fine level scaling functions φ

jmax
i (x). The

scaling function representation can be decomposed into a
combination of scaling functions and wavelets at the lower
level jmax − 1. The projection of the function f (x) on the
scaling functions φ

jmax−1
i (x) can be analysed again using

the wavelet analysis to obtain a representation in terms
of level j = jmax − 2 scaling functions φ

jmax−2
i (x) and

wavelets ψ
jmax−2
i (x). In the multi-resolution analysis the

wavelet transform is applied hierarchically to decompose
the different frequency components in the function f (x).
The multi-resolution analysis is schematically shown for the
Haar wavelet family in Fig. 21.

On a dyadic wavelet grid the wavelet analysis and synthe-
sis canbeperformeddiscretely using a set of filter coefficients
hierarchically relating the scaling function coefficients and
wavelet coefficients. The level j scaling function andwavelet

coefficients are related to the level j+1 scaling function coef-
ficients via the analysis filter coefficients denoted by h̃k and
g̃k . The synthesis of the level j scaling function and wavelet
coefficients to the level j + 1 scaling function coefficients is
performed using the synthesis filter coefficients hk and gk .
For a more detailed explanation of multi-resolution analysis
the reader is referred to the books [6,26].

A.1.1 Wavelet synthesis

Starting from a coarse representation of the function f (x)
comprising of 0th level scaling functions φ0

i (x), an increas-

Table 1 The wavelet coefficients used to generate the 4th degree inter-
polating Deslauriers–Dubuc wavelet and scaling functions

k −5 −4 −3 −2 −1 0 1 2 3 4 5

hk 0 0 − 1
16 0 9

16 1 9
16 0 − 1

16 0 0

h̃k 0 0 0 0 0 1 0 0 0 0 0

gk 0 0 0 0 0 0 −1 0 0 0 0

g̃k 0 0 0 − 1
16 0 9

16 −1 9
16 0 − 1

16 0
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Fig. 22 The 4th degree Deslauriers–Dubuc interpolating scaling functions and wavelets forming the basis on level j = 0

Fig. 23 Interpolation using the
MRA for the 4th degree
interpolating Deslauriers–Dubuc
wavelet
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dj
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1 dj
2

ingly detailed reconstruction of the function f (x) is obtained
by adding higher level wavelets. This reconstruction relies
on the wavelet synthesis relations to interpolate intermediate
points on finer grid levels j + 1. The synthesis of the dis-
cretised field is performed using the synthesis relations for
bi-orthogonal wavelets (25).

s j+1
2i =

m
2∑

k=−m
2

h2ks
j
i−k + g2kd

j
i−k (25a)

s j+1
2i+1 =

m
2∑

k=−m
2

h2k+1s
j
i−k + g2k+1d

j
i−k (25b)

Here,m is the degree of the current filter, and hk and gk are the
synthesis filter coefficients listed in Table 1 used to perform
the synthesis. The analysis filter coefficients are denoted by
h̃k and g̃k .

The 4th degree Deslauriers–Dubuc level j = 0 scal-
ing functions φ0

i (x) and wavelets ψ0
i (x) are depicted in

Fig. 22. When using these Deslauriers–Dubuc interpolating
wavelets, the wavelet coefficients d j+1

i on the fine level are
given directly by the difference between the level j wavelet
interpolation and the sampled function value f (x j

i )1. This

1 Note that this property is specific for the Deslauriers–Dubuc interpo-
lating wavelet family.

is shown for wavelet synthesis on a dyadic grid using the
4th degree (m = 4) bi-orthogonal Deslauriers–Dubuc scal-
ing function coefficients hk and wavelet coefficients gk . A
schematic overview of the synthesis is depicted in Fig. 23.

The interpolated (or approximated) values on the inter-
mediate grid points can be found by interpolating wavelets
assuming that the wavelet coefficients d j

k = 0. This yields
the relation for the approximated function value f̃ (x2i+1) =
s j+1
2i+1, i.e.

f̃ (x2i+1) =
m
2∑

k=−m
2

h2k+1 f
j
i−k (26)

For Deslauriers–Dubuc wavelets the filter coefficient gk is
described using the Kronecker-delta function −δ1k . There-

fore the only value d j
i−k contributing to approximation f̃ j+1

2i+1
is k = 0. This coefficient represents the error between the
interpolated function value f̃ j+1

2i+1 and the exact function value
f (x2i+1)

d j
i =

m
2∑

k=−m
2

h2k+1 f
j
i−k − f (x2i+1) (27)

Note that relation (27) is specific for the Deslauriers–Dubuc
interpolating wavelet. For other wavelets the general synthe-
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sis relations for bi-orthogonal wavelets (25) can be applied
to find the wavelet coefficients.

A.2 Data compression

Using the Deslauriers–Dubuc wavelet family allows the
wavelet representation of the function f (x) to be constructed
from the coarse level up. By hierarchically applying equation
(27) over each level, the correcting wavelet coefficients d j

i
are computed.

Only the points for which the error |d j
i |/| favg| ≥ δw, in

which δw is the tolerance on the approximation error rel-
ative to the absolute average of the function values on the

initial grid | favg|, are marked for further refinement. When

a point x j
i is marked for further refinement the surrounding

grid points on level j + 1, x j+1
2i and x j+1

2i+1 are approximated
in the next level, providing a systematic refinement scheme.
The MRA approximation f̃ (x/
) is proven to converge to
the function f (x/
) as the number of levels tends to infinity
[6].

The process of truncating wavelets is schematically
depicted for theDeslauriers–Dubucwavelet family inFig. 24.
In this example several wavelets have coefficients d j

i that are
below the imposed tolerance at level j = 3. These wavelets
are no longer considered for further refinement in higher lev-

Fig. 24 Schematically depicted
compression by truncating the
MRA with 4th order
Deslauriers–Dubuc (DD4)
wavelets using a tolerance
δw = 10−5, where f (x/
) is the
exact solution and f̃ (x/
) is the
wavelet representation
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els. At level j = 4 all coefficients are below the imposed
tolerance δw. The wavelet representation is sufficiently accu-
rate and all contributions of higher level wavelets can be
neglected.

References

1. AlmrothBO,SternP,BroganFA (1978)Automatic choice of global
shape functions in structural analysis. AIAA J 16(5):525–528

2. Astrid P,Weiland S,Willcox K, Backx T (2008)Missing point esti-
mation in models described by proper orthogonal decomposition.
IEEE Trans Autom Control 53(10):2237–2251

3. Brewster ME, Beylkin G (1995) A multiresolution strategy
for numerical homogenization. Appl Comput Harmonic Anal
2(4):327–349

4. Burgos RB, Cetale Santos MA, Silva RRE (2013) Deslauriers–
Dubuc interpolating wavelet beam finite element. Finite ElemAnal
Des 75:71–77

5. Chaturantabut S, Sorensen DC (2010) Nonlinear model reduc-
tion via discrete empirical interpolation. SIAM J Sci Comput
32(5):2737–2764

6. Daubechies I (1992)Ten lectures onwavelets. Society for Industrial
and Applied Mathematics, Philadelphia

7. Deslauriers G, Dubuc S (1989) Symmetric iterative interpolation
processes. Const Approx 5:49–68

8. Donoho DL (1992) Interpolating wavelet transforms. Preprint,
Department of Statistics, Stanford University, 2(3):1–54

9. DorobantuM,Engquist B (1998)Wavelet-based numerical homog-
enization. SIAM J Numer Anal 35(2):540–559

10. Dubuc S (1986) Interpolation through an iterative scheme. J Math
Anal Appl 114(1):185–204

11. Dvorak GJ (1992) Transformation field analysis of inelastic com-
posite materials. Proc R Soc AMath Phys Eng Sci 437(1900):311–
327

12. Farhat C, Chapman T, Avery P (2015) Structure-preserving, sta-
bility, and accuracy properties of the energy-conserving sampling
and weighting method for the hyper reduction of nonlinear finite
element dynamic models. Int J Numer Methods Eng 102(5):1077–
1110

13. Feyel F, Chaboche J-L (2000) FE2 multiscale approach for mod-
elling the elastoviscoplastic behaviour of long fibre SiC/Ti compos-
ite materials. ComputMethods ApplMech Eng 183(3–4):309–330

14. Flórez H, ArgáezM (2018) Amodel-order reductionmethod based
on wavelets and POD to solve nonlinear transient and steady-state
continuation problems. Appl Math Model 53:12–31

15. Fritzen F, Leuschner M (2013) Reduced basis hybrid computa-
tional homogenization based on a mixed incremental formulation.
Comput Methods Appl Mech Eng 260:143–154

16. Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-
scale computational homogenization: trends and challenges. J
Comput Appl Math 234(7):2175–2182

17. Gilbert AC (1998) A comparison of multiresolution and classical
one-dimensional homogenization schemes. Appl Comput Har-
monic Anal 5(1):1–35

18. Goedecker S (1998) Wavelets and their application for the solution
of partial differential equations in physics. Presses polytechniques
et universitaires romandes

19. Harnish C, Matouš K, Livescu D (2018) Adaptive wavelet algo-
rithm for solving nonlinear initial-boundary value problems with
error control. Int J Multiscale Comput Eng 16(1):19–43

20. Hernández JA, Caicedo MA, Ferrer A (2017) Dimensional hyper-
reduction of nonlinear finite element models via empirical cuba-
ture. Comput Methods Appl Mech Eng 313:687–722

21. Hernández JA, Oliver J, HuespeAE, CaicedoMA, Cante JC (2014)
High-performance model reduction techniques in computational
multiscale homogenization. Comput Methods Appl Mech Eng
276:149–189

22. Hill R (1963) Elastic properties of reinforced solids: some theoret-
ical principles. J Mech Phys Solids 11(5):357–372

23. Hill R (1972) On constitutive macro-variables for heteroge-
neous solids at finite strain. Proc R Soc A Math Phys Eng Sci
326(1565):131–147

24. Mallat SG (1988) Multiresolution representations and wavelets.
Ph.D. Thesis, University of Pennsylvania

25. Matouš K, Geers MGD, Kouznetsova VG, Gillman A (2017) A
review of predictive nonlinear theories for multiscale modeling of
heterogeneous materials. J Comput Phys 330:192–220

26. Meyer Y (1990) Ondelettes et Opérateurs. II, Opérateurs de
Calderón-Zygmund. Hermann

27. Meyer Y (1991) Ondelettes sur l’intervalle. Revista Matemática
Iberoamericana 7(2):115–133

28. Michel JC, Suquet P (2003) Nonuniform transformation field anal-
ysis. Int J Solids Struct 40(25):6937–6955

29. Mosby M, Matouš K (2015) Hierarchically parallel coupled finite
strain multiscale solver for modeling heterogeneous layers. Int J
Numer Methods Eng 102(3–4):748–765

30. Moulinec H, Suquet P (1998) A numerical method for comput-
ing the overall response of nonlinear composites with complex
microstructure. Comput Methods Appl Mech Eng 157(1–2):69–
94

31. Noor AK, Peters JM (1980) Reduced basis technique for nonlinear
analysis of structures. AIAA J 18(4):455–462

32. Paolucci S, Zikoski ZJ, Wirasaet D (2014) WAMR: an adap-
tive wavelet method for the simulation of compressible reacting
flow. Part I. Accuracy and efficiency of algorithm. J Comput Phys
272:814–841

33. Pearson K (1901) Principal components analysis. Lond Edinb
Dublin Philos Mag J 6(2):566–572

34. Rathinam M, Petzold LR (2003) A new look at proper orthogonal
decomposition. SIAM J Numer Anal 41(5):1893–1925

35. Ryckelynck D (2009) Hyper-reduction of mechanical models
involving internal variables. Int JNumerMethods Eng 77(1):75–89

36. Schmidt E (1989) Zur Theorie der linearen und nichtlinearen
Integralgleichungen. In: Integralgleichungen und Gleichungen mit
unendlich vielen Unbekannten, Springer Vienna

37. Shi Z, Kouri DJ, Wei GW, Hoffman DK (1999) Generalized
symmetric interpolating wavelets. Comput Phys Commun 119(2–
3):194–218

38. van Tuijl RA, Remmers JJC, Geers MGD (2017) Integration effi-
ciency for model reduction in micro-mechanical analyses. Comput
Mech. 62(2):151–169

39. Vasilyev OV, Gerya TV, Yuen DA (2004) The application of multi-
dimensional wavelets to unveilingmulti-phase diagrams and in situ
physical properties of rocks. Earth Planet Sci Lett 223(1–2):49–64

40. Vasilyev OV, Paolucci S, Sen M (1995) A multilevel wavelet col-
location method for solving partial differential equations in a finite
domain. J Comput Phys 120(1):33–47

41. Yvonnet J, He Q-C (2007) The reduced model multiscale method
(R3M) for the non-linear homogenization of hyperelastic media at
finite strains. J Comput Phys 223(1):341–368

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Wavelet based reduced order models for microstructural analyses
	Abstract
	1 Introduction
	1.1 Notation
	2 Mechanical model
	2.1 Weak formulation
	2.2 Spatial discretisation


	3 Reduced order modelling
	3.1 Proper orthogonal decomposition
	3.2 Construction of the reduced basis

	4 Wavelet-Reduced Order Model
	4.1 Wavelet representation of the integrand
	4.2 Multi-resolution wavelet approximation
	4.3 Integration of the wavelet representation


	5 Numerical examples
	5.1 Example I: Micro-structural model with one material
	5.1.1 Accuracy
	5.1.2 Reduction

	5.2 Example II: Two-phase microstructural composite rod

	6 Conclusions
	Acknowledgements
	A Wavelet analysis and synthesis
	A.1 Multi resolution analysis using wavelets
	A.1.1 Wavelet synthesis

	A.2 Data compression
	References





