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a b s t r a c t

Multi-scale simulations at extreme scales in terms of both physical length scales and
computational resources are presented. In this letter, we introduce a hierarchically
parallel computational homogenization solver that employs hundreds of thousands of
computing cores and resolvesO(105) inmaterial length scales (fromO(cm) toO(100nm)).
Simulations of this kind are important in understanding the multi-scale essence of
many natural and synthetically made materials. Thus, we present a simulation consisting
of 53.8 Billion finite elements with 28.1 Billion nonlinear equations that is solved on
393,216 computing cores (786,432 threads). The excellent parallel performance of the
computational homogenization solver is demonstrated by a strong scaling test from 4,096
to 262,144 cores. A fully coupled multi-scale damage simulation shows a complex crack
profile at the micro-scale and the macroscopic crack tunneling phenomenon. Such large
and predictive simulations are an important step towards Virtual Materials Testing and can
aid in development of new material formulations with extreme properties. Furthermore,
the high computational efficiency of our computational homogenization solver holds great
promise for utilizing the next generation of exascale parallel computing platforms that are
expected to accelerate computations through orders of magnitude increase in parallelism
rather than speed of each processor.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The societal and economic pressure for improved per-
formance of engineered systems has placed great empha-
sis on development of materials with extreme proper-
ties and their application in extreme environments. For
example, development of advanced high strength multi-
phase steels [1] for improved automotive crash worthi-
ness, structured materials [2] and meta-materials [3],
fiber/particle reinforced polymeric composites [4,5] with
wide application from aerospace to consumer sports
equipment, and multi-functional systems such as self-
healing [6] or electrically conductive adhesives [7] has be-
come reality. In many cases, these advanced materials are
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multi-scale in nature, and accurately predicting their re-
sponse is essential for improved design and safety assess-
ment.

Of particular interest to this letter are predictive multi-
scale simulations of these complex heterogeneous mate-
rials in typical mechanical systems. In such engineering
analysis and optimal design, phenomenological constitu-
tive models of heterogeneous materials may prove insuf-
ficient. Thus, detailed simulations that includemicrostruc-
tural effects and relevant micro-scale physics are required.
Direct numerical modeling (DNM), which captures all of
the relevant physics and length scales in a single sim-
ulation, is an accurate method for predicting the in situ
multi-scale behavior of heterogeneous materials. How-
ever, even for small structures, these simulations can be-
come extremely large as the required numerical resolu-
tion leads to a large number of degrees of freedom (DOFs).
Such large simulations remain intractable, even for today’s
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Fig. 1. Schematic of the multi-scale kinematics for heterogeneous interfaces with a comparison of length-scales.
supercomputers [8]. Moreover, the parallel algorithmic
complexity of such computations mitigates the poten-
tial improvements gained on high-performance comput-
ing (HPC) systems [9–11]. On the other hand, computa-
tional homogenization (CH) [12–14] provides an alterna-
tive highly accurate modeling strategy with reduced com-
putational requirements. However, until recently [12], CH
has frequently been regarded as impractical or limited to
small theoretical examples.

In this letter, we present extreme scale simulations (in
terms of both physical scales and computing resources) us-
ing a hierarchically parallel CH solver [12] that enables the
efficient computation of large realistic engineering prob-
lems. In particular, we focus on failure of heterogeneous
interfaces such as adhesive layers. For the first time, fully-
coupled multi-scale simulations are used to predict im-
portant fracture properties, such as toughness and crack
speed, from the material behavior of the individual micro-
scale constituents in the 3D finite strain regime.

In addition, we show the solver’s ability to efficiently
compute the fully coupled nonlinear multi-scale response
of structures with resolution from O(cm) to O(100 nm),
containing 53.8 Billion finite elements and 28.1 Billion
nonlinear equations. Furthermore, we demonstrate ideal
computational strong scaling performance of the hierar-
chically parallel solver using up to 262,144 computing
cores. The ability to compute such large problems is an im-
portant step towards predictive simulations and the Vir-
tual Materials Testing paradigm. In addition, future exas-
cale HPC resources are expected to accelerate computa-
tions through orders of magnitude increase in parallelism
rather than increasing the speed of each processor [15–18].
Therefore, the high scalability of CH makes it a promising
approach to efficiently use future exascale HPC resources
for scientific investigation and discovery.

2. Computational homogenization for interfaces

Before we proceed to extreme scale computations, we
review the CH theory and its implementation [19,20,12]
for completeness of the presentation. The CH of heteroge-
neous interfaces is shown schematically in Fig. 1, where
two bodies (adherends) denoted as Ω± are separated by
a heterogeneous layer with thickness lc . The layer is col-
lapsed to an interface, Γ , and a representative unit cell
(RUC, Θ) is locally attached to each material point on the
interface. The RUC contains all of themicro-scale complex-
ity in terms of both structure and constitutive behavior.
Under applied load, the deformation of the macro-scale
adherends, Ω±, is described by the deformation gradient,
F = I + ∇⃗X⃗ u⃗, where u⃗ are the macro-scale displace-
ments. The deformation of a macroscopic point on the in-
terface, Γ , is described by the deformation gradient, FM =

I +
1
lc


u⃗


⊗ N⃗ , where N⃗ is the normal to the interface
(see Fig. 1) and


u⃗


= u⃗+
− u⃗− is the opening displace-

ment of the interface. The deformation within the micro-
structure is a function of both macro- and micro-variables,
with F = FM+∇⃗Y⃗ w⃗, where w⃗ are themicro-scale displace-
ment fluctuations.

The weak form of macro-scale equilibrium neglecting
inertia and body forces is given by

Ω±

SM :


F T

∇⃗X⃗δu⃗
sym

dΩ±
+


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In Eq. (1), SM is the second Piola–Kirchhoff stress given by
a known constitutive model for the adherends, while t⃗M is
the macro-scale traction vector across the interface that is
computationally derived from the RUC as described in the
sequel.

The Hill–Mandel condition for interfaces is given by
[19,12,20]
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which relates the unknown macro-scale traction–
separation potential,ψ , to the average known micro-scale
strain energy density,Wm. Taking variations of Eq. (2) with
respect to the macro-scale and micro-scale variables leads
to

lc
|Θ|


Θ

Sm :
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∇⃗Y⃗ δw⃗
sym

dΘ = 0, (3)
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FSm dΘ


· N⃗. (4)

Eq. (3) is theweak form ofmicro-scale equilibrium, and Eq.
(4) is the closure equation for themacro-scale traction vec-
tor across the interface employed in Eq. (1). In Eqs. (3)–(4),
Sm = 2 ∂Wm/∂C where C = F TF . Note that in this work,
wemakeuse of semi-periodicmicro-scale boundary condi-
tions (w⃗ = 0⃗ ∀Y⃗ ∈ Γ ± and w⃗+

= w⃗−
∀Y⃗ ∈ ∂Θ±) and our

RUCs are periodic in the Y⃗1,2-directions (see Fig. 1). Other
admissible boundary conditions are discussed in [20].
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Fig. 2. Schematic of the hierarchically parallel communication framework. The communication between scales is performed only by the ‘‘master’’
processors of each server and the macro-scale client processors. Note that communication between servers is restricted to the equivalent task id (e.g., S1
on server 1 can communicate with S1 on server 2, but not S2 on server 2).
We solve the nonlinear multi-scale equilibrium (Eqs.
(1) and (3)) via the implicit finite element method, which
requires the iterative solution to the linearized discrete
system of equations

KΩ
±

MM + KΓMM KMm
KmM Kmm

 
1u⃗
1w⃗


= −


R⃗M

R⃗m


by Newton’s method. For realistic engineering problems,
the multi-scale system of equations can be extremely
large. Therefore, we use a staggered approach described
in Algorithm 1. For more details on the staggered solution
procedure, please see [12].

Algorithm 1Multi-scale staggered solution method.
1. Hold u⃗ constant, compute w⃗ from Equation (3)
2. Compute t⃗M from Equation (4)
3. Assemble K = KΓMM − KMmK−1

mmKmM

4. Solve (KΩ
±

MM + K )∆u⃗ = −R⃗M
5. Iterate to convergence (R⃗M = R⃗m ≤ tolerance)

3. High-performance computational implementation

The CH formulation allows the response of each RUC to
be computed independently, which enables high computa-
tional efficiency. Inmany cases the computational domains
for both the macro-scale and micro-scale are large, and
thus a parallel solution strategy is required at each scale.
Therefore, we employ our in-house hierarchically paral-
lel CH solver that uses an efficient parallel finite element
code, PGFem3D [21–23,20], at each scale in a client–server
framework [12]. Verification of the CH solver for hyper-
elastic materials was presented in our prior work [12].

Fig. 2 displays a schematic of the client–server com-
munication structure. Themacro-scale equilibrium is com-
puted in parallel on the ‘‘client’’ processors, and the contri-
butions from the individual RUCs are computed in parallel
on the ‘‘servers’’. Furthermore, all communications are per-
formed using dynamic point-to-point non-blocking mes-
sages that are overlaid with computations at both scales.

Under complex macroscopic loading conditions, a
work imbalance among the micro-scale servers usually
develops due to some RUCs requiring more computational
effort than others. Furthermore, evolving the micro-scale
constitutive equations, e.g., damage or plasticity, can
also promote this imbalance between servers. Minimizing
this workload imbalance is paramount to maintain high
resource utilization and reduce computational time. We
use a ‘‘largest first’’ [24] load balancing scheme to
reassign RUCs to servers based on how long the previous
computations took. The new assignment is only used if it
will reduce the overall computational time including the
RUC data migration. We overlay the data migration with
computation of RUCs that are not reassigned.

4. Extreme scale simulations

In the previous sections, we gave an overview of the
CH formulation and its efficient HPC implementation.
In the following subsections, we present three distinct
numerical examples that demonstrate both the excellent
computational efficiency of the CH solver, as well as
its ability to compute extremely large simulations with
fine numerical resolution and highly nonlinear physical
behavior. Such detailed multi-scale simulations can lead
to understanding of mechanics by directly linking the
underlying morphology and phenomena to the overall
performance of engineering structures. Furthermore, with
co-designed experiments, such simulations can accelerate
the development of newmaterial formulations. Moreover,
these examples show the excellent potential of deploying
CH on future exascale computing platforms.

4.1. Scaling performance

First, we perform a strong scaling study to demonstrate
the computational efficiency of the CH solver using a
patch test (see inset of Fig. 3). The macro-scale domain
consists of two cubic steel blocks with side lengths of
10 mm separated by an interface. In both this and the
next section, each RUC attached to material points on the
interface is 210 × 210 × 210 µm3 and is made of an
epoxy resin containing 98 randomly distributed voidswith
d = 30 µm. All materials are modeled as geometrically
nonlinear hyper-elastic solids. See [12,20] for more details
on the constitutive equations used in this letter.

Usually, computational speedup is defined as s = tn/tN ,
where tn is the time required to compute the simulation
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Fig. 3. Computational speedup of the hierarchically parallelmulti-scale solver. Themacro-scale is discretizedwith 17.5k finite elements and 9.8k nonlinear
DOFs, and is computed using 32 cores. Each of the 512 RUCs is discretized with 1.46M finite elements and 773k nonlinear DOFs, and is computed using
512 cores. The complete multi-scale simulation contains 747M finite elements and 396M DOFs.
using n computational resources (e.g., micro-scale servers)
and tN is the time to compute the same simulation using N
resources. In the ideal case, s = N/n for all N , but speedup
is typically limited by algorithmic complexity and commu-
nication overhead. However, using the hierarchically par-
allel multi-scale solver, both macro- and micro-domains
can be computed using the optimal number of computing
cores and further speedup can be obtained by increasing
the number of servers used for computing the micro-scale
responses. Due to the high parallelism inherent to CH and
the efficient implementation described in Section 3, the
CH solver maintains ideal speedup from 4096 to 262,144
computing cores on the Vulcan machine at the Lawrence
Livermore National Laboratory (LLNL). In this example, the
speedup is evaluated from the time to compute one non-
linear fully-coupled multi-scale load increment.

4.2. Hyper-elastic billet compression

The aspects of computational efficiency become impor-
tant for largermulti-scale simulations spanning several or-
ders of magnitude in length scales. Fig. 4 shows the hyper-
elastic multi-scale compression response of a heteroge-
neous layer computedwith numerical resolution spanning
O(105) length scales (from O(10 mm) at the macro-scale
to O(100 nm) at the micro-scale). The macro-scale do-
main consists of two steel disks with t = 10 mm and
d = 20 mm separated by an epoxy layer. The macro-scale
discretization contains 325k finite elements and 182k non-
linear DOFs, and is computed using 512 cores. Each RUC
corresponding to the 5296 macro-scale cohesive elements
on the interface is finely discretized, each containing 10.2M
finite elements (hmin = 191 nm, hmean = 1.8 µm, and
hmax = 2.8 µm) and 5.3M DOFs. The micro-scale response
is computed using 767 servers consisting of 512 cores each.
The total implicit multi-scale simulation contains 53.8B fi-
nite elements, 28.1B nonlinear equations, and was com-
puted using 393,216 computing cores (786,432 threads) on
the Vulcan machine at LLNL. Four nonlinear fully-coupled
multi-scale load increments were computed in under 12 h.
Fig. 4 shows themulti-scale response at the end of the load
history. As shown, the non-uniform response at both scales
is well resolved.

4.3. Progressive failure of a dual cantilever beam

In the previous examples, only the nonlinear hyper-
elastic response was considered. Here, we demonstrate
the ability of the CH solver to predict the multi-scale
failure response of a dual cantilever beam (DCB) using an
isotropic viscous damage model at the micro-scale (see
[25,19,20]). In addition, we measure the effect of using the
load balancing algorithm described in Section 3.

A schematic of the multi-scale DCB and mode-I loading
conditions are shown in Fig. 5 (inset). The DCB is loaded
under displacement control at 0.375 mm/min to ensure
quasi-static isothermal conditions. The DCB adherends
are each 42 mm long, 10 mm wide, 5 mm thick, and
are discretized with a total of 10k finite elements. The
macro-scale interface is 40 mm long (2 mm pre-crack)
and is discretized by 322 cohesive elements, each with a
corresponding RUC. In this example, the RUC is 250×250×

125 µm3 and contains 40 randomly distributed voids with
d = 40µm. The RUCs are each discretized with 249k finite
elements, and the total multi-scale simulation contains
80M finite elements and 42.5M nonlinear DOFs. Themulti-
scale response is computed using up to 128k cores on the
Mira supercomputer at Argonne National Laboratory.

Fig. 5 shows the macro-scale mode-I response of
the DCB compared to the analytical solution provided
by the Linear Fracture Mechanics (LFM) theory (broken
lines). Note that we are using a rate dependent failure
model at the micro-scale, and thus each material point
on the interface evolves differently with varying fracture
properties as shown in Fig. 6. The CH solver predicts that
the fracture toughness ofmaterial points on the interface is
Gc ∈ [141, 175] J/m2 due to varying local strain rates. The
mean toughness of the interface is Gmean

c = 162 J/m2. The
critical interface traction is predicted as tc = max ∥t⃗M∥ ∈

[61, 68.2] MPa, with tmean
c = 65.6 MPa.

Returning to Fig. 5, themulti-scale response is bounded
by the LFM theory in the failure regime, but the LFM



72 M. Mosby, K. Matouš / Extreme Mechanics Letters 6 (2016) 68–74
Fig. 4. Large multi-scale compression simulation of a heterogeneous hyperelastic layer. Clockwise from top left: Schematic of the macro-scale domain
and loading conditions, response of the macro-scale adherends, macroscopic response of the interface, micro-scale effective strain of the heterogeneous
interfaces at the marked points.
Fig. 5. Macro-scale model-I DCB loading conditions (inset) and computed macroscopic force–displacement curve. Broken lines denote the LFM response
for Gmin

c = 141 J/m2 (dashed), Gmax
c = 175 J/m2 (dash–dot), and Gmean

c = 162 J/m2 (dotted).
Fig. 6. Effective traction–separation response of fully failed material points on the macro-scale interface.
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0

Fig. 7. Macro-scale mode-I response of the DCB in the vicinity of the propagating crack tip. From left: equivalent Mises stress in the deformed adherends
(deformations magnified 100×) and magnitude of the cohesive traction on the interface. (The pre-crack is not shown on the macro-scale interface.) Note
the crack tunneling effect.
Fig. 8. Extent of micro-scale damage, ω ∈ [0, 1], at the marked points in Fig. 7(right). Material points with ω = 0 and ω = 1 are undamaged and fully
failed, respectively.
Fig. 9. Evolution of the maximum server imbalance up to the limit point with and without the load balancing scheme. For the rebalancing study, the
macro-scale is computed using 16 cores, while 35 micro-servers using 32 cores each are utilized to compute the micro-scale response (1136 computing
cores total). Each server is allowed to compute up to 15 micro-scale solutions to allow for non-uniform rebalancing.
theory over-predicts the maximum load bymore than 20%
(Pmax = 759 N from the CH). We emphasize the predictive
nature of this simulation, and the CH modeling strategy in
general, since the fracture behavior of the heterogeneous
interface is entirely governed by the bulk behavior of the
individual micro-scale constituents.

The macro-scale response of the DCB is shown in
Fig. 7. The non-planar progressive failure of the interface
governed by the micro-scale failure is shown in Fig. 7
(right). Note that the initial crack tip (point 1) has
completely failed and the process zone (point 2) has
propagated along the macro-scale interface. Additionally,
one can see the crack tunneling in Fig. 7 (right), captured
by the three-dimensional analysis. The crack tunneling is
expected due to the ductile failure response of the interface
(see Fig. 6) and the transition from a plane-strain condition
near the center of the DCB to a stress-free condition at the
boundaries [26,27]. We also predict the crack propagation
speed, vc = 1.9 mm/s (∼304× the loading rate). Fig. 8
shows the extent of damage in the micro-scale at the
marked points along themacro-scale interface (point 1 and
point 2). Results in this section show the impact of extreme
scale simulations in predicting and better understanding
mechanics across vast spatial scales during the complex
rate-dependent damage process.

As mentioned in Section 3, the introduction of more
complex macro-scale loading conditions and micro-scale
constitutive equations containing material nonlinearity
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result in computational load imbalance among the micro-
scale servers. The effect of the load balancing algorithm
was evaluated up to the limit point in the macro-scale
load history (see Fig. 9). The average imbalance is reduced
by nearly 40% and the simulation up to the limit point is
computed 12% faster overall when using the load balancing
algorithm.

5. Conclusions

We have presented extreme scale computations, in
terms of both physical scales and computing resources,
containing ∼54B finite elements, over 28B nonlinear DOFs
and executed on ∼400 thousand computing cores. Such
large and detailed simulations are necessary for better
understanding of complex (i.e., rate-dependent) multi-
scale material behavior under nontrivial loading condi-
tions. Moreover, with co-designed experiments and prop-
erly validated constitutive models, such large predictive
simulations can be the basis of Virtual Materials Testing
standards, and aid in development of newmaterial formu-
lations with extreme properties. These large simulations
were enabled by a hierarchically parallel CH solver with
excellent computational scaling behavior. The high scala-
bility of the CH method makes it a promising approach for
efficiently utilizing the future massively parallel exascale
platforms.
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