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Abstract

We present a theoretical and computational framework for modeling the multiscale constitutive behavior of highly filled elastomers,
such as solid propellants and other energetic materials. Special emphasis is placed on the effect of the particle debonding or dewetting
process taking place at the microscale and on the macroscopic constitutive response. The microscale is characterized by a periodic unit
cell, which contains a set of hard particles (such as ammonium perchlorate for AP-based propellants) dispersed in an elastomeric binder.
The unit cell is created using a packing algorithm that treats the particles as spheres or discs, enabling us to generate packs which match
the size distribution and volume fraction of actual propellants. A novel technique is introduced to characterize the pack geometry in a
way suitable for meshing, allowing for the creation of high-quality periodic meshes with refinement zones in the regions of interest. The
proposed numerical multiscale framework, based on the mathematical theory of homogenization, is capable of predicting the complex,
heterogeneous stress and strain fields associated, at the microscale, with the nucleation and propagation of damage along the particle–
matrix interface, as well as the macroscopic response and mechanical properties of the damaged continuum. Examples involving simple
unit cells are presented to illustrate the multiscale algorithm and demonstrate the complexity of the underlying physical processes.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Particulate elastomeric matrix composites are used
today in a variety of applications such as solid rocket pro-
0266-3538/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compscitech.2006.06.017

* Corresponding author. Address: Center for Simulation of Advanced
Rockets, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA. Tel.: +1 217 333 8448; fax: +1 217 333 8497.

E-mail addresses: matous@uiuc.edu (K. Matouš), hinglis@uiuc.edu
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pellants, energetic materials and automobile tires. The very
complex mechanical behavior of these materials is driven
by the complicated microstructure and physical processes
occurring in the body at multiple length scales under
mechanical loading. A key source of such processes
appears to be associated with microcracks initiating and
growing along the matrix–particle interface and with the
nucleation and coalescence of voids in the matrix.

How to model these complex materials and damage pro-
cesses has been a long standing quest. Ha et al. [1] and
Simo [2] studied viscoelasticity with growing damage;
Mullins [3] discovered the Mullins effect, Farris [4] studied
vacuole formation and growth and Christensen et al. [5]
proposed models for stiffness reduction in coated particles
and/or fibers. Interface friction or sliding theories have also
been investigated by Hutchinson et al. [6]; Hashin [7]
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provided analytical expressions of local and overall stress
and strain fields as functions of the phase moduli and
interfacial properties. Another group of models published
in recent years devoted to progressive interfacial decohe-
sion and/or progressive volumetric damage has been pro-
posed by Matouš [8], Krajcinovic [9] and Chaboche et al.
[10]. Zhong and Knauss employed a cohesive model to
resolve the debonding of rigid particles from an elastomeric
matrix [11,12]. Also, three-dimensional periodic cells were
recently used by Michel et al. [13] and Llorca and Segurado
[14,15] in their study of elastic and elasto-plastic particulate
composites. In their work, Llorca and Segurado considered
simple periodic boundary conditions without interfacial
damage and no mathematical theory of homogenization
(MTH) was employed. Moreover, difficulties with mesh
generation were discussed. Three faces of a cube were
meshed with quadratic triangles, and the meshes were man-
ually copied to the opposite sides. Such an approach is
bypassed here and novel meshing of periodic structures is
proposed as part of an automated numerical framework
to model particulate composites from packing to failure.
Note that the emphasis of this paper is not to investigate
the size of the representative volume element. Instead, we
investigate hereafter the damage response of a periodic unit
cell (PUC).

The mathematical/numerical framework described in
this paper consists of several fully automated components.
First, a packing algorithm developed in [16,17] is used to
create the characteristic pack matching the particle
distribution and volume fraction. Next, a pre-processing
procedure is applied to create a geometric model with
refinement zones in the regions of interest. Once the
pre-processing is performed and the geometric model is
created, we employ the T3d mesh generator developed
by Rypl [18,19] to discretize a periodic unit cell. T3d is
based on an advancing front technique and can mesh
complex two-dimensional (2D) and three-dimensional
(3D) domains into triangular and tetrahedral meshes of
a high quality. Moreover, mixed meshes consisting of
quadrilaterals and triangles are allowed for 2D domains.
This feature is of great interest, since meshes composed
of triangles are known to be subject to locking for nearly
incompressible materials. In this work, with examples
dedicated primarily to the 2D case, the B (Bbar) proce-
dure [20] is used to eliminate the pressure instabilities
associated with material incompressibility. In particular,
Q1/P0 elements, where the displacement field is approxi-
mated by a bilinear function and the pressure is constant
over the element, are used and despite the fact that this
element violates the Babuška-Brezzi stability conditions,
an optimal convergence rate can be proven under suitable
assumptions (see [20] for more details). A novel stabilized
finite element framework was used for 3D finite strain
analysis by Matouš and Geubelle [21]. The mechanical
behavior of the interface between particles and a blend
(composed of the elastomeric matrix and the particles
too small to be incorporated in the unit cell) is modeled
by a cohesive law, which is embedded in the finite element
implementation of the mathematical theory of
homogenization.

The mathematical theory of homogenization, including
the cohesive model, is described in Section 3. This theory
is very popular in computational multiscale modeling and
has been used by several researchers [22,23]. The finite
strain counterpart of this theory was described in [21].
Next, various 2D examples involving the multiaxial load-
ing of an idealized propellant are presented, showing the
ability of the proposed multiscale scheme to relate the dam-
age processes taking place at the microscale to the macro-
scopic constitutive relations. As illustrated in these
examples, one of the key aspects of the proposed scheme
is its ability to capture the complex interactions between
the closely packed particles.

The symbolic notation adopted herein uses upper case
boldface italic and lower case boldface Greek letters, e.g.,
P and r for second-order tensors. The trace of the sec-
ond-order tensor is denoted as tr(A), and the tensor oper-
ations between two second-order tensors S and E are
indicated as SE for a contraction of tensors (a second-order
tensor) or S:E for the scalar product (a double contrac-
tion). A quantity marked by an underline, �, denotes the
quantity � at the macroscale. Other notational conventions
adopted in this paper are introduced as they are used.

2. Packing algorithm, pre-processing and meshing

procedures

To achieve an accurate description of the damage
evolution in heterogeneous materials, it is often essential
to perform the microscale analysis on a representative
volume element that adequately captures the heteroge-
neous microstructure. This computational description of
the representative volume element is particularly chal-
lenging in the case of highly packed particulate compos-
ites, such as solid propellants, due to the geometrical
constraints associated with the small inter-particle dis-
tances and with the range of particle sizes needed to
achieve the high particle volume fraction. To that effect,
we have developed a fully automated process that
involves a dynamic packing algorithm used to create a
computational description of the embedded particles, a
pre-processing procedure to eliminate the singularities
inherent in contacting particles, and a very general mesh-
ing tool to generate a high-quality periodic finite element
discretization of the periodic unit cell. These three pre-
processing tools are described next.

2.1. Rocpack – a dynamic packing algorithm

The heterogeneous propellants of interest consist of
ammonium perchlorate oxidizer (AP) and aluminum
(Al) particles embedded in a fuel polymeric binder. Typi-
cal loadings are 80–87% by weight AP if no aluminum is
present; 68–76% by weight AP and 10–18% by weight Al
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otherwise. It has long been recognized that various char-
acteristics, such as the burning rate or the response to
dynamic loading, of a heterogeneous propellant are influ-
enced by the propellant morphology, by the size and size
distribution of the AP particles. It follows that any seri-
ous attempt to describe the characteristics of heteroge-
neous propellants must include a packing algorithm, a
strategy for defining and constructing a model propellant.
Lattice (or crystal) packs are easily defined, but do not
reflect the random nature of a true propellant. For this,
a random packing algorithm must be used, and a suitable
one, called Rocpack, is defined and discussed in [16,17].
This algorithm is dynamic in nature and can closely pack
spheres or discs of arbitrary size. The algorithm has
recently been extended to ellipsoids to study non-isotropic
packs [24]. For completeness, we briefly describe the algo-
rithm here.

The algorithm begins with an infinite computational
domain defined by the periodic continuation of a cube,
and points are randomly assigned to this domain at time
t ¼ 0 with random velocities. For t > 0, the points become
spheres that grow linearly in time with a distribution of
rates that defines the final distribution of AP and Al diam-
eters. Collisions between the particles are dealt with using
straightforward but non-classical dynamics, and this pre-
vents overlapping. The pack is defined by stopping the cal-
culation at some assigned volume fraction (defined as the
total volume of the spheres to the volume of the cube),
or after the interval between collisions becomes too small
to continue. The output is a random distribution of spheres
with centers Yi and radii ri, where subscript ‘‘i’’ represents
the particle index.

We use the data of McGeary [25], who packed bimodal
steel shot in a cylindrical container, to validate the pack-
ing code. Fig. 1 shows comparisons between the experi-
mental data and the numerical data for two bimodal
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Fig. 1. Volume fraction for a coarse to fine ratio of 3.44 (top) and 4.77
(bottom) bimodal mix; numerical (dash; box) and experimental (solid;
circle). The fine particles have a single diameter of 360 lm.
mixes. In each case the fine particles have a single diam-
eter of 360 lm, and the ratio of coarse to fine particles
is 3.44 (top panel) and 4.77 (bottom panel). In each panel
the percent of fine particle is varied from zero (all coarse;
monomodal) to 100 (all fine; monomodal). Note the excel-
lent agreement between experimental data and numerical
results. Also note that, for the 3.44 ratio case, we were
able to generate slightly higher volume fractions than that
obtained experimentally in the range of 10–30% fine
mode. The slight over prediction in packing fraction is
due to the difficulty in packing bimodal steel and compar-
ison with experimental data is only informative. We do
not have detailed information about experiments (number
of tests, error bars, etc.)

Packs generated in this fashion can be designed to cap-
ture the volume fractions of various sized particles in
experimental or industrial packs. Fig. 2 shows an example
of a periodic pack generated with 10,000 particles per cube,
colored according to particle diameter. The binder fills the
space between particles. This pack mimics a propellant
built and burnt by Miller [26].

From packs as described above, a periodic unit cell of
much smaller size can be derived. As shown in [27], the
periodic unit cell can possesses the same material statistics
as the original characteristic pack. Hence, the computer
grown pack obtained by particle packing is used as a digital
representation of a microcontinuum.

2.2. Pre-processing procedure

Although the output from the packing algorithm
described above is geometrically very simple, it is unsuit-
able to be used directly in a numerical framework as con-
tacting particles would lead to singularities. Moreover, as
indicated earlier, the proximity of adjacent, closely
packed particles poses some important challenges in the
Fig. 2. A typical randomly generated propellant pack with 10,000 spheres,
colored according to particle diameter.
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finite element discretization of the periodic unit cell,
because very small elements need to be used in some
regions of the cell. A uniform finite element discretization
would result in a prohibitively large number of degrees of
freedom. Therefore, a more sophisticated approach needs
to be adopted to mesh a unit cell. In the present work,
the geometry is characterized by rational Bezier curves
and/or surfaces, and the general meshing tool T3d

developed by Rypl [18,19] is employed to discretize the
microstructure as described below. This meshing frame-
work can automatically provide non-uniform 2D–3D
meshes with refinement zones in regions of interest, such
as particles in close proximity, where the stress concentra-
tion will be pronounced and a fine mesh is required. It
also allows for the generation of periodic meshes needed
to enforce the periodicity of the microscopic solutions
obtained as part of the mathematical theory of
homogenization.

A pre-processing algorithm is developed to create the
geometric model from the Rocpack output: shrink particles
in contact with other particles and/or the reference box and
compute the refinement parameters. The separation dis-
tance between particles i and j is computed simply as

xij ¼ kY i � Y jk � ðri þ rjÞ: ð1Þ

Whenever xij < a, the radii of the corresponding particles i

and j are modified according to

rnew
i ¼ ri � ða� xijÞ

ri

ri þ rj
;

rnew
j ¼ rj � ða� xijÞ

rj

ri þ rj
:

ð2Þ

Here, a represents a user-defined minimum separation be-
tween the surfaces of adjacent particles.

The volume change associated with particle shrinking
is added to the blend, which consists of a binder and
small particles not accounted for in the packing proce-
dure. Then, the spatially-dependent refinement factor
gij 2 (0,1), which modifies the user-prescribed element size
h, is given by

gij ¼
0:1þ 0:9

b�a ðxij � aÞ if a 6 xij 6 b;

1:0 if xij P b;

(
ð3Þ

where b is the maximum distance influenced by refinement
(second user-defined parameter). Thus, the geometric
model and the resulting mesh depend on two parameters
a and b, and the default mesh size h, respectively. All
parameters a, b, h must be suitably chosen; therefore, the
pre-processing and meshing procedures require some trial
and error to determine the minimum and maximum parti-
cle radius, mesh density, etc.

2.3. Meshing tool – periodic mesh

One possible choice for prescribing the periodic
boundary conditions required in the mathematical theory
of homogenization is to assign the same deformation
identification numbers to the corresponding degrees of
freedom related to nodes on opposite sides of the unit
cell. Thus, the periodic constraints are imposed directly
on the discrete unknowns in the finite element solution
procedure. We have thus modified T3d to discretize pairs
of model surfaces on opposite sides of the PUC by topo-
logically and geometrically identical meshes. However,
this can only be successfully accomplished under certain
conditions. First, the opposite surfaces must be geometri-
cally identical. Second, they must be topologically identi-
cal, i.e., the ordering of curves bounding the surfaces and
their orientation with respect to the surface normal must
be exactly the same.4 Both conditions are directly satis-
fied by the adopted pre-processing procedure.

The discretization engine T3d is based on the advanc-
ing front technique and can provide high-quality unstruc-
tured surface and solid meshes. Assuming that the
opposite surfaces are topologically and geometrically
identical, one may get the impression that exactly the
same meshes must be produced if the advancing front
on both surfaces is initialized identically. But this is true
only if the same mesh density control is used and if pre-
cise arithmetics without round-off error is considered.
However, neither of these two conditions are usually sat-
isfied. Therefore, a different approach based on mirroring

surface meshes on opposite sides of the PUC has been
adopted. This approach requires that there is a parametric
space associated with each of the mirrored surfaces (mir-
ror master surface on one side and mirror slave surface on
the opposite side of the PUC) and that the mapping
between the parametric and real spaces is identical for
both of them. This is again achieved by the pre-processing
procedure that sets up the pairs of opposite mirrored
surfaces.

The mirror master surface is discretized in the stan-
dard way using the advancing front technique [28]. On
the mirror slave surface, nodes with the same parametric
coordinates as their counterparts on the mirror master
surface are created (Fig. 3). Their real coordinates are
given by the mapping applied to the geometry of the
mirror slave surface. Each of the nodes on the mirror
master surface temporarily stores a pointer to its coun-
terpart on the mirror slave surface. Similar pointers are
also established on curves bounding the mirror master
surface. The final mesh on the mirror slave surface is
then generated by traversing the elements on the mirror
master surface and creating for each of them a new ele-
ment on the mirror slave surface using the nodes being
stored as pointers at the nodes of the original element
on the mirror master surface (Fig. 3). After all elements
on a particular mirror slave surface are formed, the
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re
al

 s
pa

ce
pa

ra
m

et
ri

c 
sp

ac
e

mirror master mirror slave

Fig. 3. Mirroring of surface mesh. The arrows visualize the flow of
information to create nodes (empty arrows) and to form elements (full
arrows) on the mirror slave surface.
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pointers to slave nodes on the mirror master surface and
its boundary curves are discarded. In this way, topolog-
ically identical meshes of the same geometry are pro-
duced for all pairs of mirrored surfaces. Note that the
discretization of boundary curves of mirrored surfaces,
which actually precedes the surface discretization, is per-
formed in a similar manner. In this case, however, the
mirroring of appropriate pairs of curves (derived from
the mirroring of opposite surfaces) is performed auto-
matically by T3d.

A similar meshing strategy for PUCs was employed by
Wentorf et al. [29]. In our framework, however, discreti-
zation is performed directly in the real space and the
parametric space is used only for the mirroring of nodes.
This concept avoids the demanding generation of aniso-
Fig. 5. Bezier curve representation (left) and refinem
tropic meshes in the parametric space, where distortion
and stretching induced by the mapping may generally
occur.

As mentioned in Section 1, the proposed numerical
framework is based on a finite element scheme in which
conventional (volumetric) elements are used to describe
the response of the particles and the binder, while interfa-
cial (cohesive) elements are introduced along the particle/
matrix interface to model progressive interfacial failure
during the debonding (or dewetting) process. Therefore,
construction of cohesive elements is also necessary. This
is enabled in the T3d framework by creating two identical
curves in 2D and/or surfaces in 3D along which the cohe-
sive elements are inserted. The same mirroring procedure
as for the periodic sides of the unit cell is used to create
two overlapping identical curve/surface meshes.
ent octree (right) of 2D PUC shown in Fig. 4.



Fig. 6. High-quality mixed periodic mesh, composed of quadrilaterals and triangles.

Table 1
Finite element discretization for the 2D unit cell

nn neQ neT nce

Periodic mesh 7896 6146 184 1574

Fig. 7. An idealized bimodal propellant. 3D cell geometry and hig
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2.4. Examples – packing/pre-processing/meshing

We next demonstrate the packing/pre-processing/mesh-
ing procedures on an idealized propellant, with bimodal
h-quality triangular (surface) and tetrahedral (volume) meshes.
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particle distribution in a 2D periodic unit cell. Note that
both packing and meshing can be executed without restric-
tions in 3D with features such as particle shrinking and
non-uniform mesh size control fully operational. More-
over, the periodic boundary meshes for sides with cut par-
ticles would be identical to the 2D meshes presented here,
since the only allowable geometrical entity after sphere cut-
ting is a circle. A sphere in contact with the boundary box
would be scaled down according to Eq. (2).

Fig. 4 shows an idealized 2D pack obtained from the
packing algorithm (Rocpack). The pack is composed of a
bimodal distribution of particle sizes and involves some con-
tacting particles. After executing the pre-processing
algorithm described above, we obtain a geometrical descrip-
tion based on rational Bezier curves/surfaces, where parti-
cles in contact with other particles and/or the reference
box are modified according to Eq. (2) and a refinement
parameter is set by Eq. (3). The 2D unit cell of dimensions
693 · 693 lm contains a bimodal pack, with diameters
100 lm (30% by volume of total particles) and 60 lm (70%
by volume of total particles). The total particle volume frac-
tion is 0.433. The original volume fraction of particles before
particle shrinking was 0.451. The particle contraction has
therefore led to a 3.9% change in the particle volume frac-
tion. The error in converting the rational Bezier curves/sur-
faces to the finite element mesh in terms of volume fraction
of particles is neglected due to high mesh refinement.
Fig. 5 shows the resulting geometry and the refinement
octree that governs the element size in the meshing proce-
dure. The non-uniform mesh generated is displayed in
Fig. 6. The characteristics of the 2D periodic mesh are listed
in Table 1, where nn is the number of finite element nodes,
neQ represents the number of volumetric quadrilateral ele-
ments, neT denotes the number of volumetric triangular ele-
ments, and nce is the number of cohesive elements.

An idealized 3D pack is obtained in a similar manner, as
shown in Fig. 7. The unit cell consists of 100 reinforcing
particles with a bimodal particle size distribution and the
mesh contains 1,072,210 elements and 190,311 nodes.

3. Multiscale formulation of the damage response

Here, we describe the mathematical theory of homogeni-
zation and some aspects of its finite element implementa-
tion as used in this work to relate the complex damage
processes taking place at the microscale to the homoge-
nized macroscopic response of the reinforced elastomer.
The formulation includes the cohesive modeling of parti-
cle–matrix debonding, but is limited to the small strain
regime. The formulation presented hereafter is fully 3D,
although the illustrative examples described in Section 4
are solved in a 2D (plane strain) setting.

3.1. Governing equations

Let us consider a periodic (Y-periodic) composite mate-
rial with the microstructural period defined by the PUC
created in Section 2 and denoted by H, as illustrated in
Fig. 8. Next, consider X 2 R3 to be the position of a
particle in the reference macroscopic configuration
X � R3 in the Cartesian co-ordinate system and Y = X/1
to be the microscopic position vector in H � R3 in the
Cartesian co-ordinate system. Hence, 1 denotes a very
small positive number that, roughly speaking, corresponds
to the size of the microstructure. X is commonly referred to
as the slow variable while Y is called the fast variable. The
heterogeneity is enclosed by a cohesive surface S, and we
orient the cohesive surface by a unit normal N. For any
macroscopically periodic function / we have /ðX ;YÞ ¼
/ðX ;Y þ k bY Þ in which vector bY is the basic period of
the microstructure and k is a 3 · 3 diagonal matrix with
integer components. Adopting the classical nomenclature,
any locally Y-periodic function / can be represented as

/1ðXÞ � /ðX ;YðXÞÞ; ð4Þ
where the superscript ‘‘1’’ denotes a Y-periodic function /.

The corresponding boundary value problem at the micro-
scale, including the cohesive description of the interface, is
determined by the following set of governing equations:

divðr1Þ þ f 1 ¼ 0 in X1;

r1 ¼ L�1 in X1;

�1 ¼ rsu1 in X1;

r1 �N ¼ t on Ct;

u1 ¼ �u on Cu;

br1 �Ne � bt1e ¼ 0 on S1;

ð5Þ

where div(•) is the divergence operator, $s represents the
symmetric gradient operator, and r1 and �1 are stress and
strain tensors, respectively. L(X,Y) denotes the spatially
dependent symmetric material stiffness tensor, f(X,Y) de-
notes the body forces and t(X) represents the prescribed
macroscopic tractions on the boundary Ct. We also con-
sider Dirichlet boundary conditions �u on Cu, such that
C = Ct [ Cu. Moreover, the symbol b•e denotes the jump
of a quantity • across the cohesive surface. The cohesive
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law used in this work to relate the cohesive traction acting
along S1 to the associated displacement jump vector bu1e is
described later in this section.

3.2. Mathematical theory of homogenization

We start by approximating the displacement field
u1(X) = u(X,Y) in terms of the two-scale asymptotic expan-
sion on X · H as

uðX ;YÞ � 0uðX ;YÞ þ 11uðX ;YÞ þ � � � ; ð6Þ
where left superscripts ‘‘0,1, . . .’’ represent the asymptotic
order. Employing the indirect macroscopic spatial deriva-
tives, rs

X ¼ rs
X þ 1

1r
s
Y , the strain tensor reads

�ðX ;YÞ � 1

1
rs

Y
0uþ 10 rs

X
0uþrs

Y
1u

� �
þ � � � ; ð7Þ

yielding strain tensors of various orders

ð�1Þ� ¼ rs
Y

0u; 0� ¼ rs
X

0uþrs
Y

1u
� �

; ð8Þ

where rs
X and rs

Y , respectively, denote the symmetric part
of the gradient with respect to X and Y coordinates. In this
small strain linearly elastic setting, the stress and strain ten-
sors for different orders of 1 are related by the constitutive
equations

ð�1Þr ¼ Lð�1Þ�; 0r ¼ L0�; ð9Þ
and the resulting asymptotic expansion of the stress yields

rðX ;YÞ � 1

1
ð�1Þrþ 0rþ � � � ð10Þ

Applying standard variational methods, the principle of
virtual work readsZ

X1
r1 :rs dudXþ

Z
S1

t1 � bduedS�
Z

X1
f 1 � dudX�

Z
Ct

t � dudA¼ 0

ð11Þ
for all admissible variations du satisfying

du 2 ½H 1ðX1Þ�N; du ¼ 0 on Cu; ð12Þ
with N being the space dimension and H1 representing the
Sobolev space.

Introducing the asymptotic expansions (6) and (10) into
(11), taking the limit when 1! 0+ and making use of the
indirect spatial derivatives, the principle of virtual work
(11) holds in terms of the same powers of 1 as

Oð1�2Þ :
1

jHj

Z
X

Z
H

ð�1Þr : rs
Y dudHdX ¼ 0;

Oð1�1Þ :
1

jHj

Z
X

Z
H

ð�1Þr : rs
X duþ 0r : rs

Y du
� �

dHdX

þ 1

jHj

Z
X

Z
S

t � bduedSdX ¼ 0;

Oð10Þ :
1

jHj

Z
X

Z
H

0r : rs
X dudHdX� 1

jHj

Z
X

Z
H

f � dudHdX

�
Z

Ct

t � dudA ¼ 0 ð13Þ
for "du 2 VX·H, where

V X�H ¼ fduðX ;YÞjduðX ;YÞ 2 H 1ðXÞ � L2ðX; V 	HÞ;
duð�;YÞ is Y -periodic; dujCu

¼ 0g;
V X ¼ fduðXÞjduðXÞ 2 H 1ðXÞ; dujCu

¼ 0g;
V H ¼ fduðYÞjduðYÞ 2 H 1ðHÞ; duðYÞ is Y -periodicg;
V 	H ¼ V H=R:

ð14Þ
Here, the V 	H is a quotient space, the uniqueness of 1u
means that 1u(X,Y) is uniquely defined up to the addition
of an arbitrary function of X. For more information on
the space selection please see [30,31]. The following integra-
tion rules have been applied to integrate any Y-periodic

function • [30,23]:

lim
1!0þ

Z
X1
	ðX=1ÞdX! 1

jHj

Z
X

Z
H
	ðYÞdHdX;

lim
1!0þ

1
Z

S1
	ðX=1ÞdS ! 1

jHj

Z
X

Z
S
	ðYÞdS dX:

ð15Þ

Let us first consider the Oð1�2Þ Eq. (131) and choose du =
du(Y), i.e., du 2 VH. Then, integrating by parts, applying
the divergence theorem and noting that the terms on the
opposite faces of the unit cell cancel due to the periodicity
condition, one has

rs
Y � ð�1Þr ¼ 0 and 0u ¼ 0uðXÞ ) ð�1Þ� ¼ ð�1Þr ¼ 0:

ð16Þ
Using the results from Eq. (16), the Oð1�1Þ equation with
du = d1u 2 VH yieldsZ

X

1

jHj

Z
H

0r : rs
Y d1u dHþ 1

jHj

Z
S

t � bd1uedS
� �

dX ¼ 0;

ð17Þ
where

1u is Y -periodic on CH and d1u 2 H 1ðHÞ;
d1u is Y -periodic on CH: ð18Þ

In principle, Eq. (17) represents the weak form of the equi-
librium on the microscale H for purely kinematic boundary
conditions. Moreover, to satisfy the equilibrium with the
assumed neighboring PUCs, the stress on the boundary
CH will also be periodic.

Finally, the Oð10Þ equation with du = d0u 2 VX denotes
the weak form of the equilibrium equation on the
macroscaleZ

X
r : rd0u dX�

Z
X

f � d0u dX�
Z

Ct

t � d0udA ¼ 0; ð19Þ

where the macroscopic stress tensor and body force vector
are given by

r ¼ 1

jHj

Z
H

0rdH; f ¼ 1

jHj

Z
H

f dH; ð20Þ

with
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0u ¼ �u on Cu and d0u 2 H 1ðXÞ; d0u ¼ 0 on Cu: ð21Þ
Note that to apply the boundary conditions properly,
since the periodicity breaks down close to oX1, one would
need to introduce special boundary layer terms as sug-
gested in [31] and solve additional PDEs on a half space
with exponentially decaying coefficients. Here, we assume
that the boundary layer does not influence the solution
and that prescribed displacements are a macroscopic
quantity only.

With the aid of Eqs. (8), (9) and (20), the first term in
Eq. (19) can be written asZ

X
r : rd0udX

¼
Z

X

1

jHj

Z
H

L rS
X

0u|fflffl{zfflffl}
�

þrS
Y

1u|ffl{zffl}
~�

0B@
1CAdH

264
375 : rd0u

8><>:
9>=>;dX;

ð22Þ
where �ðXÞ ¼ rS

X
0u denotes the macroscopic strain ten-

sor (recall that 0u = 0u(X)), and ~�ðX ;YÞ ¼ rS
Y

1u repre-
sents the microscopic fluctuation strain. Using
separation of variables and introducing the fourth-order
mechanical damage tensor, A, the asymptotic expansion
of the strain (7) can be written in terms of the macro-
scopic strain � as

� ¼ ½I þG�� and ~�ðX ;YÞ ¼ GðYÞ�ðXÞ; ð23Þ
where A ¼ ½I þG� and I denotes the fourth-order identity
tensor, while GðYÞ is the Y-periodic damage polarization
function. Note that the mechanical damage tensor A con-
tains both the elastic concentration function, which arises
due to the material heterogeneity, and the damage transfor-
mation function, which originates due to the gradual deb-
onding along the particle matrix interface and is related
to the displacement jump introduced in Section 3.3. Sepa-
ration of these effects is non-trivial and would require the
introduction of a certain eigenstrain field. Therefore, we
have combined both effects into one tensor, which is hand-
ily numerically computed.

Substituting (23) back into (22), we arrive atZ
X

r : rd0udX ¼
Z

X
½L�� : rd0udX; ð24Þ

where the instantaneous macroscopic stiffness tensor is gi-
ven by

L � 1

jHj

Z
H

LA dH; ð25Þ

and the macroscopic stress–strain law yields

r ¼L�: ð26Þ
Note that the instantaneous macroscopic stiffness tensor
is influenced by inhomogeneous material variations and
the cohesive interface. Also, it can be proven that L
possesses the same minor and major symmetries as L
[32].
3.3. Irreversible cohesive law

Cohesive models are popular in computational mechan-
ics and have been extensively used in many different con-
texts [33–35]. The cohesive law adopted in this work to
model the progressive failure of the particle–binder inter-
face is the simple bilinear law used by Geubelle and Baylor
[36], in which the normal and tangential components of the
cohesive tractions, tn and tt, are related to the normal and
tangential opening displacements, vn and vt, through

tn ¼
rc

cin

c
1�c

vn

vnc
; vn P 0;

sc

1�cin

vn

vnc
; vn < 0;

(
ð27Þ

tt ¼
sc

cin

c
1� c

vt

vtc

; ð28Þ

where

vn ¼ b1ue �N ; vt ¼ ð1�N 
NÞb1ue: ð29Þ
Recall that b1ue denotes the jump of the fluctuating dis-
placement across the cohesive surface and N represents
the normal to the cohesive surface. The traction vector t
introduced in Eq. (5) is, as expected, constructed as
t = RTtl, where tl = (tt1, tt2, tn)T and R defines the orthogo-
nal transformation from the global reference frame to the
element specific (local) coordinate system. Standard iso-
parametric element procedure yields the required rotation
matrix R. The parameters rc and sc denote the tensile
and shear interface strengths, respectively, while vnc

and
vtc

represent the normal and tangential critical opening dis-
placements. The normal and tangential directions are cou-
pled through the damage parameter, c, defined by

c ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vn

vnc


 �2

þ jvtj
vtc


 �2
s* +

8vn P 0; ð30Þ

with h•i denoting McAuley brackets. As apparent in Eqs.
(27) and (28), a decreasing value of c leads to an increas-
ingly compliant cohesive interface. c is initially set to a va-
lue cin, taken to be 0.98. Once c < cin, the traction carried
by the interface begins to reduce and the interface is consid-
ered to be locally damaged. The interface continues to de-
grade with decreasing c and increasing separation of the
interface until c = 0. At this point, the local interface is
considered to be completely failed. In the case of compres-
sion (vn < 0), no damage is accumulated. The cohesive
model described above is irreversible; c is only allowed to
decrease monotonically so that, even if the interface is un-
loaded, it retains the current state of damage and unload-
ing is towards the origin. The bilinear law is represented
graphically in Fig. 9.

3.4. Numerical implementation

Euler–Lagrange equations on the microscale Oð1�1Þ
(132) and on the macroscale, Oð10Þ (133), are solved with
a conventional finite element scheme. A B procedure is



τ

n

nc
n

tt t

ccσ τ

c

χχ χ
tc

χt

Fig. 9. Bilinear cohesive law for normal separation (left) and tangential
failure (right). The dashed line indicates an unloading path prior to
complete failure. The normal and shear failures are coupled through the
damage parameter c, defined in Eq. (30).

Table 2
Material properties

Constituent E (MPa) m

Particles 32,450 0.1433
Binder 7.39 0.4991

Table 3
Cohesive interface properties

Direction Interface strength (MPa) Critical opening
displacement (lm)

Normal rc = 0.05 vnc
¼ 0:75

Tangential sc = 0.05 vtc
¼ 0:75
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used to eliminate pressure oscillations and create a stable
2D finite element framework for nearly incompressible
materials. Cohesive elements are inserted at the particle–
matrix interfaces and a three-point integration rule is used,
with the local damage parameter c stored as a state variable
at each integration point. The choice of cin < 1 introduces a
small amount of compliance into the undamaged cohesive
interface, eliminating the numerical instabilities associated
with rigid elements.

The numerical implementation uses a semi-implicit solu-
tion procedure with adaptive load stepping to ensure effi-
ciency of computational effort. When no damage is
accumulated, the model is linear, allowing for larger load
steps. As damage increases, however, smaller load steps
are required in order to capture accurately the physics of
the failure process, suggesting the introduction of an adap-
tive load-stepping scheme. The maximum increment of
damage accumulated at any integration point in a load step
is used as an error indicator to determine whether the load-
step size needs to be reduced or increased. If the accumu-
lated damage c is greater than a certain threshold, cmax,
the load-step size is reduced and the current load step is
restarted. This is similar to a predictor–corrector method.
If the damage accumulated is less than cmin, the load-step
size for future load steps is increased. Typically, the value
used for cmin is half that for cmax, which is in the range
of 0.01–0.001.

4. Examples

To illustrate the proposed multiscale numerical frame-
work, we analyze the damage evolution in the model 2D
particulate composite system shown earlier. To analyze
more representative unit cells, high-performance parallel
computing is necessary due to the size and complexity of
the finite element model. Finite element meshes are created
as described in Section 2. All constituents are assumed to
be isotropic linearly elastic solids. The elastic material char-
acteristics (stiffness E and Poisson’s ratio m) of the particles
and of the homogenized blend (consisting of the binder and
small particles) are listed in Table 2. Note the very high
stiffness mismatch between the particle and the blend and
the near incompressibility of the blend, as quantified by
the Poisson’s ratio approaching 1/2. The interface proper-
ties, given in Table 3, have been chosen to ensure that fail-
ure occurs within the limit of small strains. The stresses in
the surrounding material are influenced by the strength of
the cohesive interface. Therefore, low macroscopic stresses
are observed in the results presented below.

Instead of solving the macroscopic boundary value
problem explicitly, Oð10Þ Eq. (132), we impose hereafter a
predefined deformation path of a macroscale material
point as in the microhistory recovery procedure proposed
by Fish et al. [37]. Three loading cases are considered here,
characterized by the following macroscopic strains, �:

�A ¼
0:01 0:00

0:00 �0:01

� �
; �B ¼

0:01000 0:00000

0:00000 �0:00982

� �
;

�C ¼
0:00 0:02

0:02 0:00

� �
:

ð31Þ
The third row and column of the macroscopic strain ten-
sors are not shown as these are zero under plane strain con-
ditions. Cases A and C are volume preserving macroscopic
strains and are equivalent in terms of principal stresses.
Case B is a quasi-uniaxial stress, which is achieved by
imposing a strain which is a slight deviation from load case
A in order to study the dilatational stress component (pres-
sure p = 1/3tr(r)) resulting from the attempt to force a
nearly incompressible cell to deform in a non-volume pre-
serving manner.
4.1. Load cases A and B

Fig. 10 shows the macroscopic stress–strain curve (left
axis) and evolution of interfacial damage (right axis) for
the volume preserving tension case (load case A). The solid
line denotes macroscopic stress in the direction of applied
tension, r11. The dash-dotted curve corresponds to the evo-
lution of cohesive interface elements which have begun to
experience damage, defined as elements for which c < cin.
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The length of damaged cohesive interface is divided by the
total interface length to obtain the damaged fraction. This
represents the portion of the interface which is in the cohe-
sive zone (softening part of the traction–separation curve).
The dashed and dotted curves indicate the fraction of fully
failed cohesive elements on the boundaries of large and
small particles, respectively, where fully failed elements
are those for which c = 0.

It is clear that the initial deviation from linearity of the
material response is a result of the onset of damage of the
cohesive elements. This early damage is fairly evenly dis-
tributed throughout the microstructure, with no significant
difference between interfaces associated with large and
small particles. The locations at which damage nucleates
depend on local stress concentrations, but not on the size
of the particles. For this reason, only a single curve is plot-
ted, representing the damage fraction over all cohesive
interfaces. Damage of the cohesive interface saturates at
the point at which complete failure begins to be observed.

In contrast to damage nucleation, the failure of the
interfaces shows a marked size effect. As often observed
experimentally, most of the failure occurs on large particle
interfaces, and very little on interfaces associated with
small particles. The failure process is discrete, with only a
few particles failing at a time. Once failure initiates on a
particle, the increased compliance of the failing interface
causes load redistribution such that failure does not, in
many cases, initiate elsewhere until it is complete for that
particle.

The imposed strain for load case B, �B, was chosen by
trial and error such that r22 � 0 (uniaxial tension loading
case). The damage and failure responses, shown in
Fig. 11, are very similar to those for load case A. However,
the macroscopic stress–strain response is markedly differ-
ent. Due to the quasi-incompressibility of the binder and
the quasi-rigidity of the embedded particles, there is a sig-
nificant change in the state of stress for load case B, where
the imposed strain is not volume preserving, resulting in a
rapid increase in the dilatational component of the stress
(pressure). The large difference in macroscopic response
between load cases A and B is clearly seen in Fig. 12.
For both cases, although 40% of the interface has begun
to degrade, the macroscopic stress continues to grow
monotonically. One might assume that stress softening
would dominate the behavior once such a large percentage
of the interface has degraded. This weak non-linearity is
associated in part with the constrained loading cases con-
sidered. The compression of the nearly incompressible
and compliant blend against the hard particles also serves
to prevent the propagation of the debonding cracks.

If we exclude dilatational stress from our analysis by
considering a deviatoric measure of the stress field, such
as the von Mises stress, we find that load cases A and B
are nearly identical. The von Mises stress distribution for
load case A is shown on the deformed mesh in Fig. 13.
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Fig. 13. Load case A – von Mises stress distribution plotted on the
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The deformation is magnified 10 times, so that the opening
of cohesive interfaces is easily visible. Void opening is
aligned with applied load, i.e., on the left and right edges
of the particles (box 1), however, in box 2, we note that a
stress concentration due to particle proximity causes the
voids to open on a slightly different face. Stress concentra-
tions at the crack tips can be seen, in box 3 particularly.
Note the heterogeneous stress distribution in the matrix
material and the periodicity of the boundaries.

As expected from the macroscopic response, failure
occurs predominantly on large particles. Small particles fail
primarily when they are in an area of local stress concentra-
tion, e.g., close to another particle. Examples of such fail-
ures can be found in Fig. 13, with particle pairs failing in
tension (box 1) or in shear (box 4).

If we compare results from the same load case applied
to different unit cells (Fig. 14), we see a minor deviation in
the macroscopic stress. Since the emphasis of this paper is
not to investigate the size of the representative volume
element, we make no claim on representativeness of this
comparison. One would need to compute the bounds on
the solution with respect to the cell size to determine
(a)
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Fig. 14. Load case A – Macroscopic stress–strain curves obtained for two
different periodic unit cells.
the representativeness of these results. Unit cells (a) and
(b) are identical in terms of geometric statistics, but differ
in the arrangement of particles within the domain. In par-
ticular, cell (b) is obtained by rotating cell (a) by 90�, but
the finite element meshes are identical for both cells to
eliminate the numerical errors in the comparison. The ini-
tial (undamaged) stiffness is in agreement, but after onset
of damage, cell (a) is seen to be more compliant than cell
(b). The reason for this difference might be explained by
comparing the evolution of damage for the two cases
(Fig. 15). The curves shown on the right two figures
denote the percentile of degraded interface for a particular
value of c defined by (30). No curve is plotted for
c = 0.98, as the fraction of cohesive elements with
c 6 0.98 is identically 1 at all times. The c = 0.95 curve
represents the fraction of the cohesive interface which
has experienced any damage, equivalent to the dash-dot-
ted line in Fig. 10. The c = 0.0 curve represents the frac-
tion of the cohesive interface which has completely failed,
equivalent to the average of the dashed and dotted curves
in Fig. 10. The spacing between contours indicates how
rapidly damage progresses. It is clear that damaged ele-
ments proceed to failure more suddenly in cell (a) than
in cell (b). A higher fraction of the cohesive interface
experiences the onset of damage in cell (b) than in cell
(a), but a lower fraction of the cohesive interface experi-
ences complete failure. This lower fraction of failed inter-
face suggest increased stiffness of the macroscopic stress–
strain response for cell (b). Considering the deformed
shapes, we can see that more of the damaged interfaces
in cell (a) have opened up to form voids than those in cell
(b). Since the microscopic damage processes for both cells
are markedly different, but macroscopic stress–strain
curves disagree only slightly, one might assume that the
cells are representative. Although, a more detailed investi-
gation is needed to assess the representativeness of these
cells.

4.2. Load case C

The macroscopic response for load case C, a volume-
preserving imposed shear state of macroscopic strain, is
shown in Fig. 16, with the corresponding von Mises stress
distribution presented in Fig. 17. Again, the periodicity of
the computed fields is evident. The fluctuating displace-
ments can also be distinguished by observing the heteroge-
neity of the boundary deformations. The von Mises stress
distribution is heterogeneous, showing the effects of multi-
ple stress concentrations. Void opening is aligned with the
principal tensile stress direction of 45�.

Particle pairs separate in opening (box 1) or in shearing
(boxes 2 and 3). In box 1, interfacial failure for the particle
pair initiates in alignment with the highest stress concentra-
tion. Failure is often associated with the rotation of the
particle, resisted by the surrounding matrix. This tendency
to rotation is apparent for boundary particles 4 and 5. For
this reason, voids do not open as much as for load case A.
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It was noted that volume preserving tension and shear
are identical in terms of principal stresses. This is clear if
we compare the von Mises stress fields for load cases A
and C. Rotating Fig. 17 so that the principal stresses are
aligned with those in Fig. 13, we see bands of increased
stress running along the major tension axis, and maximum
opening on the transverse edges of the particles.

The similarity between load cases A and C is further evi-
dent through comparison between Figs. 16 and 10. The
damage fraction rises early, and then levels off to form a
plateau, a significant feature in both curves, indicating that
damage propagation stops due to the transverse compres-
sive effect. At this point, interfaces fail completely, as evi-
dent in the failure fraction curves. This late opening of
voids, however, may be due to the choice of cohesive inter-
face properties, and in particular, the choice of high critical
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opening displacements. In order to simulate a failure
process more representative of actual solid propellant
behavior, we would need to use a non-linear kinematic for-
mulation. The monotonically increasing stress–strain curve
is, once again, associated with the near incompressibility of
the blend.

5. Conclusions

A fully automated mathematical/numerical framework
for multiscale modeling of heterogeneous propellants from
particle packing to failure has been presented. The micro-
scale description is based on a periodic unit cell consisting
of particles dispersed in a blend and incorporates the local
non-homogeneous stress and deformation fields present in
the unit cell during the failure of the particle/matrix inter-
faces. A packing algorithm, treating the embedded particles
as spheres or discs, is used to generate packs which match
the size distribution and volume fraction of actual propel-
lants. Moreover, a sophisticated pre-processing tool has
been developed to generate a geometric model based on
Bezier curves and/or surfaces. This geometric model is then
used in a general meshing tool, T3d, to create high-quality
periodic meshes. Since the identical meshing of the periodic
entities using the advancing front technique is not usually
viable, a different approach based on mirroring has been
adopted. Next, the mathematical theory of homogenization
based on the asymptotic expansion of the displacement,
strain and stress fields has been derived and used in model-
ing debonding (or dewetting) damage evolution in rein-
forced elastomers.

Various examples involving 2D unit cells and macro-
scopic deformation histories of an idealized solid propel-
lant have been considered to study the link between the
failure process taking place at the particle size scale and
its effect on the macroscopic stress–strain curves and the
evolution of void volume. The emphasis of this work
has been to develop a damage analysis tool at multiple
scales from particle packing to failure. Further research
will involve the inclusion of large deformations, a more
complex, rate-dependent description of the binder and a
matrix tearing model needed to capture the initiation
and propagation of cracks in the solid propellant during
void coalescence. Moreover, the size of the representative
volume element in the presence of damage needs to be
investigated.
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