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1 INTRODUCTION

Modern multiscale methods are rooted in powerful
state-of-the-art computational techniques when nonlin-
earities are involved. Addressing scientific and engineering
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questions using scale transitions is one of the most chal-
lenging and rewarding routes in solving fundamental
problems in materials science and engineering for the next
century.
The intrinsic role of different scales in mechanics of

materials is nowadays well recognized. At the level of the
material, the typical scale that matters is the character-
istic scale of the microstructural heterogeneities and defects.
The mechanics and physics of these multiphase hetero-
geneous microstructures is generally considered the main
driver for the macroscopic engineering response of a mate-
rial, including its failure behavior. The proper understanding
of the behavior, evolution, and mechanical response of mate-
rials at the micro scale is critical. Over time, it has become
evident that even smaller scales and thin interfaces may
have a pronounced influence on the micron scale. In this
sense, multiscale methods have emerged that link smaller
and larger scales. A second characteristic of this multidis-
ciplinary field is the emphasis that is put on the mechan-
ical aspects, covering the role of stress, strain, deformation,
and degradation. Generally, this goes hand in hand with
the material synthesis and microstructure evolution, since
internal stress fields are an intrinsic characteristic of hetero-
geneous microstructures. It is obvious that the character of
the intrinsicmicrostructure cannot be trivially separated from
the governing physics. Mechanical aspects generally repre-
sent a source of internal (strain) energy, which is an essen-
tial ingredient of the underlying thermodynamics. Moreover,
other physical mechanisms (e.g., diffusion and dislocation
motion) will have a pronounced influence on the relaxation
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of these internal stresses, and consequently on the overall
mechanical response. Evidently, these phenomena are intrin-
sically nonlinear in nature, which necessitates proper multi-
scale computational techniques.
While homogenization of heterogeneous materials was one

of the first multiscale approaches in mechanics, it was origi-
nally developed for elastic problems, whereby the small scale
can often be eliminated in the computational process. For
more complex nonlinear problems, this is obviously not the
case. Many problems require the explicit solution at multiple
scales, whereby an iterative solution process at each scale
entails high computational costs. It is this category of prob-
lems that is the main focus of the present chapter.
The chapter will start with a brief historical overview,

followed by a methodological classification of some popular
multiscale methods in mechanics of materials. Separate
sections will be devoted to selected methods, that is,
nonlinear computational homogenization (CH), statistical
aspects of representative volume elements (RVE), decou-
pled multiscale modeling, (nonlinear) transformation field
analysis, and parallel computational implementation in three
dimensions.
Cartesian tensors and tensor products will be used

throughout this chapter, making use of a Cartesian vector
basis {e⃗1, e⃗2, e⃗3}. Second-order tensors are denoted as A,
whereas fourth-order tensors are written as 4𝔸. Using the
Einstein summation rule, the following conventions are used
in the adopted compact tensor notations:

C = a⃗⊗ b⃗ = aibj e⃗i ⊗ e⃗j (1)

C = A ⋅B = AijBjk e⃗i ⊗ e⃗k (2)

C = 4𝔸 ∶ B = AijklBlk e⃗i ⊗ e⃗j (3)

c = A ∶ B = AijBji (4)

2 FROMMICROMECHANICS TO
MULTISCALE MECHANICS:
HISTORICAL NOTE

The grand challenge in multiscale mechanics consists in
identifying the relationships that bridge various length
scales, including those yielding (emergent) effective/
macroscopic properties. Multiscale methods typically aim
to extract predictive macroscopic properties of materials by
resolving the geometrical and physical details of the under-
lying microstructure. At the microscale, proper descriptions
of the individual phases and interfaces are thereby required.
In order to bridge scales, a number of methods have been
proposed in the literature. “Homogenization”, as defined in
the mechanics community, or “coarse graining”, as defined

in the physics community (Ridderbos, 2002; Ahuja et al.,
2008), is certainly one of the largest classes of multiscale
methods. The term “homogenization” was originally coined
by Ivo Babuška (1976). Strictly speaking, coarse graining
and homogenization are not identical. Homogenization is
essentially based on averaging theorems, whereas coarse
graining in physics relies on statistical mechanics or ther-
modynamics in view of identifying the emergent behavior
across the scales. In the latter category, the GENERIC
framework (Öttinger, 2005; Hütter and Tervoort, 2008a,b;
Grmela, 2010a,b) is particularly worth mentioning. Physi-
cists often make use of renormalization tools to establish a
coarse-grained picture of complex multiscale phenomena.
Early steps in homogenization were taken long ago,

when the interest for the micromechanics of heteroge-
neous materials became more pronounced. Preliminary
developments go back to the nineteenth century, where
the rule of mixtures was first introduced (Voigt, 1887),
followed by the Sachs model (Sachs, 1928), Reuss estimate
(1929), and the frequently used Taylor model (Taylor, 1938).
While Voigt and Reuss estimates were typically used for
composite systems, Taylor and Sachs models were derived
for polycrystals. The growing interest in composite materials
constituted the main motivation for stronger developments
in homogenization. The best-known early contribution is
probably the work of Eshelby (1957), where attention was
given to the elastic solution for an ellipsoidal inclusion.
Still today, these first steps have had a pronounced impact,
giving rise to alternative continuum mechanics frameworks
(Eshelbian mechanics and materials forces). One of the
essential characteristics of the micromechanical approaches
adopted at that time was the use of continuum mechanics at
the scale of the heterogeneities in order to deduce macro-
scopic constitutive equations. This is what characterizes
“continuum micromechanics”, a field that has been extended
tremendously since then. This field was formally established
by Hill (1965), who was undoubtedly one of the main
contributors. A survey of activities over the past 40 years is
given in Zaoui (2002).
The period of 1950–1980 is characterized by the major

progress made in the homogenization of heterogeneous
elastic solids, which is given particular attention in
Homogenization Methods and Multiscale Modeling.
Pioneering work in this timeframe was done by Kröner
(1958), Hashin and Shtrikman (1963), Hill (1963), Mori and
Tanaka (1973), Babuška (1977), and Willis (1977), among
others. First steps toward an extension into the nonlinear
regime of the already developed elastic homogenization
theories, and variational principles were taken by a few
authors in this period (Kröner, 1961; Hill, 1965; Hutchinson,
1976), whereas many more papers on the subject appeared
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in the 1980s and 1990s. Treated subjects include elastoplas-
ticity (both rate-independent and viscoplastic), nonlinear
elasticity, and viscoelasticity. Frequently cited contrib-
utors in this field are Nemat-Nasser and Obata (1986),
Nemat-Nasser and Hori (1993), Ponte Castañeda (1991),
Suquet (1993, 1997a), Willis (1994), and Zaoui and Masson
(2000), among others.
Different applications in the nonlinear range appeared in

the late 1970s, for example, by the well-known Gurson
model (Gurson, 1977) for void growth in ductile materials,
which gave rise to more papers on the plasticity of porous
materials. Multiscale mechanics was considered as a natural
tool that allowed to study the influence of the mechanics at
a microlevel (deformation and failure) on the macroscopic
material behavior. The main interest at that time consisted
in the derivation of macroscopic constitutive equations that
implicitly incorporate the microscale deformation mecha-
nisms.Making appropriate assumptions, analyses weremade
for grain effects (grain–grain interaction, grain size, and
grain orientation/texture), inclusions/particles distributed in
a hard or soft matrix with various interfaces, voids (nucle-
ation, growth, and coalescence), microcracks, fiber–matrix
systems, and so on.Most of the attention, however, was given
to creep, (visco) plasticity, damage, and fracture.
The developments in mathematical homogenization have

been key in nucleating the engineering applications of
homogenization. This was already (partially) addressed the
Chapter on Homogenization Methods and Multiscale
Modeling, focusing on linear problems. In this context,
the contributions of Keller (1964, 1977), Benssousan et al.
(1978), Lions (1979) were pioneering. The follow-up
work of Sanchez-Palencia (1980) served as an impetus for
researchers in computational mechanics. Duvaut (1979)
and Suquet (1987) devoted themselves to the study on
the theory of homogenization within the framework of
mechanics of heterogeneous or composite materials, which
has triggered various engineering applications with numer-
ical simulation results. Once the common ground between
mathematical homogenization and engineering was found,
the homogenization method began to prevail in the area of
computational mechanics. Supported by advanced compu-
tational solution methods, the homogenization method has
become a common tool to characterize the mechanical or
various physical properties of heterogeneous media with
(periodic) microstructures and is now known as one of the
rigorous theoretical backgrounds for (nonlinear) CH. Since
the 1990s, the steady increase of available computational
power has led to a strongly developed computational disci-
pline in multiscale mechanics. Many achievements have
been made since then, and many more may be expected in
the (near) future.

3 MULTISCALE APPROACHES FOR
NONLINEAR PROBLEMS: OVERVIEW

Multiscale modeling of nonlinear material behavior is a vast
subject, whereby it is almost impossible to give a complete
overview of all methods that have been developed in the
past. Instead, a succinct overview will be given here, with
special emphasis on a few selected methods that will be
detailed further in this chapter. The targeted application area
considered here is the upscaling of the nonlinear mechanical
response of heterogeneous materials.

3.1 General classification

There is no unique classification that unifies all multi-
scale methods presently available. From a methodological
perspective, different categories of multiscale methods can
be identified, (Weinan et al., 2007;Weinan, 2011; Fish, 2006,
2009), related to the location and geometry of the hetero-
geneous scale. One category concerns problems that have
isolated details (e.g., defects and cracks) that need to be
resolved with a high resolution and accuracy. The fine scale
problem is then limited to a small part of the global domain.
This type of problem is often also labeled as “multiple scales”
rather than multiscale. Another category concerns problems
where the macroscopic response has to be extracted from the
underlying fine scale behavior in large parts of the domain,
whereby the fine scale will be probed to determine the
effective macroscopic response. The third category concerns
mixed problems, combining the two previous categories. The
last category identified by Weinan et al. (2007) are problems
revealing self-similarity across the scales, which will not be
further explored here.
Different classifications of multiscale methods have been

proposed in the literature. For a more complete overview,
see, for example, Fish (2006, 2009). A frequently used clas-
sification of multiscale methods is based on the underlying
problem formulation (continuum or discrete):

• Concurrent methods: In concurrent methods, both scales
are simultaneously addressed in the problem formula-
tion. In general, different length and time scales can be
used in a single domain and different methodologies may
be used on different parts of the domain. In practice, the
name “concurrent” is often restricted to methods where
different scales (and methodologies) are used in different
parts of the domain (Fish, 2006).

• Hierarchical methods: In hierarchical methods, the
scales are linked in a hierarchical manner, which implies
that distinct scales are considered and coupled in the
same part of a domain. The hierarchical link may be
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established through, for example, volume averaging of
field variables or just simple parameter identification.

• Hybrid methods: Hybrid methods typically reveal
properties of different classes, for example, multigrid
methods (Miehe and Bayreuther, 2007), generalized
finite element method (Plews and Duarte, 2014),
wavelet-based methods, and quasi-continuum methods
(Tadmor et al., 1996a).

Multiscale methods can also be classified from an algo-
rithmic perspective, referring to the actual solution proce-
dure:

• Parallel methods: Parallel methods solve both scales in
parallel (or in a monolithic manner). They are therefore
coupled in that sense.

• Serial or sequential methods: Serial methods rely on a
serial algorithm to solve and couple both scales. Scales
are typically linked through data passing, whereby each
scale is solved separately. This solution procedure natu-
rally fits hierarchical multiscale problems.

• Coupled or decoupled methods: In many cases, the solu-
tion procedure can be set up in either a coupled or decou-
pled manner. In a coupled scheme, the solution of both
scales is computed and coupled in an on-line manner. In a
decoupled scheme, one of the scales is computed before-
hand, through prior off-line computations.

Among the multiscale methods listed above, particular
attention will be given to CH methods. This method is typi-
cally hierarchical, even though the solution method for the
fully coupled nonlinear problem is more parallel than serial
(the iterative solution processes are imbricated, that is, equi-
librium at both scales is established simultaneously). These
methods are essentially based on the integration over small
length scales (e.g., over a microstructural RVE).
Variational multiscale methods (Hughes et al., 1998;

Garikipati and Hughes, 2000) constitute a particular cate-
gory of hierarchical techniques. This category relies on the
weak form of the governing equations, which are split into a
fine scale and a coarse scale contribution. The problem needs
to be complemented by suitable assumptions on the fine
scale field, which play an important role in the efficiency and
physical relevance of the method. The fine scale is generally
eliminated from the resulting formulations, which may
entail quite severe restrictions. Classical fine scale fluctua-
tions, like displacement discontinuities, can be adequately
addressed. For this particular case, a close resemblance with
the extended finite element method emerges (Moës and
Belytschko, 2002).
Multiscalemethods are used in different communities, with

a different emphasis and often also a different terminology.

While this chapter focuses on its application to mechanics of
materials, it is worth noting that a vast amount of literature
exists in the physics and mathematics community, see the
book of Weinan (2011) for an overview. The heterogeneous
multiscale method (HMM; Weinan et al., 2007; Abdulle
et al., 2012) is often used in the computational mathematics
oriented literature, but it shares many common characteris-
tics with the CH method detailed further on in this chapter.
In the following sections, explicit emphasis is given

to methods used for upscaling the nonlinear mechanical
response of materials.

3.2 Material nonlinearities and fine scale methods

Nonlinear homogenization methods have wide ranging
application to many natural and manufactured materials:
asphalt, bone, ceramics, composites, concrete, geological
materials and granular media, glass, metals, paper, poly-
mers, rock, snow, ice, textile, biological tissues, and so on.
At small scales, nonlinear phenomena are the rule rather than
the exception. Plasticity, crack nucleation and propagation,
defect mechanics (e.g., dislocations), phase transformations,
inelastic creep and relaxation, and microstructure evolution
in general are the prime drivers for the occurring nonlinear-
ities (Nemat-Nasser, 1992; Ortiz, 1996; Tvergaard, 1997;
Zaoui, 2002).
Composites have attracted such a large interest that they

are worth mentioning as a field on their own. Driven by
an engineering interest, a lot of attention has been given
to matrix–fiber systems, covering the elastic range, the
nonlinear range, interfacial aspects, geometrical aspects
(isotropic and anisotropic configurations), damage, fracture,
and so on. Many unit cell and RVE analyses have been made
on a variety of fiber–matrix combinations.
Scale transitions in damage and fracture constitute one of

the most complex subjects in multiscale mechanics. Damage
is a typical phenomenon that develops across all length
scales. Many aspects are not well understood, which is
reflected in the excessive phenomenological character of
most engineering models available. While it has been shown
that nonlocality plays an intrinsic role in damage evolution,
there is no quantitative or qualitative method available yet
for the derivation of a proper (homogenized) nonlocal kernel
along with the (homogenized) internal variables. Meanwhile,
damage and fracture are more commonly being modeled at
the submicron scale and smaller, for example, through atom-
istics or (polymer) network deformation and failure mech-
anisms. Incorporating localization and fracture (discontinu-
ities) in a multiscale setting violates the classical principle of
scale separation, which disables the application of most clas-
sical homogenization methods. Solutions for this require the
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explicit incorporation of fine scale kinematics at the coarse
scale level.
Any multiscale method critically depends on the modeling

accuracy at the smallest scale examined. Multiscale
mechanics therefore constitutes a natural bridge to materials
science, where the physical characterization and synthesis
of microstructures is of prime interest. Capturing the various
microstructural deformation mechanisms, ranging from the
nanomechanical level to the microstructural entities, is there-
fore becoming integral part of modern multiscale mechanics.
Nonlinear continuum models of complete heterogeneous
microstructures are often used for this purpose. However,
there are also various examples that depart from the
nanoscale to extract aspects relevant for the microscale
level. Such techniques are traditionally considered as being
part of computational materials science (Raabe, 1998),
but the precise differences with computational multiscale
micromechanics have not been clearly defined thus far.
Among the techniques used in computational materials
science, a few extensively used ones are briefly addressed,
see Liu et al. (2004) for a more extensive overview and
Raabe (1998) for more detailed treatments:

• Monte Carlo methods: The Monte Carlo method
provides approximate solutions to a variety of math-
ematical problems by performing statistical sampling
experiments on a computer. The method applies to
problems with no probabilistic content and those with
inherent probabilistic structure. They are typically
used to formulate a probabilistic equivalent of the
physical problem under consideration, which is done
by formulating integral expressions of the governing
differential equations of the stochastic process. The
Monte Carlo algorithm then solves the problem by
integrating these expressions using a (weighted) random
sampling method. This step is generally computationally
expensive. The result of the simulation is obtained by
extracting the state equation values, correlation func-
tions, kinetics, and so on. Various types of Monte Carlo
methods exist, depending on the sampling method used,
the spatial lattice considered, the spin model applied (for
lattice type materials in which the flip of particle spins
varies the energy), and the energy operator defined.
Applications of Monte Carlo methods can be found
for a variety of physical phenomena and materials.
Applications interesting for mechanics are diffusion,
fracture, interfaces, and phase transformations. Refer-
ences are given extensively in Raabe (1998), Binder and
Heermann (1998).

• Molecular dynamics: This technique is used to model
elementary path-dependent processes by solving the
equations of motion for all particles (atoms) at an

atomistic scale. Potential functions are used to approx-
imate the atomic interactions, in combination with the
classical equation of motion. These potentials range in
complexity, from simple pair potentials to many-body
potentials, where the number of neighboring atoms
is gradually augmented in the interactions. Classical
pair potentials consider nearest-neighbor interaction
only (Lennard-Jones, Morse, and Torrens), see Torrens
(1972) and Vitek (1996) for more details. Applications
of molecular dynamics relevant for micromechanics are
dislocations, microcracks, thin films, surfaces, inter-
faces, and so on. The interested reader is again referred
to Raabe (1998) for an overview and references in each
of these fields. One of the main limitations of this method
is the size of the system that can be resolved, since, for
example, the use of all lattice degrees of freedom in a
crystalline material clearly limits the number of atoms
that can be taken into account. Moreover, the analysis
typically spans very short timescales only. From a
molecular dynamics simulation, macroscopic properties
of a system are explored through microscopic simula-
tions, for example, to calculate changes in the binding
free energy of a particular drug candidate or to examine
the energetics and mechanisms of conformational
change. The connection between microscopic simula-
tions and macroscopic properties is made via statistical
mechanics (Chandler, 1987; Wilde and Singh, 1998),
which provides the rigorous mathematical expressions
that relate macroscopic properties to the distribution and
motion of the atoms and molecules. Molecular dynamics
simulations enable the evaluation of these mathematical
formulas. As a result, thermodynamic properties and/or
time-dependent (kinetic) phenomena can be studied.
Note that a more generalized framework is given under
the name “Particle Dynamics Method”.

• Quasi-continuum methods: These approaches typically
bridge atomistic models to continuum approaches, where
multiple scales are considered simultaneously (Tadmor
et al., 1996a,b; Knap and Ortiz, 2001; Curtin and
Miller, 2003). Direct atomistic calculations are thereby
often used as the source for the constitutive input.
Quasi-continuum methods have also been extended
to address fibrous network-based materials, as well as
dissipative processes, see Beex et al. (2014a,b).

3.3 Nonlinear homogenization of materials

As emphasized in the historical note, multiscale mechanics
is rooted in the analysis of the homogenized response of
heterogeneous elastic materials. Homogenization frame-
works focus on the equivalent or effective response of a
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finite volume of material, which is generally assumed to
be statistically homogeneous. Characteristic volumes were
identified as unit cells for periodic materials and RVEs (Hill,
1963; Drugan and Willis, 1996) for statistically heteroge-
neous media (see Section 5 for more details). The response
of such a volume is assumed to be equivalent to the response
of the homogeneous equivalent continuum (HEC), for which
the continuum mechanics response is solved. Originating
from the statistical mechanics community, the concept of
a representative unit cell (RUC) is frequently used as well,
rather than an RVE. The definition of an RUC essentially
relies on statistical descriptors, and hence the morphology
approximation error is better defined from a quantitative
perspective (Povirk, 1995; Kumar et al., 2006, 2008; Lee
et al., 2009). Throughout the literature, both RVE and RUC
are used, whereby the difference is generally not made
explicit. RVE concepts essentially rely on the principle of
separation of scales. This principle states that the scale of
the microstructure or microstructure fluctuation, 𝓁𝜇, must
be smaller than the size of the representative volume consid-
ered, 𝓁m, which must be much smaller than the characteristic
fluctuation length in the macroscopic deformation field, 𝓁M .

𝓁𝜇 < 𝓁m ≪ 𝓁M (5)

Following this definition, the absolute size of the macrostruc-
ture is not relevant for this scale separation. While this
principle is valid within the continuum mechanics concept
of local action, it is sometimes violated when either a
microstructural length scale tends to be large (e.g., in
the presence of long-range correlations or percolation
phenomena) or when the scale of the macroscopic (strain)
fluctuations tends to be small (e.g., localization of deforma-
tion and gradients).
Homogenization techniques (first developed for elasticity)

have been extended toward higher order and nonlocal
constitutive equations in the past two decades, for example,
developments include Cosserat media (Forest et al., 2001),
couple stress theory (Smyshlyaev and Fleck, 1994), nonlocal
effective continua (Drugan andWillis, 1996), or higher order
gradient homogenized elastic materials (Triantafyllidis and
Bardenhagen, 1996; Smyshlyaev and Cherednichenko,
2000; Peerlings and Fleck, 2001). Other interesting
approaches toward the analysis of random (physically
nonlinear) microstructures (Ponte Castañeda, 1992, 2002;
Suquet, 1993) are the Taylor–Bishop–Hill estimates, several
generalizations of self-consistent schemes, and asymptotic
procedures (Fish et al., 1997). Homogenization of solids
accounting for both geometric and material nonlinearity is
clearly more demanding. Interesting contributions are given
and cited in Doghri and Friebel (2005). Mean-field methods
for nonlinear materials have been addressed in Doghri

et al. (2011). Homogenization estimates for nonlinear
composites are presented in Agoras and Ponte Castañeda
(2011). Homogenization-based constitutive models have
been proposed for magnetorheological elastomers at finite
strains in Ponte Castañeda and Galipeau (2011). Mathemat-
ical or asymptotic homogenization approaches for nonlinear
material behavior have been elaborated in several papers,
for example, Fish and Fan (2008), Markenscoff and Dascalu
(2012), Yang et al. (2013).
Several analyses have been performed on unit cells, from

which the parameters in assumed macroscopic consti-
tutive equations can be assessed. Some of them also
include higher order continuum formulations, for example,
Cosserat (van der Sluis et al., 1999) and couple stress media
(Ostoja-Starzewski et al., 1999). The added value of these
multiscale methods depends on the accuracy (geometrical,
physical, and mechanical) with which the microstructure is
modeled, as well as the technique that is used to perform the
homogenization toward the macroscopic level. Closed-form
homogenization toward constitutive material frameworks
or effective (or rather apparent) material properties of
composites turns out to be really cumbersome if one wishes
to take into account more complex physics, geometrical
nonlinearities, or damage and/or localization.

3.4 Nonlinear computational homogenization

In the past decade, substantial progress has been made
in the two-scale CH of complex multiphase solids (Geers
et al., 2010). This method is essentially based on the
nested solution of two boundary value problems, one at
each scale. Though computationally expensive, the proce-
dures developed allow to assess the macroscopic influence
of microstructural parameters in a rather straightforward
manner. The first-order technique is by now well estab-
lished and widely used in the scientific and engineering
community (Suquet, 1985a; Ghosh et al., 1996, 2001; Smit
et al., 1998; Miehe et al., 1999a,b; Feyel and Chaboche,
2000; Terada et al., 2000; Kouznetsova et al., 2001; Terada
and Kikuchi, 2001; Miehe and Koch, 2002). Since the late
1990s, many contributions of CH methods were devel-
oped for, for example, porous media (Ehlers et al., 2003),
cellular materials (Ebinger et al., 2005), polycrystalline
metals, and granular materials. Many of these focused
on linear problems, and for compactness we restrict this
overview to nonlinear problems that have been resolved
since then.
Making additional hypotheses on the averaging of

microscale fields and the virtual power statement between
scales, several extensions have been proposed in the
literature:
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• Higher order CH: This scheme makes use of an enriched
description of the macroscale kinematics, which is
used to construct a more complex microscale problem.
The homogenization allows to extract the Cauchy
stress tensor, along with higher order stress tensor
and all accompanying tangents (Geers et al., 2001,
2003; Kouznetsova et al., 2002, 2004a,b; Kouznetsova,
2002; Kaczmarczyk et al., 2008, 2010; Bacigalupo
and Gambarotta, 2011). The computational continua
approach (Fish and Kuznetsov, 2010; Fish et al., 2015)
is a variant that relaxes the constraints on higher order
continuity and boundary conditions.

• Continuous–discontinuous homogenization–localiza-
tion: Incorporating the transition from damage to fracture
(via localization) in a multiscale approach is a real chal-
lenge (Loehnert and Belytschko, 2007; Belytschko
et al., 2008; Hettich et al., 2008). The recently devel-
oped methods of this type rely on an adequate solution
for the lack of scale separation between both scales (i.e.,
by taking microscale kinematics explicitly on board at
the macro scale). Localized properties at the microscale
have to be incorporated directly in the macroscale
description without any averaging. Solutions have been
proposed in which a discrete band (weak discontinuity)
is used at the macroscale (Massart et al., 2007a,b), as
well as a discontinuous jump (strong discontinuity) at
the macroscale (Coenen et al., 2012a,b; Bosco et al.,
2014, 2015). In each case, the fine scale is modeled as a
regular continuum, with appropriate regularized damage
or plasticity models. The coarse scale is enriched, for
which embedded discontinuities or X-FEM (extended
finite element method)-based solution algorithms have
been used. Note that simplified approaches have been
proposed to make a direct volumetric coupling between
the size of a finite element (at the macroscale) and the
localizing RVE at the microscale (Gitman et al., 2008).
In contrast to the previously cited methods, this solution
is not really of the homogenization type anymore and
rather resembles a domain decomposition approach in
which the fine scale is embedded as a local refinement.

• Geometrical microstructural instabilities: Another case
that violates scale separation is induced by local (buck-
ling) instabilities at the level of the microstructure, as
typically encountered in cellular materials. This received
particular attention in the work of (Miehe et al., 2002),
and more recently in (Nezamabadi et al., 2009).

• Thermomechanical CH: This scheme is a coupled
problem, providing the homogenization of coupled
thermal and mechanical processes (Özdemir et al.,
2008a,b).

• Substructured thin sheets and shells: CH applied to
beams, plates, and shells makes use of the higher order

kinematics already developed for the second-order
scheme. The RVEs are homogenized in the (shell) plane
and integrated through their thickness. This method
enables nonlinear CH for shell-type continua (Geers
et al., 2007; Coenen et al., 2010; Cong et al., 2015).

• Multiscale interfaces or cohesive cracks: CH of inter-
faces typically couples a cohesive zone type description
at the macroscale to an interfacial RVE at the microscale
(Matouš et al., 2008; Verhoosel et al., 2010; Nguyen
et al., 2012; Mosby and Matouš, 2015a).

• Multiphysics problems: CH has been extended toward
other (coupled) fields, for example, electromagnetism
(Javili et al., 2013; Zäh and Miehe, 2013; Niyonzima
et al., 2014; Keip et al., 2014), diffusion problems (Nile-
nius et al., 2014), liquid-phase sintering (Ohman et al.,
2013), heat flow (Larsson et al., 2010), or involving
chemical couplings (Yuan et al., 2014).

• Contact and friction problems: Contact and friction at the
small scale always involves rough surfaces, for which
a CH approach is naturally versatile (De Lorenzis and
Wriggers, 2013; Temizer, 2014a).

• Dynamics of materials: Extending the scheme to incor-
porate the dynamics of propagating waves and microin-
ertia has been carried out in Pham et al. (2013). This
method allows the analysis of nonlinear wave transmis-
sion and attenuation phenomena, whereby local reso-
nance effects inside the microstructure are incorporated.
Typical examples of interest are locally resonant acoustic
metamaterials.

In recent years, the number of contributions that further
developed CH methods or made use of it for the multiscale
analysis of materials steadily increased. Among others,
various applications can, for example, be found in the
following:

• porous media, for example, Su et al. (2011) and Zhuang
et al. (2015)

• cellular materials, for example, Nguyen and Noels
(2014) and Iltchev et al. (2015)

• soft matter, for example, Temizer (2014b)
• polycrystalline metals, for example, Segurado and Llorca

(2013)
• technical textiles, for example, Fillep et al. (2015)
• granular materials, for example, Liu et al. (2014)
• trabecular bone, for example, Wierszycki et al. (2014)
• composite plates, for example, Helfen and Diebels

(2014)
• Li-ion battery cells, for example, Salvadori et al. (2014)

While CH is an extremely powerful multiscale technique,
it comes along with a high computational cost. Nevertheless,
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CH is naturally parallelizable (Mosby and Matouš, 2015a)
and the method has demonstrated excellent scalability
as shown later in this chapter. Alternatively, a growing
emphasis is given on its efficiency, whereby use is made
of advanced computational techniques and reduced order
models (Yvonnet and He, 2007; Fritzen and Leuschner,
2013; Fritzen et al., 2014; Kerfriden et al., 2014).

3.5 Nonuniform transformation field analysis

Part of this chapter on nonlinear multiscale methods is
devoted to the (nonuniform) transformation field analysis
((N)TFA). The TFA method was originally proposed by
Dvorak (1992) for inelastic composite materials, using piece-
wise uniform transformation fields. The method typically
approximates the stress or strain field as uniform in each
phase of a heterogeneous microstructure. On that basis, the
overall homogenized properties of a heterogeneous RVE can
be estimated. The extension to NTFA followed in the work of
Michel and Suquet (2003). The homogenization of nonlinear
heterogeneous materials on the basis of the NTFA method
has been studied more extensively in the past decade, see,
for example, the work of Roussette et al. (2009), Fritzen and
Boehlke (2011), Fritzen and Leuschner (2013). A variant of
the TFA approach for inelastic materials is also proposed in
Fish et al. (2013). In the context of more efficient multiscale
schemes, the NTFA method is certainly important.

4 MULTISCALE COMPUTATIONAL
HOMOGENIZATION

In this section, the main principles of the classical
(first-order) CH are briefly summarized. First, CH for
mechanical problems will be detailed, followed by the
general guidelines for problems involving other fields, for
example, thermal, electric, magnetic, and the coupled fields.

4.1 Macroscale problem

Consider a microscopically heterogeneous body, subjected
to loading and constraints, such that the separation of scales
principle (see inequality (5)) is respected. At themacroscopic
scale, the motion is governed by the momentum balance, in
the absence of body forces, expressed as

∇⃗0M ⋅PT
M = 𝜌0M

̈⃗xM (6)

supplemented by initial and boundary conditions. In (6), PM

is the first Piola–Kirchhoff stress tensor; ∇⃗0M is the gradient
operator with respect to the reference configuration; x⃗M and

X⃗M denote the position vectors in the current and refer-
ence configurations, respectively; ̈⃗xM is the acceleration; the
superscript “T” denotes transposition; and the subscript “M”
refers to a macroscale quantity, while the subscript “m” will
denote a microscale quantity. Under the assumption of the
full-scale separation, also known as the long-wave approx-
imation, the macroscopic effective density in the reference
configuration 𝜌0M can be computed simply as the weighted
average of the densities of the microstructural constituents
(Sanchez-Palencia, 1980).
To close this boundary value problem, a constitutive rela-

tion between the stress and kinematical quantities needs to
be postulated. Instead of assuming a constitutive equation
in a closed form, the CH technique extracts the constitutive
response numerically from the detailed computational anal-
ysis of a microstructural RVE.
The CH framework is schematically illustrated in Figure 1.

The macroscopic deformation (gradient) tensor FM is calcu-
lated for every material point of the macrostructure (e.g., the
integration points of the macroscopic mesh within a finite
element environment). Next, FM is used to formulate the
boundary conditions imposed on the RVE that is assigned to
this point. Upon the solution of the boundary value problem
for the RVE, the macroscopic stress tensor PM is obtained,
thus providing the numerical stress–deformation relationship
at the macroscopic point. The local macroscopic consistent
tangent 4ℂM, which is needed for the iterative solution of
the macroscopic nonlinear problem, is also derived from the
microstructural analysis.
Next, the microscale boundary value problem will be

formulated based on the scale transition relations, followed
by the details of its numerical implementation.

4.2 Microscale problem

The physical and geometrical properties of the microstruc-
ture are identified by an RVE. The proper selection of the
RVE is a rather delicate task and will be treated in detail
in Section 5. Here, it is assumed that an appropriate RVE,
capable of capturing relevant microscale physics and fluctua-
tions, has already been selected. In accordance with the sepa-
ration of scales principle, the RVE should be much smaller
than the characteristic length of the relevant macroscopic
field variation, but sufficiently larger than microfluctuations.
If this condition holds, then any change in the macroscopic
field variables will immediately be accommodated at the
RVE scale, that is, the RVE problem is quasi-static even
though the macroscopic problem can be transient.
The classical first-order CH departs form the linearization

of the macroscopic nonlinear deformation map, given by the
macroscopic deformation gradient tensor FM = (∇⃗0Mx⃗M)T.
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Figure 1. Computational homogenization scheme.

A material vector Δx⃗m in the current configuration of the
RVE can be related to the same material vector ΔX⃗m in the
reference configuration as

Δx⃗m = FM ⋅ΔX⃗m + w⃗m (7)

where Δx⃗m = x⃗m − x⃗cm and ΔX⃗m = X⃗m − X⃗c
m are relative

position vectors with respect to an arbitrary reference point.
The first term in (7) expresses the homogeneous deforma-
tion given by FM, while the microfluctuation field w⃗m is
identified as the local fine scale contribution superimposed
on to the macroscale deformation.
The RVE deformation is described by the microstruc-

tural deformation gradient tensor Fm = (∇⃗0mx⃗m)T, where the
gradient operator ∇⃗0m is taken with respect to the refer-
ence microstructural configuration. From (7), the microscale
deformation gradient tensor Fm is determined as

Fm = (∇⃗0mx⃗m)T = FM + (∇⃗0mw⃗m)T (8)

Relations (7) and (8) are valid for every point at the
microscale, with the first terms readily known for a given
macroscale deformation tensorFM. The microfluctuation w⃗m

will follow from the solution of the microscale boundary
value problem.
As stated above, the microscale boundary value problem

is quasi-static. In the absence of body forces, the equilib-
rium equation for the RVE in terms of the microscale first
Piola–Kirchhoff stress tensor Pm is written as

∇⃗0m ⋅PT
m = 0⃗ (9)

The material behavior of each microstructural constituent
𝛼 (e.g., matrix, inclusion, and interphase) is assumed to be
known and described by constitutive laws that specify a time-

and history-dependent stress–strain relationship, possibly
involving microstructural evolution,

P(𝛼)
m (t) =  (𝛼)

P {F(𝛼)
m (𝜏), 𝜏 ∈ [0, t]} (10)

where t denotes the current time.
The microscopic equilibrium equation (9) requires

boundary conditions. The essential step in the CH method-
ology is the derivation of RVE boundary conditions from the
scale transition relations, as is discussed in the following.

4.3 Scale transition relations

4.3.1 Macro-to-micro: kinematics

One of the most commonly used scale transition relations
to establish the macro-to-micro coupling is the kinematical
averaging relation. It requires the volume average of the
microscale deformation gradient tensor Fm to be equal to the
corresponding macroscale deformation gradient tensor FM,
that is,

FM = 1
V0m ∫V0m

Fm dV0m (11)

where V0m is the RVE volume in the reference configuration.
Insertion of equation (8) into the right-hand side of the scale
transition relation (11) yields

1
V0m ∫V0m

Fm dV0m = FM + 1
V0m ∫V0m

(∇⃗0mw⃗m)T dV0m

= FM + 1
V0m ∫Γ0m

w⃗m ⊗ N⃗m dΓ0m (12)

where the divergence theorem has been used to transform the
volume integral to an integral over the undeformed boundary
of the RVE, Γ0m, with outward normal N⃗m.
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It is immediately clear that the boundary conditions on
the RVE must be chosen such that the contribution of the
microfluctuation filed w⃗m into equation (12) vanishes in
order to satisfy the scale transition relation (11). This can be
achieved in many alternative ways. Some of the possibilities
proposed and used in the literature are listed below:

1. Do not allow for any microstructural fluctuations within
the RVE, that is,

w⃗m = 0⃗, ∀X⃗m ∈ V0m (13)

enforcing the entire volume to deform according to the
prescribed FM, that is,

Fm = FM, ∀X⃗m ∈ V0m (14)

In the literature, this is usually referred to as the Taylor
(or Voigt) assumption.

2. Suppress the microfluctuation at the RVE boundary only

w⃗m = 0⃗, ∀X⃗m ∈ Γ0m (15)

while leaving the microstructural fluctuations inside the
volume yet undetermined. Using equation (7), the above
relation can equivalently be written as

Δx⃗m = FM ⋅ΔX⃗m, ∀X⃗m ∈ Γ0m (16)

With this condition, the displacements of the RVE
boundary are fully prescribed according to the givenFM.
These are often termed uniform displacement boundary
conditions.

3. For an RVE with geometrically periodic boundary (e.g.,
the one sketched in Figure 2), the boundary can be split
in “+” and “−” parts defined by the opposite outward
normal vectors at the corresponding points, N⃗+

m = −N⃗−
m,

and the so-called periodic boundary conditions can be
imposed by requiring the periodicity of the microfluctu-
ation field

w⃗+
m = w⃗−

m (17)

Equivalently, by applying the expression (7) to the mate-
rial vectors connecting the (arbitrary) reference point
and the points on the corresponding “+” and “−” parts
of the boundary and subtracting the results leads to the
formulation of the periodic boundary conditions in terms
of the position vectors of the boundary points

x⃗+m − x⃗−m = FM ⋅ (X⃗+
m − X⃗−

m) (18)

Top

Bottom

RightLeft

1

4 3

2–

–

+

+

N−
N+

Figure 2. Schematic picture of a two-dimensional RVE.

4. The weakest possible constraint is to require the
boundary integral to vanish as a whole

∫Γ0m

w⃗m ⊗ N⃗m dΓ0m = 0 (19)

In the literature this constraint is sometimes called
minimal kinematic boundary conditions (Mesarovic and
Padbidri, 2005).

Two other simple strategies sometimes used in the
literature, which, however, do not directly fit in the
kinematics-driven macro–micro scale transition, are:

5. Assume an identical constant stress (and additionally
identical rotation) in all microstructural components

Pm = PM, ∀X⃗m ∈ V0m (20)

This is called the Sachs (or Reuss) assumption.
6. Prescribe tractions on the RVE boundary according to a

given macroscopic stress PM

p⃗m = PM ⋅ N⃗m, ∀X⃗m ∈ Γ0m (21)

These are usually called uniform traction boundary
conditions.

Of the above choices, the Taylor (Voigt), Sachs (Reuss),
and intermediate procedures, where the Taylor or Sachs
assumptions are applied complimentary to certain compo-
nents of the deformation and stress tensors (e.g., in-plane
and out-of-plane components for laminated structures), are
the most computationally efficient, since they do not require
detailed modeling of the microstructure. Accordingly, they
generally provide very stiff (Taylor) or very compliant
(Sachs) estimates of the overall material properties. Never-
theless, the Taylor and Sachs averaging procedures can be
used to quickly obtain a first rough estimate of a composite’s
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overall stiffness. The Taylor assumption and some interme-
diate procedures are often employed in polycrystal plasticity
modeling.
The other alternatives to enforce boundary conditions

require the solution of the RVE boundary value problem,
while allowing the incorporation of local microstructural
details. The apparent overall properties obtained by appli-
cation of uniform displacement boundary conditions on a
microstructural cell usually overestimate the effective prop-
erties, while the minimal kinematic boundary conditions and
uniform traction boundary conditions lead to the underesti-
mation. Moreover, the two latter types of boundary condi-
tions are usually very sensitive to particular microstructural
details near the RVE boundary, for example, weak spots
(Inglis et al., 2008). For a given microstructural cell size,
the periodic boundary conditions are known to provide a
better estimation of the overall properties than the other
mentioned alternatives (van der Sluis et al., 2000; Terada
et al., 2000; Miehe, 2002; Kanit et al., 2003, 2006; Khisaeva
and Ostoja-Starzewski, 2006; Perić et al., 2011). The peri-
odic boundary conditions are the most frequently used in
practice, although the uniform displacement boundary condi-
tions are also often used, mostly owing to the simplicity
of their implementation. Recently, advanced types of RVE
boundary conditions have been developed based on combina-
tions of the above boundary conditions designed for specific
problems, for example, strain localization (Larsson et al.,
2011; Coenen et al., 2012c).

4.4 Micro-to-macro: Hill–Mandel condition

The micro-to-macro scale transition relation is usually estab-
lished based on the so-called Hill–Mandel condition or
macrohomogeneity condition (Hill, 1963; Suquet, 1985b).
This condition requires the volume average of the increment
(or variation) of work performed on the RVE to be equal to
the increment (or variation) of local work on the macroscale.
Formulated in terms of a work conjugated set, that is, the
deformation gradient tensor and the first Piola–Kirchhoff
stress tensor, the Hill–Mandel condition reads

1
V0m ∫V0m

Pm ∶ 𝛿FT
mdV0m = PM ∶ 𝛿FT

M (22)

Using the chain rule, while accounting for the microstruc-
tural equilibrium (9),

Pm ∶ ∇⃗0m𝛿x⃗m = ∇⃗0m ⋅ (PT
m ⋅ 𝛿x⃗m) − (∇⃗0m ⋅PT

m) ⋅ 𝛿x⃗m

= ∇⃗0m ⋅ (PT
m ⋅ 𝛿x⃗m)

and applying the divergence theorem, the volume average of
the microstructural virtual work may be expressed in terms

of RVE surface quantities as

1
V0m ∫V0m

Pm ∶ 𝛿FT
mdV0m = 1

V0m ∫Γ0m

p⃗m ⋅ 𝛿x⃗m dΓ0m (23)

where p⃗m = N⃗m ⋅PT
m is the first Piola–Kirchhoff stress vector.

Substitution of the variation of expression (7) into the
averaged microwork (23) gives

1
V0m ∫Γ0m

p⃗m ⋅ (𝛿FM ⋅ X⃗m + 𝛿w⃗m) dΓ0m

=
(

1
V0m ∫Γ0m

p⃗m ⊗ X⃗m dΓ0m

)
∶ 𝛿FT

M

+ 1
V0m ∫Γ0m

p⃗m ⋅ 𝛿w⃗m dΓ0m (24)

For the constraints on the microfluctuation field considered
in the previous section, that is, the Taylor constraint (13),
the uniform displacement boundary conditions (15), and the
periodic boundary conditions (17), the last integral involving
the RVE average work by the microfluctuation can be shown
to vanish from equation (24). Then, comparing equation (24)
to the right-hand side of equation (22) allows identification
of the macroscopic stress tensor PM as

PM = 1
V0m ∫Γ0m

p⃗m ⊗ X⃗m dΓ0m (25)

The above surface integral can further be transformed into a
volume integral as follows:

PM = 1
V0m ∫Γ0m

p⃗m ⊗ X⃗m dΓ0m

= 1
V0m ∫Γ0m

N⃗m ⋅ PT
m ⊗ X⃗m dΓ0m

= 1
V0m ∫V0m

∇⃗0m ⋅ (PT
m ⊗ X⃗m) dV0m

= 1
V0m ∫V0m

Pm dV0m (26)

where first the divergence theorem has been applied and,
to obtain the last equality, the following identity, while
accounting for the microstructural equilibrium (9) and
∇⃗0mX⃗m = I (with I the second-order unit tensor), has been
used:

∇⃗0m ⋅ (PT
m ⊗ X⃗m) = (∇⃗0m ⋅PT

m)⊗ X⃗m + Pm ⋅ (∇⃗0mX⃗m) = Pm

(27)
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Thus, based on the Hill–Mandel energy consistency rela-
tion, for the considered boundary conditions, the macroscale
first Piola–Kirchhoff stress tensor has been identified as the
volume average of the microscale first Piola–Kirchhoff stress
tensor

PM = 1
V0m ∫V0m

Pm dV0m (28)

Note that sometimes in the CH, the stress volume averaging
relation (28) is postulated, together with the kinematics scale
transition (11), leading to a selection of the boundary condi-
tions, and then the validity of the Hill–Mandel condition is
verified. Obviously, the formulations obtained in either way
are the same.

4.5 Implementation aspects

4.5.1 RVE boundary value problem

The RVE problem to be solved is a standard nonlinear
quasi-static boundary value problem with kinematic
boundary conditions.1 Thus, any numerical technique
suitable for solution of this type of problems can be used.
In the following, the finite element method will be adopted.
Following standard finite element procedures, the weak form
of the RVE equilibrium (9) with account for the constitu-
tive relations (10) leads to a system of nonlinear algebraic
equations for the unknown nodal displacements u

˜

f
˜int

( u
˜
) = f

˜ext
(29)

expressing the balance of internal and external nodal forces.
This system has to be completed by boundary conditions.
Hence, the earlier introduced boundary conditions (16) or
(18) have to be elaborated in more detail.

Fully prescribed boundary displacements
In the case of the fully prescribed displacement boundary
conditions (16), the displacements of all nodes on the
boundary are simply given by

u⃗p = (FM − I) ⋅ X⃗p, p = 1, … ,Np (30)

where Np is the number of prescribed nodes, which in this
case equals the number of boundary nodes. The boundary
conditions (30) are added to the system (29) in a stan-
dard manner by static condensation, Lagrange multipliers,
or penalty functions.

Periodic boundary conditions
Before application of periodic boundary conditions (18), the
equations have to be rewritten into a format more suitable for
the finite element framework. Consider the two-dimensional
periodic RVE schematically depicted in Figure 2 as an
example; extension to three dimensions is straightforward.
The boundary of this RVE can be split into four parts, here
denoted as “T” top, “B” bottom, “R” right, and “L” left.
Taking into account the initial periodicity of the RVE, condi-
tion (18) can be rewritten as

u⃗T − u⃗B = (FM − I) ⋅ (X⃗4 − X⃗1)

u⃗R − u⃗L = (FM − I) ⋅ (X⃗2 − X⃗1) (31)

where X⃗p, p = 1, 2, 4 are the position vectors of the corner
nodes 1, 2, and 4 in the undeformed state, see Figure 2.
Prescribing the displacements of the corner nodes in (31)

according to

u⃗p = (FM − I) ⋅ X⃗p, p = 1, 2, 4 (32)

the periodic boundary conditions can be rewritten as

u⃗T = u⃗B + u⃗4 − u⃗1

u⃗R = u⃗L + u⃗2 − u⃗1 (33)

which is a convenient form for implementation in finite
element codes. In a discretized format, the relations (33) lead
to a set of homogeneous constraints of the type

Ca u˜a
= 0

̃
(34)

with Ca a matrix containing coefficients in the constraint
relations and u

˜a
a column with the degrees of freedom

involved in the constraints. Standard procedures for
imposing constraint relations, for example, the direct
elimination of the dependent degrees of freedom from the
system of equations or the use of Lagrange multipliers or
penalty functions, can be applied to impose (34).

4.5.2 Calculation of the macroscopic stress

After the solution of the microstructural RVE boundary
value problem, the RVE averaged stress has to be extracted.
The macroscopic stress tensor can be calculated by numer-
ically evaluating the volume integral (28). However, it is
computationally more efficient to compute the surface inte-
gral (25).
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Fully prescribed boundary displacements
For the case of prescribed displacement boundary conditions,
the surface integral (25) simply leads to

PM = 1
V0m

Np∑
p=1

f⃗p ⊗ X⃗p (35)

where f⃗p are the resulting reaction forces at the boundary

nodes and X⃗p the position vectors of these nodes in the
undeformed state.

Periodic boundary conditions
For the case of the periodic boundary conditions, the surface
integral (25) can be simplified even further. Taking into
account that the homogeneous constraints (34) satisfy the
condition of zerowork, it can be easily shown that the “tying”
forces needed to enforce the constraints are antiperiodic and
that their contributions to the overall stress tensor cancel out.
Thus, for the 2D case considered above, PM can be simply
computed as

PM = 1
V0m

∑
p=1,2,4

f⃗p ⊗ X⃗p (36)

where f⃗p are the resulting reaction forces at the three
prescribed nodes.

4.5.3 Macroscopic tangent stiffness

For the solution of nonlinear macroscopic problem using
iterative techniques (e.g., Newton–Raphson method), the
tangent stiffness is typically required. Since the CH does
not provide an explicit form of the macroscopic consti-
tutive relation, the tangent stiffness has to be determined
numerically from the relation between variations of the
macroscopic stress and macroscopic deformation at every
macroscopic (integration) point. This may be realized by
numerical differentiation of the numerical macroscopic
stress–strain relation, for example, using a forward differ-
ence approximation (Miehe, 1996). An alternative approach
is the condensation of the microstructural tangent stiff-
ness, used for the solution of the respective RVE problem,
to the local macroscopic tangent stiffness. Elaboration
of such a procedure in combination with the Lagrange
multiplier method to impose boundary constraints can
be found in the literature (Miehe, 2002). Here, another
scheme (Kouznetsova et al., 2001), which employs the
direct condensation of the constrained degrees of freedom,
will be outlined.

First, the total microstructural system of equations (in its
linearized form) is partitioned as[

Kpp Kpf

Kfp Kff

] [
𝛿u
˜p

𝛿u
˜ f

]
=

[
𝛿f
˜p0
̃

]
(37)

where 𝛿u
˜p

and 𝛿f
˜p

are the columns with iterative displace-
ments and external forces of the prescribed nodes, that is,
p = 1, … ,Np for prescribed displacement boundary condi-
tions and p = 1, 2, 4 for the periodic boundary conditions
in 2D; 𝛿u

˜ f
the column with the iterative displacements of

the remaining nodes; and Kpp, Kpf , Kfp, and Kff the corre-
sponding partitions of the total RVE tangent stiffness matrix
taken at the end of a microstructural increment, when a
converged state is achieved. Note that for the case of the peri-
odic boundary conditions, the system (37) should be taken
after application of the constraint relations (34). Elimination
of 𝛿u

˜ f
from (37) leads to the reduced stiffness matrix KM

relating boundary displacement variations to boundary force
variations

KM𝛿u˜p
= 𝛿f

˜p
, with KM = Kpp − Kpf (Kff )

−1Kfp (38)

Note that in practice, no direct computation of the inverse
(Kff )

−1 is needed; instead, if a direct solver is used for the
solution of the RVE discrete linear system of equations, the
multiplications in the last term of (38) can be performed
using the already factorized matrix, thus making the compu-
tation of KM rather efficient. For iterative solvers, one can
use the procedure developed in Mosby and Matouš (2015a).
Next, the relation between displacement and force varia-

tions (38) needs to be transformed to arrive at an expression
relating variations of the macroscopic stress and deformation
tensors

𝛿PM=4ℂP
M ∶ 𝛿FT

M (39)

where the fourth-order tensor 4ℂP
M represents the required

constitutive tangent stiffness at the macroscopic integration
point level.
To obtain this constitutive tangent from the reduced stiff-

ness matrix KM, it is convenient to first rewrite the relation
(38) in a specific vector/tensor format∑

j

K(ij)
M ⋅ 𝛿u⃗(j) = 𝛿f⃗(i) (40)

where indices i and j take the values i, j = 1, … ,Np

for prescribed displacement boundary conditions and
i, j = 1, 2, 4 for the periodic boundary conditions. In (40),
the components of the tensors K(ij)

M are simply found in the
tangent matrix KM at the rows and columns of the degrees
of freedom in the nodes i and j. Next, the expression for
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the variation of the nodal forces (40) is substituted into the
relation for the variation of the macroscopic stress following
from (35) or (36)

𝛿PM = 1
V0m

∑
i

∑
j

(K(ij)
M ⋅ 𝛿u⃗(j))⊗ X⃗(i) (41)

Substitution of the relation for the prescribed nodes 𝛿u⃗(j) =
X⃗(j) ⋅ 𝛿F

T
M into (41) gives

𝛿PM = 1
V0m

∑
i

∑
j

(X⃗(i) ⊗ K(ij)
M ⊗ X⃗(j))LT ∶ 𝛿FT

M (42)

where the superscript LT denotes transposition on the two left
indices. Finally, by comparing (42) with (39), the consistent
constitutive tangent is identified as

4ℂP
M = 1

V0m

∑
i

∑
j

(X⃗(i) ⊗ K(ij)
M ⊗ X⃗(j))LT (43)

4.6 Computational homogenization
for multiphysics problems

As described in Section 3.4, the CH framework has been
extended to various multiphysics problems. In many cases,
extensions and applications to coupled fields can be done
largely along the same lines as described above for purely
mechanical problems. In this case, the unknown displace-
ment (position vector) field is replaced by another field,
for example, temperature, electric potential, magnetic poten-
tial, and so on, see, for example, Özdemir et al. (2008a,b),
Schröder andKeip (2012), Zäh andMiehe (2013), Javili et al.
(2013) for more details. The multiscale procedure is then
driven by the gradient of this field, for example, tempera-
ture gradient, electric field, and magnetic field. Postulating a
scale transition relation for this gradient quantity, similar to
equation (11), yields the condition on the microfluctuation
field that is used to formulate the RVE boundary condi-
tions on the unknown field. The Hill–Mandel macrohomo-
geneity condition (22) is generalized in terms of the product
of the gradient field and its dual, for example, temperature
gradient and heat flux, electric field and electric displace-
ment, andmagnetic field andmagnetic induction, fromwhich
the expression for the homogenized dual quantity is derived,
usually in the form of both volume and surface integrals. At
each scale, appropriate balance equations are solved. Due to
the scale separation requirement, the RVE problem has to
be stationary, while the macroscopic problem can be tran-
sient. The derivation of the macroscopic tangent operator
for nonlinear iterations can be performed in a similar way
through static condensation, as described above.

Additional difficulty appears in some problems due to
the need to prescribe not only the gradient quantity on the
RVE, for example, the temperature gradient, but also the
absolute level of the unknown field quantity, for example,
the temperature itself in case of the temperature-dependent
material properties. In this case, additional scale transition
relations need to be formulated. For example, in Özdemir
et al. (2008a,b), the thermal energy consistency condition
was enforced by requiring the volume average of the RVE
stored heat to be equal to the local macroscopic stored heat.
After elaboration, this has led to an additional constraint on
the RVE temperature field.

5 RVE ASPECTS AND STATISTICS FOR
NONLINEAR MATERIALS

As alluded to in the previous sections, the RVE used in
the context of CH has various definitions. The definition
proposed by Hill (1963) implies that the RVE should be
large enough to represent a whole ensemble of microstruc-
tures in an average sense, and contain a sufficient number
of heterogeneities in order to eliminate boundary effects, as
long as the boundary values are macroscopically uniform.
Drugan and Willis (1996) proposed a variant, where the
RVE is the smallest material volume element that repre-
sents the mean constitutive response with sufficient accuracy.
Povirk (1995) proposed yet another approach to determine
the RVE that relies on a description of the microstructure
using a certain statistical descriptor function. An optimally
sized domain that preserves the statistical description of the
original microstructure is regarded as the RUC. In all these
cases, an RVE should be both statistically representative (i.e.,
capture geometrical complexity of a material) and should
capture the effective material behavior (i.e., capture physical
response of a material). We focus on randomly configured
microstructures in this section and show that both require-
ments are mutually inclusive, since properly capturing the
morphology leads to sufficiently accurate overall behavior.
In summary, an ideal RVE for random morphologies is only
achievable in the infinite volume limit, but an optimally
constructed RUC can lead to effective material predictions
with small deviation.

5.1 Image-based modeling

When modeling geometric and material nonlinearities in
heterogeneous materials, construction of an appropriate
computational microscale domain or RUC for multiscale
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Figure 3. Three-dimensional representations of microstructures obtained using micro-CT. (a) Solid rocket propellant (from Lee et al.,
2011). (b) Granular pack of polydisperse spheres (black mustard) and ellipsoids (rice grains) (from Gillman et al., 2013).

simulations is crucial for obtaining accurate predictions.
Moreover, analyzing realistic microstructures is critical for
simulations to become truly predictive.
The concept of image-based (data-driven) modeling

focuses on obtaining detailed three-dimensional data sets
from imaging methods, for example, microcomputer tomog-
raphy (micro-CT) or scanning electron microscopy (SEM),
and constructing optimal computational domains. Micro-CT
is a particularly attractive imaging method, as it allows for
three-dimensional representations to be obtained nonde-
structively. Some examples of complex material systems
imaged with micro-CT are shown in Figure 3. Note that
heterogeneous materials may contain a variety of hetero-
geneous phases (voids, inclusions, fibers, crystals, etc.) of
varying composition, size, and shape with complex spatial
configuration, and statistically preserving this morphology
in an RUC is critical.

5.2 Statistically representative unit cells

The random complex nature of heterogeneous microstruc-
tures makes volume-averaged statistical descriptors well
suited for quantifying the spatial configuration.

5.2.1 Statistical descriptors

Many statistical descriptors of heterogeneous materials
have been proposed to quantify random morphologies, see
the book by Torquato (2002), for example. One common
measure is the n-point probability function. First, an indi-
cator function of material phase q at a position x⃗ ∈ ℝ is
given by

𝜒q(x⃗) =

{
1 if x⃗ in phase q

0 otherwise.
(44)

The n-point probability function is then defined as the
ensemble average (denoted by an overbar) of the indicator
function for n points as

Sqs···t(x⃗1, x⃗2, … , x⃗n) = 𝜒q(x⃗1)𝜒s(x⃗2) · · ·𝜒t(x⃗n) (45)

which represents the probability of phases q, s, … , t
existing at points x⃗1, x⃗2, … , x⃗n, simultaneously.
In what follows, we will focus on statistically homoge-

neous (translationally invariant) and isotropic (rotationally
invariant) microstructures for ease of presentation. Gener-
alization to more complex anisotropic systems can be
found in Torquato (2002) and Gillman et al. (2013). For
ergodic, homogeneous, and isotropic systems, the one-
and two-point probability functions reduce to Sq(x⃗1) = cq,
Sqs(x⃗1, x⃗2) = Sqs(r = |x⃗2 − x⃗1|), where cq is the volume
fraction of constituent q (Figure 4a). Moreover, randomly
configured microstructures lack long-range order, and the
following limits hold for the two-point probability functions

Sqs(x⃗2 − x⃗1) →

{
cq𝛿qs as x⃗2 − x⃗1 → 0⃗

cqcs as x⃗2 − x⃗1 → ∞⃗
(46)

The limit case x⃗2 − x⃗1 → ∞⃗ is a natural candidate for
determining a minimum geometric size of an RUC and is
discussed below.
Analytical expressions of the n-point probability functions

typically cannot be defined for randommorphologies. There-
fore, Monte Carlo-based statistical sampling algorithms are
often utilized, where many random samples are considered.
An adaptive sampling strategy for up to third-order statistics
is presented in Gillman and Matouš (2014). An example of
the isotropic two-point probability function, Spp, is shown in
Figure 4(b).
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Figure 4. (a) Illustration of the n-point probability and surface–surface correlation functions. (b) Two-point probability. (c) Surface–surface
correlation function for a microstructure with 1000 spheres of diameter d = 91.4 μm and cp = 0.4 (see inset of (b)). Note that the subscripts
p, m, and s denote the particulate, matrix, and interphase constituents, respectively.

Although n-point probability functions have frequently
been used for quantifying random microstructures, some
microscale models may require additional statistical descrip-
tors. For instance, when considering imperfect surface
phenomena, such as particle–matrix debonding or nanoscale
interphases, surface–surface correlation functions may be
relevant descriptors for analysis. The surface–surface corre-
lation function can be defined in the limit of an interphase
of thickness t going to zero as

Fss(r) = lim
t→0

Sss(r)
t2

(47)

where Sss is the two-point probability function of the inter-
phase s. This function is presented for a pack of spheres with
t = 0.01d in Figure 4(c). Moreover, note that other statistical
descriptors, for example, radial distribution (pair correla-
tion), lineal path, and chord length density functions, have
been used to characterize heterogeneous materials (Yeong
and Torquato, 1998; Bochenek and Pyrz, 2004; Zeman and
Šejnoha, 2007). The choice of these statistical measures
depends on the material system and physics of interest.
Note that these statistical descriptors are not solely

utilized for quantifying the morphology, but also arise
in micromechanics estimates of effective thermomechan-
ical behavior for both linear (Torquato, 2002; Milton,
2002; Lee et al., 2011; Gillman et al., 2013, 2015) and
nonlinear (Talbot and Willis, 1985; Ponte Castañeda, 1998)
regimes. In an article by Gillman et al. (2015), third-order
statistical micromechanics models showed that the effec-
tive thermomechanical properties for packs of platonic
solids are altered substantially by changing the particle
shape.

5.2.2 RUC reconstruction

In order to construct an optimal RUC that preserves the statis-
tical makeup of large composite microstructures, an opti-
mization problem is typically formulated. In this section, we
discuss reconstructing RUCs of the second order (i.e., first-
and second-order statistics are preserved). A general objec-
tive function, f , which quantifies the differences in relevant
statistical descriptors, i, between a large image-based data
set (denoted by superscript p) and an RUC (denoted by super-
script c) is defined as

f (⃗) =
Ns∑
i

𝛼ii +
Np∑
i

𝛽ii,i = |p
i − c

i | (48)

where ⃗ is the set of physically admissible geometric param-
eters subject to minimization. Here, i are penalty functions
to enforce geometric constraints such as impenetrability, Ns

and Np are the number of statistics functions and number of
penalty functions, respectively, and 𝛼i and 𝛽i are weights for
each term in the objective function.
When considering n-point probability functions of hetero-

geneous materials, two separate objective functions can be
minimized independently. A first objective function is formu-
lated to determine the geometrical size of the cell, lcell, that
best preserves volume fractions (first-order statistics) given
the number and volume of constituents. This objective func-
tion for an N-phase material is defined as

1(lcell) =

√√√√ N∑
q

(cpq − ccq)2 =

√√√√√ N∑
q

(
cpq −

Vqnq

l3cell

)2

(49)
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where cpq and ccq are the volume fractions for material phase
q. Vq and nq are the volume and the number of heterogeneous
phases (i.e., geometric entities – particles, fibers, voids) in
the cell for phase q. The saturation point of the two-point
probability function (rsat), which is the point at which deriva-
tives of all two-point probability functions reach zero (46),
provides a good initial guess, lstat = 2rsat, for optimal lcell.
Thus, lstat is the smallest sample that can statistically describe
the overall material morphology up to the second-order prob-
ability functions. A second objective functionminimizing the
L2 error of the isotropic two-point statistics is defined as

2(x⃗ n) =
N∑
q

N∑
s

‖Spqs − Scqs‖L2 (50)

where x⃗ n are the positions of the geometric features in the
microscale cell. Anisotropic materials or statistics of the
higher order can be described in a similar way but are not
covered for brevity of presentation.
An example of this reconstruction procedure is presented

here from Lee et al. (2009), where particulate RUCs are
reconstructed from a tomographically obtained data set
for a granular system of polydisperse silica (see inset of
Figure 5a). A large section (pack, see Figure 5b) from the
tomographic data set (1445.37 × 1287.892 × 789.106 μm3)
containing 19 892 particles is analyzed. The particles
are grouped into nine different sizes/modes (Figure 5a),
and two-point probability functions are computed. From
the statistical analysis of the pack, the statistical length
scale is lstat = 2rsat = 400 μm (∼10 mean particle diame-
ters). Utilizing this statistical information, five RUCs of
the second statistical order were reconstructed using a
genetic algorithm. Each RUC contains 1082 particles with
lcell = 399.632 μm (geometric length scale), and one of

these cells is shown in Figure 5(b). Adequate agreement in
the two-point statistics is illustrated in Figure 5(c). Note the
small standard deviation over five cell realization indicating
a small error in cell morphologies. It is important to note that
the particle packing density and particle size distribution
play a critical role in the resulting statistical/geometric
length scale, that is, highly filled systems result in larger lcell
(Collins et al., 2010).

5.3 Numerical example: failure in heterogeneous
interfaces

Utilizing the statistical reconstruction framework summa-
rized in Section 5.2.2, we illustrate the connection between
the geometric material length scale, lcell ≈ lstat, and the
physical size of an RUC, lRUC, that is required to describe
the effective nonlinear material behavior. As mentioned at
the beginning of this section, the morphology/geometry
of an RUC and its effective material behavior are closely
intertwined. In particular, the failure response of three
different-sized cells is computed in the context of multiscale
cohesive modeling in a 3D finite strain setting (Matouš
et al., 2008; Kulkarni et al., 2009, 2010; Mosby and
Matouš, 2015a,b). Microscale failure is modeled with
a viscous isotropic damage model (Simo and Ju, 1989,
Matouš et al., 2008). Five statistically (macroscopically)
equivalent RUCs of different morphology (microstruc-
ture) for each cell size were considered, and the averaged
normal traction–separation curves were computed. The
traction–separation response is shown in Figure 6(a) with
error bars showing one standard deviation over five cell
realizations. Here, pnM and ⟦unM⟧ are the normal macro-
scopic traction and jump in displacement at the interface,
respectively. When comparing the averaged response, the
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Figure 7. Comparison of the damage pattern at the final computed point in cells with different side lengths (from Mosby and Matouš,
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hyperelastic behavior is identical for all cell sizes, but the
limit point and softening responses are not. This illus-
trates the key effect of nonlinearity on the resulting size
of the RUC. While the two larger unit cells (lcell ≈ lstat
and lcell ≈ 2lstat) have small and overlapping error bars, the
smallest cell (lcell ≈ 1∕2lstat) has a distinctly different soft-
ening response with large standard deviation. One important
quantity of interest is the maximum traction (strength).
The convergence of the normal strength with respect to the
side length of the unit cell, lcell, is displayed in Figure 6(b).
This figure shows the rapid convergence of both mean and
standard deviation with increasing cell size.

The damage pattern at the final computed points (last
open black symbols in Figure 6(a)) is also analyzed in
Figure 7(a–c). Notice that the two larger cells have a
more distributed damage pattern, whereas the cell with
lcell ≈ 1∕2 lstat has a single dominant crack at the top
of the cell. In this example, the microstructural length
scale of interest is the effective crack thickness denoted
as l𝜇 (5). The effective crack thickness for different
threshold values of the damage variable, 𝜔, is shown in
Figure 7(d). As shown, l𝜇 is nearly identical for the two
larger cells, while the smallest cell has a smaller effective
crack thickness.
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For this example, it is clear that cells smaller than the statis-
tical length scale (lcell < lstat) are incapable of predicting
the highly nonlinear effective material response. Cells with
lcell ≥ lstat provide a more accurate and precise material
description, yet they are computationally expensive. There-
fore, the required accuracy of the overall macroscopic
response needs to be balanced with the resulting increase in
computational cost. Finally, note once more that the rela-
tionship between the RUC size (lRUC) and lcell is not solely
dependent on the microstructure, as the constituent material
properties and their contrast also play a role. Therefore,
the RUC size analysis summarized here (both based on
morphology, Section 5.2, and physics, Section 5.3) should
be completed for any given material system of interest
before concluding that lRUC = lcell ≈ lstat. Nevertheless, the
statistical characteristic length scale is a good candidate for
RUC construction.

6 DECOUPLED COMPUTATIONAL
HOMOGENIZATION METHODS

To circumvent computational cost issues related to nested
calculations in CH methods, as described in Section 4, alter-
native approaches have been introduced with the aim of
developing decoupled numerical methods for homogenizing
heterogeneous materials with nonlinear or time-dependent
behaviors. A first straightforward approach, inspired by clas-
sical experimental identifications procedures, uses virtual
tests on RVEs through numerical computations to identify
empirical macroscopic constitutive laws (see, e.g., recent
contributions in Terada et al., 2013, 2014). However, clas-
sifying such procedures as homogenization is question-
able. Constructing effective constitutive laws without prior
knowledge on their form is, however, possible, but in some
restricted cases. A second class of techniques is based on the
construction of a numerical, material map between effective
stress and strains (Terada and Kikuchi, 1995; Takano et al.,
1996; Temizer and Wriggers, 2007; Yvonnet et al., 2009,
2013; Clément et al., 2012; Tran et al., 2011), which can be
applied, for example, in the case of hyperelastic materials
or for linear viscoelasticity, as described in the following. A
third class of methodologies, valid for viscoplastic materials
at small strains, uses preliminary computations to construct
a basis for anelastic modes (TFA and NTFA techniques). We
describe these techniques in Section 6.3.

6.1 Decoupled approach for nonlinear elasticity
at finite strains

A consequence of the Hill–Mandel lemma discussed in
Section 4, see equation (22), is that the macroscopic first

Piola–Kirchhoff stress tensor can be defined according to:

PM = ⟨Pm⟩ = 𝜕Ψ∗
M(FM)
𝜕FM

(51)

where ⟨.⟩ denotes spatial averaging over the domain asso-
ciated with the RVE in the reference configuration and
Ψ∗

M(FM) defines the strain energy density function or elastic
potential associated with the homogeneous equivalent mate-
rial, determined by

Ψ∗
M(FM) = Inf

Fm∈∗(FM)
⟨Ψ∗

m(X⃗,Fm)⟩
= Inf

Fm∈∗(FM)

N∑
r=1

cr⟨Ψ∗r
m (Fm)⟩r (52)

where∗ is the set of kinematically admissible deformation
gradient tensors, N the number of phases, and cr the volume
fractions of the different phases. It can be shown that Ψ∗

M
is objective. Thus, Ψ∗

M(FM) = ΨM(CM). It is worth noting
that only FM and PM can be defined as the volume spatial
averages of their microscopic counterparts. Furthermore, we
have the relations

SM = F−1
M ⋅PM, 𝝈M = 1

JM
PM ⋅FT

M (53)

with JM = ⟨det(Fm)⟩. A similar relation to equation (51) can
be stated to relate the effective second Piola–Kirchhoff stress
SM and right Cauchy–Green deformationCM. Using (51), we
have

PM =
(
𝜕CM

𝜕FM

)
∶

𝜕ΨM(CM)
𝜕CM

(54)

and (
𝜕CM

𝜕FM

)
= 2(FT

M⊗I) (55)

where we note the product (A⊗B)ijkl =
1
2
(AikBjl + AilBjk).

Then, we have

SM = F−1
M ⋅PM = 2(I⊗I) ∶

𝜕ΨM(CM)
𝜕CM

(56)

After simplifications and using the symmetry of CM, we
obtain

SM = 2
𝜕ΨM(CM)

𝜕CM
(57)
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Then, the effective strain-density function ΨM of the
composite can be defined as

ΨM(CM) = Inf
Cm∈(CM)

⟨Ψm(X⃗,Cm)⟩
= Inf

Cm∈(CM)

N∑
r=1

cr⟨Ψr
m(Cm)⟩r (58)

where  is the set of kinematically admissible deformation
tensors for CM. In other words, for a given macroscopic
deformation state CM, the corresponding value ofΨM(CM) is
found by evaluating the average of local potential functions
Ψm(X⃗,Cm), where Cm(X⃗) is an admissible deformation field.
Using similar arguments, the macroscopic elastic tangent
tensor 4𝕃M can be expressed as

4𝕃M = 4
𝜕2ΨM(CM)

𝜕C2
M

(59)

In the NEXP method (Yvonnet et al., 2009, 2013), the
effective behavior of nonlinear materials is obtained by
means of a database describing the overall potentialΨM(CM),
which is evaluated and interpolated numerically in the space
of macroscopic deformation components as

ΨM(CM) ≈
∑
i

Ni(CM)ΨMi (60)

where Ni are interpolation functions in the macroscopic
deformation domain. For this purpose, finite element compu-
tations are performed on an RVE for each point of the defor-
mation domain, which corresponds to boundary conditions
for the local nonlinear problem. Once computed and stored,
the discrete values of the potential ΨMi can be interpolated
and derived for obtaining the stress SM as

SM(CM) ≈ 2
∑
i

𝜕Ni(CM)
𝜕CM

ΨMi (61)

Finally, the elastic tangent tensor, 4𝕃M (required at each
macroscale integration point to solve the macroscopic
boundary value problem), is computed according to

4𝕃M(CM) ≈ 4
∑
i

𝜕2Ni(CM)
𝜕C2

M

ΨMi (62)

As the local problem is solved with the purpose of
computing the potential ΨM(CM), it is necessary to
define boundary conditions on the RVE with respect
to CM. Since ΨM does not depend on rotations, RM,
we can choose RM = I, which leads to FM = UM =
C1∕2
M . Then, the RVE boundary conditions, for example,

periodic, can further be prescribed as was elaborated in
Section 4.5 (7) as

Δx⃗m = C1∕2
M ⋅ΔX⃗m + w⃗m on Γ0M (63)

6.2 Decoupled approach for homogenization
of linear viscoelastic composites

Here, we consider a composite whose phases are linear
viscoelastic and assume small strains. In that case, it can
be shown that the effective or macroscopic behavior of the
composite remains linearly viscoelastic (Hashin, 1965, 1970)
and is generally characterized by

𝝈M(t) = ∫
t

−∞

4ℾM(t − s) ∶
d𝜺M(s)
ds

ds

= ∫
t

0

4ℾM(t − s) ∶
d𝜺M(s)
ds

ds + 4ℾM(t) ∶ 𝜺M(0)

(64)

where 𝝈M(t) = ⟨𝝈m(t)⟩ and 𝜺M(t) = ⟨𝜺m(t)⟩. In the general
case, that is, for arbitrary RVE morphology and different
local viscoelastic models, the form of the effective
fourth-order relaxation tensor, 4ℾM, is unknown. However,
a numerical approximation of 4ℾM(t) can be constructed, as
proposed by Tran et al. (2011). For this purpose, the numer-
ically explicit mapping [4ℾ ]ijkl ∶ ℝ+ → ℝ is introduced and
is defined as

[4ℾ ]ijkl(t) ≃
M∑
p=1

𝜙
ijkl
p (t)𝛼ijkl

p (65)

where M is the number of nonzero shape functions at time
t, 𝛼ijkl

p the components of the effective relaxation tensor
function sampled at time tp such that

[4ℾ ]ijkl(tp) ≡ 𝛼
ijkl
p (66)

and 𝜙ijkl
p (t) the interpolation function related to the time step

tp. In (64), no sum holds for indices i, j, k, and l. By choosing

𝜺M(t) = H(t)𝜺(ij)M (67)

whereH(t) is the Heaviside step function and 𝜺(ij)M an elemen-
tary strain state defined below, and by introducing (67) in
(64), we obtain

𝝈M(t) = ∫
t

−∞

4ℾM(t − s) ∶ 𝜺
(ij)
M 𝛿(s)ds (68)
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with 𝛿(t) being the Dirac delta function. With the help of the
property

∫
t

−∞
f (t − s)𝛿(s)ds = f (t) (69)

we finally have

[4ℾM(t)]ijkl =
𝝈
(kl)
Mij(t)

�̄�0
=

⟨𝝈(kl)
mij (t)⟩
�̄�0

(70)

where 𝜎
(kl)
mij (t) is the second-order stress field in the RVE

obtained numerically by solving a transient problem for
an RVE with linear viscoelastic phases when applying a
macroscopic strain in the form

𝜺
(kl)
M = 1

2
�̄�0(e⃗k ⊗ e⃗l + e⃗l ⊗ e⃗k), k = 1, … , 3, l = 1...3

(71)
In (70) and (71), �̄�0 is an arbitrary constant, small enough to

keep the resultingmicroscopic andmacroscopic strains small
and ensuring that no geometrical and mechanical nonlin-
earities occur. Then, a simple algorithm can be defined to
compute the response of the FE structure at the macroscopic
scale (see Tran et al., 2011 for more details). An illustration
of a structural simulation by such technique is provided in
Figure 8.

6.3 NTFA method (nonuniform transformation
field analysis)

In this approach, the microstructural constituents are
assumed to be generalized standard materials (see Halphen
and Nguyen, 1975 or Germain, 1983). For all points within
the material, the state is defined by the infinitesimal strain

tensor, 𝜺m, and a vector of state internal variables 𝛼
˜m

asso-
ciated with dissipative phenomena such as plasticity or
damage. Stress and thermodynamic forces are given by the
relationship

𝝈m =
𝜕wm

𝜕𝜺m
(𝜺m, 𝛼˜m

), Ξ
˜ m

= −
𝜕wm

𝜕𝛼
˜m

(𝜺m, 𝛼˜m
) (72)

where the free energy w is a convex functions of its argu-
ments. The evolution of internal variables is given by

�̇�
˜m

=
𝜕𝜓m

𝜕Ξ
˜ m

(Ξ
˜ m

), or Ξ
˜ m

=
𝜕𝜑m

𝜕�̇�
˜m

(�̇�
˜m

) (73)

where 𝜑m and 𝜓m are dual, convex potentials. We first
describe the TFA method, initially proposed by Dvorak
(1992). We consider the following equations of the local
problem defined on the RVE, which is associated with an
open domain Ωm containing interfaces collectively denoted
by Γm:

∇⃗ ⋅𝝈m(x⃗) = 0⃗ in Ωm∖Γm (74)

⟨𝜺m(x⃗)⟩ = 𝜺M (75)

𝝈m(x⃗) = 4ℂm(x⃗) ∶ (𝜺m(x⃗) − 𝜺
an
m (x⃗)) (76)

where 4ℂm(x⃗) is the elastic tensor and 𝜺
an
m (x⃗) a tensor of

anelastic strains. Introducing (76) in (74) and considering
(75), the strain solution of the linear problem (74)–(76) can
be formally expressed using the superposition principle as

𝜺m(x⃗) = 4𝔸m(x⃗) ∶ 𝜺M + ∫Ωm

4𝔻m(x⃗, y⃗) ∶ 𝜺
an
m (y⃗)dΩy (77)
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Figure 8. Homogenization of heterogeneous viscoelastic material by decoupled approach (adapted from Tran et al. (2011)): (a) structure;
(b) RVE; (c) response of the structure to a permanent load in time.
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In (77), 4𝔸m(x⃗) is the classical localization tensor, 4𝔻m
the fourth-order Green operator defined over Ωm, and dΩy

denotes integration with respect to the y⃗ variable. In this
form, using (76) and taking the spatial average of the stress
𝝈M = ⟨𝝈m(x⃗)⟩, we obtain a relationship among the macro-
scopic stress, the macroscopic strain, and the local (micro-
scopic) anelastic strain field 𝜺anm (x⃗), corresponding to an infi-
nite number of internal variables. From now on, for the sake
of clarity, new introduced quantities without subscript m will
denote microscale quantities.
The idea of the TFA method is to reduce the number of

internal variables by expanding 𝜺
an
m (x⃗) as

𝜺
an
m (x⃗) =

N∑
r=1

𝜺
an
r 𝜒r(x⃗) (78)

where 𝜒r(x⃗) is a characteristic indicator function (44) and 𝜺anr
is a uniform eigenstrain defined in each phase. Introducing
(78) in (74)–(76), 𝜺m(x⃗) can be decomposed as

𝜺m(x⃗) = 4𝔸m(x⃗) ∶ 𝜺M +
N∑
r=1

4𝔻r(x⃗) ∶ 𝜺
an
r (79)

Here, 4𝔻r(x⃗) are the fourth-order tensors obtained by
solving the problem (74)–(76) for 𝜺M = 0 and for unitary
components of 𝜺anr . Using (76) and taking the spatial average
over Ω, the macroscopic constitutive law is expressed by

𝝈M = 4ℂM ∶ 𝜺M +
N∑
r=1

4𝔻Mr ∶ 𝜺
an
r (80)

where
4ℂM = ⟨4ℂm(x⃗) ∶ 4𝔸m(x⃗)⟩ (81)

and
4𝔻Mr = ⟨4ℂm(x⃗) ∶ {4𝔻r(x⃗) − 𝜒 (r)(x⃗)4𝕀}⟩ (82)

where 4𝕀 is the fourth-order identity tensor. The macroscopic
stress depends only on a finite number, N, of internal vari-
ables, whose evolution is given in Michel and Suquet (2003).
It has been shown that the TFA method provides low accu-

racy in practice (Suquet, 1997b). One strategy to improving
accuracy is to increase the number of subdomains in each
phase (i.e., the number of eigenstrains in each phase), but at
a price of increasing the number of internal state variables.
The nonuniform transformation analysis, NTFA, Michel

and Suquet (2003) replaces the decomposition (78) by an
expansion where anelastic eigenstrains eank (x⃗) are spatially
nonuniform:

𝜺
an
m (x⃗) =

P∑
k=1

eank (x⃗)𝛼k (83)

where 𝛼k are scalar coefficients. This decomposition is
completed by several assumptions on the anelastic modes,
like incompressibility of plastic modes (tr(eanr (x⃗)) = 0) and
orthonormality of modes:

⟨eans (x⃗) ∶ eanr (x⃗)⟩ = 0, s ≠ r, ⟨(eanr )eq⟩ = 1 (84)

where (e)eq =
(

2
3
e ∶ e

)1∕2
. The anelastic modes eank (x⃗) can

be determined by numerical simulations where character-
istic loads are prescribed on the RVE. An efficient method to
select anelastic modes is the proper orthogonal decomposi-
tion, POD (Holmes et al., 1996), which allows for extracting
suitable modes from a collection of samples (Roussette et al.,
2009). A model has been proposed in Michel and Suquet
(2003) to describe the evolution of internal variables. The
strain fields can then be expressed as

𝜺m(x⃗) = 4𝔸m(x⃗) ∶ 𝜺M +
P∑

k=1
Dk(x⃗)𝛼k (85)

where Dk(x⃗) are second-order strain tensors solutions of
(74)–(76) taking in (83) [eank ](i,j) = e⃗i ⊗ e⃗j for k = R, [eank ] =
0 for k = 1, 2, … ,N, k ≠ R. Using (85) and (83), we obtain
the expression for the local Cauchy stress tensor:

𝝈m(x⃗) = 4ℂm(x⃗) ∶[
4𝔸m(x⃗) ∶ 𝜺M +

P∑
k=1

Dk(x⃗)𝛼k −
P∑

k=1
eank (x⃗)𝛼k

]
(86)

Taking the spatial average overΩ, the effective constitutive
law is given by

𝝈M = 4ℂM ∶ 𝜺M +
P∑

k=1
𝝈
p
Mk𝛼k (87)

where 4ℂM is the effective elastic modulus defined by (81)
and

𝝈Mk = ⟨4ℂm(x⃗) ∶ [Dk(x⃗) − eank (x⃗)]⟩ (88)

6.4 Selection of plastic modes by POD

The choice of anelastic modes in the decomposition (83) is
a critical component in the procedure to reduce the number
of internal variables. In Michel and Suquet (2003), these
modes were defined as sampled plastic strains obtained by
preliminary simulations on the RVE. In that case, the modes
are not orthogonal and it is difficult to select them and still
reduce the number of modes. In Roussette et al. (2009),
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the same authors have proposed to use a POD procedure,
(Pearson, 1901; Schmidt, 1907; Lumley, 1967) to select the
modes, which is briefly reminded below.
Considering a D-dimensional domain associated with a

microstructure, subjected to a time-dependent quasi-static
loading during a time interval I = [0, T] discretized by S
instants {t1, t2, … , tS}, let q

˜ i
denote the D × N-dimensional

column formed by the displacement components of N points
of the solid recorded at an instant ti ∈ I. Considering a
time-dependent vector q

̃
R(t) ∈ ℜD×N and the following

expansion:

q
̃

R(t) = 𝜙
˜ 0

+
P∑

m=1
𝜙
˜ m

𝜉m(t) (89)

with M < D × P, 𝜙
˜ 0

and 𝜙
˜ m

(m = 1, … ,P) constant
columns belonging to ℜD×N and 𝜉m(t) scalar functions of
time t. The time-dependent columns q

̃
R(t) given by (89) are

required to minimize:

S∑
i=1

‖q
̃
(ti) − q

̃

R(ti)‖2 (90)

with the constraints:

⟨𝜙
˜ i
, 𝜙
˜ j
⟩ = 𝛿ij (91)

Solving this constrained optimization problem gives 𝜙
˜ 0

as

𝜙
˜ 0

= q̄
̃
= 1

S

S∑
i=1

q
̃
(ti) (92)

and 𝜙
˜ i

(i = 1, … ,D × N) as the eigenvectors of the eigen-
value problem

Q𝜙
˜ i

= 𝜆i𝜙
˜ i

(93)

Here, Q is the covariance matrix defined by

Q = UUT (94)

where U is a ((D × N) × S) matrix with centered columns:

U = {q
̃
(t1) − q̄

̃
, q
̃
(t2) − q̄

̃
, … , q

̃
(tS) − q̄

̃
} (95)

Note that Q is a semidefinite ((D × N) × (D × N)) matrix,
whose eigenvalues 𝜆i are decreasingly ordered: 𝜆1 ≥ 𝜆2 ≥
· · · 𝜆M ≥ · · · ≥ 𝜆D×N ≥ 0.
A reduced model can be obtained using only a small

number P of basis functions in (89). If M < D × N, it can
be shown (Liang et al., 2002) that the error induced by the

POD procedure is given by

𝜖(P) =
S∑
i=1

‖q
̃
(x⃗, ti) − q

̃

R(x⃗, ti)‖ =

(
D×N∑
i=P+1

𝜆i

)1∕2

(96)

The number of basis functions P is then chosen such that(∑D×N
i=P+1 𝜆i

)1∕2

(∑D×N
i=1 𝜆i

)1∕2 < 𝜖 (97)

where 𝜖 is a given tolerance error parameter, small compared
to one.
In the case of quasi-static nonlinear problems, the eigen-

values in (96) quickly decrease, then a small number of asso-
ciated eigenmodes can be selected to form a basis for reduced
order models, for example, in the NTFA method described
above. An illustration of results obtained by NTFA in Rous-
sette et al. (2009) is provided in Figure 9.

7 PARALLEL IMPLEMENTATIONS AND
HIGH-PERFORMANCE MULTISCALE
COMPUTING

In this section, we describe an efficient and scalable parallel
implementation of the CH framework that enables fully
coupled multiscale simulations of failure (frequently span-
ning more than (106) length scales) in engineering scale
structures. High-performance computing (HPC) is a key
enabling technology for both business and science. HPC is
used in tackling grand societal challenges and has direct and
measurable benefits on increasing global competitiveness
and improving national economies (Sawyer and Parsons,
2011; NRC, 2012). We demonstrate the capability and
performance of the proposed multiscale solver in the context
of multiscale modeling of heterogeneous layers.

7.1 Hierarchically parallel framework
for computational homogenization

A hierarchically parallel multiscale solver achieves ideal
scalability by exploiting the inherent parallelism of CH and
efficiently computing both the macroscale and microscale
equilibrium in parallel using HPC platforms. Due to the sepa-
ration of scales in CH (Figure 10), the response of each RUC
may be computed independently, providing high parallelism
in computing the fully coupled multiscale response.
The hierarchically parallel scheme uses a parallel finite

element solver, PGFem3D (Matouš and Maniatty, 2004,
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2009; Matouš and Geubelle, 2006; Mosby and Matouš,
2015a,b, 2016), at both scales and employs a client–server
coupling for passing information between the macro and
micro levels. The macroscale equilibrium is computed in
parallel on the “client” processors, and the contributions
from the individual RUCs are computed in parallel on the
“servers” (see (5) and Figure 11a). The client–server commu-
nication is based on the message-passing interface (MPI)
(MPI Forum, 2012), and different MPI communicators are
used to reduce and simplify transmissions between and
among the scales (Figure 11b). Communication is performed
using dynamic point-to-point nonblocking messages and is
efficiently overlaid with computation at both scales (for
details, see Mosby and Matouš, 2015a).
Inhomogeneous macroscopic loading can lead to work-

load imbalance between the microscale servers due to some
RUCs requiring more computational effort than others. In

addition, integrating the nonlinear evolution equations of the
microscale constitutivemodels, for example, damage or plas-
ticity, can further increase the workload imbalance between
servers. This imbalance can lead to reduction in resource
utilization and computational efficiency, wasting energy, and
requiring longer simulations. These negative effects can be
mitigated by redistributing the RUC computations on each
server at the beginning of macroscale nonlinear iterations.
A load-balancing algorithm can be used to reassign RUCs
to servers based on how long the previous computations
required. If the new assignment results in a more balanced
server workload (i.e., the servers are predicted to complete all
computations at approximately the same time), then the RUC
state information is communicated to its newly assigned
server. The RUC information is migrated between servers
using nonblocking messages and is overlaid with computa-
tion of other RUCs that are not reassigned.

7.2 Numerical examples

We now present three numerical examples that demon-
strate the performance and applicability of the hierarchically
parallel CH solver. The efficient implementation of the CH
solver enables computation of very large multiscale prob-
lems with high numerical resolution using a wide range
of computational resources. With increasing availability of
HPC resources, this method has great potential for advancing
predictive computational materials science.

7.2.1 Scaling performance

One important aspect of multiscale modeling is compu-
tational performance of the numerical scheme. Typically,
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Figure 11. Schematic of the hierarchically parallel communication framework: (a) overview of the client–server structure and (b) schematic
of the MPI communicators used to transmit information.

computational performance is measured in terms of “strong”
and “weak” scaling. Strong scaling measures the compu-
tational speedup resulting from using more resources (i.e.,
computing cores) to compute the same simulation. Ideally,
an increase in the number of computing cores results in a
corresponding proportional decrease in computational time.
Weak scaling measures the parallel efficiency by increasing
the simulation size and computational resources in equal
proportion, while comparing the time of computation. For
more information on HPC aspects, see Hager and Wellein
(2010).
The hierarchically parallel multiscale solver takes advan-

tage of both of these scaling modes at each length scale. The
macroscale domain can be solved on the optimal number of
computing cores for its size, while the size of the microscale
servers can be optimized for the available computational
resources and/or the size and number of RUCs. Due to the
separation of scales, the total number of computing cores
is not limited by the strong or weak scaling performance
of the solver at either length scale. Furthermore, due to the
high overlay of computation and communication, as well
as the relatively small size and number of communications
between the scales, the CH algorithm performs ideally in the
strong scaling sense with increasing numbers of microscale
servers.
In particular, we demonstrate this ideal scaling behavior

through simulation of a patch test (see schematic inset of
Figure 12) using the Vulcan supercomputer at Lawrence
Livermore National Laboratory (LLNL) (Mosby and
Matouš, 2016).
The macroscale consists of two steel cubic adherends

with L = 10 mm on each side separated by an interface.
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Figure 12. Strong scaling performance of the hierarchically
parallel multiscale solver for the patch test shown in the inset. The
complete multiscale simulation contains 747M finite elements and
396M DOFs. This scaling study was performed using the Vulcan
machine at LLNL (from Mosby and Matouš, 2016).

The interface is discretized with 512 cohesive elements,
each with a corresponding RUC. The RUC is 210 × 210 ×
210 μm3 and is modeled as an epoxy resin containing 98
randomly distributed voids with d = 30 μm (cp ≈ 0.15). The
adhesively bonded structure is incrementally loaded in the
vertical direction by a prescribed uniform displacement. The
macroscale contains a total of 17.5k finite elements and 9.8k
nonlinear degrees of freedom (DOFs), and is computed using
32 computing cores. The microscale RUCs each contain
1.46M finite elements and 773k nonlinear DOFs, and are
computed on microservers using 512 computing cores each.
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The time to compute the nonlinear solution for one fully
coupled multiscale load increment is used to measure the
strong scaling performance, and is shown in Figure 12 using
4096 up to 262 144 computing cores.

7.2.2 Large-scale simulation

We now demonstrate the capability of the hierarchically
parallel solver to conduct extremely large simulations
spanning (105 − 106) length scales in a 3D finite strain
setting (Mosby and Matouš, 2016). Figure 13 shows the
results of a multiscale simulation for compression of a
hyperelastic heterogeneous layer. The macroscale consists
of two disks with d = 20 mm and t = 10 mm separated by
a thin layer. Each macroscopic material point in the layer
is represented by an RUC that is geometrically identical to
the one in the previous section (Section 7.2.1). The top and
bottom disks are constrained with a no-slip condition and
are incrementally compressed by a prescribed displacement
(see top left of Figure 13). The macroscale adherends are
discretized with 320k finite elements, while the interface
is discretized with 5296 cohesive elements (corresponding
to 5296 RUCs). The macroscale contains a total of 182k
nonlinear DOFs and is computed using 512 cores. The
microscale RUCs are discretized with 10.2M finite elements
(hmin = 191 nm, hmean = 1.8 μm, and hmax = 2.8 μm) and
5.3M DOFs each, and are computed using microservers
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Figure 13. Large multiscale simulation of a heterogeneous hypere-
lastic layer under compression. Clockwise from top left: schematic
of the macroscale domain and loading conditions, response of the
macroscale adherends, macroscopic response of the interface, and
microscale response of the heterogeneous interfaces at the marked
points. This simulation was performed using the Vulcan machine at
LLNL (from Mosby and Matouš, 2016).

of 512 cores each. The total implicit multiscale simulation
contains 53.8B finite elements, 28.1B nonlinear DOFs, and
was computed using 393 216 computing cores (786 432
threads) on the Vulcan machine at LLNL. Figure 13 shows
the microscale response of two points on the macroscale
interface (lower left), the response of the macroscale
adherends (top right), and the macroscale response of
the interface (lower right) at the end of the load history.
As shown, the nonuniform response at both scales is
captured.

7.2.3 Progressive failure of a dual cantilever beam

As previously discussed, the introduction of more complex
physics and/or boundary conditions can lead to compu-
tational imbalance that results in degradation of the
computational performance. To demonstrate this, we
simulate the multiscale mode-I failure of a dual cantilever
beam (DCB) shown in Figure 14. The DCB adherends
are each 42-mm long, 10-mm wide, and 5-mm thick and
are discretized with a total of 10k finite elements. The
macroscale interface is 40-mm long (2-mm precrack) and is
discretized by 322 cohesive elements. Each corresponding
RUC is 250 × 250 × 125 μm3 and contains 40 randomly
distributed voids with d = 40 μm. Failure within the RUC
is modeled using a viscous isotropic damage model (Simo
and Ju, 1989; Matouš et al., 2008). The RUCs are each
discretized with 249k finite elements, and the total multi-
scale simulation contains 80M finite elements and 42.5M
nonlinear DOFs. The multiscale response is computed
using up to 128k cores on the Mira supercomputer at
Argonne National Laboratory. Figure 14 shows the fully
coupled multiscale progressive failure response of the
DCB. This multiscale response is compared to the Linear
Fracture Mechanics (LFM) theory in Figure 14(c) (broken
lines).
In this example, computational load imbalance is intro-

duced by the more complex constitutive model at the
microscale and the additional expense of integrating the
material damage law in RUCs along the moving crack front.
Therefore, RUCs associated with macroscale points in the
macroscale damage process zone require more computa-
tional effort than those where the microscale damage is
not evolving. One measure of the load imbalance is the
maximum difference in time for all microservers to compute
their assigned RUCs. Figure 14(d) shows the computa-
tional imbalance for the DCB simulation with and without
the load-balancing algorithm. This algorithm immediately
reduces the load imbalance introduced by integrating the
damage law. Moreover, the average imbalance is reduced
by nearly 40%, and the simulation is computed 12% faster
overall.
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8 CONCLUDING REMARKS

In spite of the progress made over the past decades, a
lot of work still remains to be done in the broad field of
multiscale computational engineering. Among the ongoing
and expected trends and challenges, the following ones are
highlighted:

• 3D, the third dimension (Section 7): Most applications
focus on two-dimensional descriptions of the considered
materials with their governing deformation mechanisms.
Without any doubt, more realistic three-dimensional
computations and experimental analyses will be neces-
sary, for example, Shan and Gokhale (2001) and Mosby
and Matouš (2015a). The progress to be made here
is evidently coupled to the increase in computational
power in the coming decade(s).

• Model reduction: The high computational cost of
nonlinear multiscale solution methods calls for novel
efficient approaches that adequately balance compu-
tational speed and accuracy. The further development
of model reduction techniques in combination with
nonlinear multiscale schemes will be a necessity to
make further progress.

• Interaction with materials science, physics, and math-
ematics: The various cross sections presented in this
overview have clearly illustrated the growing interaction
with materials science. The need for more accurate
microstructural deformation models goes hand in hand
with the need for more physics in the applied models.
At the micron scale and even more at smaller scales,
interaction with other physical phenomena is of major
importance. It is expected that this trend will become

more pronounced in the near future. As mentioned in
Section 1, multiscale methods are of general impor-
tance and attract attention from all fields in science
and engineering. In particular, the developments in
the physics community and the computational mathe-
matics community are quite relevant for the nonlinear
mechanics of materials. Increasing the interaction with
these neighboring fields may speed up the developments
considerably.

• Multiscale versus multiple scales: There is a growing
interest in establishing correct scale transitions for
various nonlinear problems in mechanics of materials,
where in the mean time some problems are probably
best tackled by considering multiple scales in a single
domain. Challenges remain in both, where the most
challenging example is probably to transition from
damage to fracture across all length scales.

• Temporal scale transitions: Besides spatial scales, a
lot more attention has to be given to temporal scales.
Engineering approaches easily resort to accelerated
tests to assess the lifetime of a material in a particular
application. Many small-scale deformation mecha-
nisms are characterized by typical time scales, which
cannot be altered. Accelerated testing is therefore
not always an adequate tool, since it may inhibit
certain small-scale deformation processes. The proper
incorporation of various (extreme) time scales in multi-
scale models therefore remains a challenge. Methods
like the GENERIC scheme (Öttinger, 2005; Hütter
and Tervoort, 2008b) offer clear opportunities in this
sense.
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NOTES

1. The traction boundary conditions are not consid-
ered in the following, as they do not fit into the
deformation-driven procedure. The minimal kinematic
boundary conditions can be implemented along the
same lines as discussed here for the periodic boundary
conditions.

REFERENCES

Abdulle A,Weinan E, Engquist B and Vanden-Eijnden E. The hetero-
geneous multiscale method. Acta Numer. 2012; 21:1–87.

Agoras P and Ponte Castañeda P. Homogenization estimates for
multi-scale nonlinear composites. Eur. J. Mech. A/Solids 2011;
30(6):828–843.

Ahuja S, Yakhot V andKevrekidis IG. Computational coarse graining
of a randomly forced one-dimensional burgers equation. Phys.
Fluids 2008; 20(3): Article 035111.

Babuška I. Homogenization and its application: mathematical and
computational problems. In Numerical Solution of Partial Differ-
ential Equations, III Synspade, Hubbardd B (ed.). Academic Press,
1976; 89–116.

Babuška I. Solution of interface problems by homogenization - III.
SIAM J. Math. Anal. 1977; 8(6):923–937.

Bacigalupo A and Gambarotta L. Nonlocal computational homoge-
nization of periodicmasonry. Int. J.Multiscale Comput. Eng. 2011;
9(5):565–587.

Beex LAA, Peerlings RHJ and Geers MGD. A multiscale quasi-
continuum method for lattice models with bond failure and fiber
sliding. Comput. Methods Appl. Mech. Eng. 2014a; 269:108–122.

Beex LAA, Peerlings RHJ and Geers MGD. A multiscale quasi-
continuum method for dissipative lattice models and discrete
networks. J. Mech. Phys. Solids 2014b; 64:154–169.

Belytschko T, Loehnert S and Song JH. Multiscale aggregating
discontinuities: a method for circumventing loss of material
stability. Int. J. Numer. Methods Eng. 2008; 73(6):869–894.

Benssousan A, Lions J-L and Papanicoulau G. Asymptotic Analysis
for Periodic Structures. North-Holland: Amsterdam, New York,
Oxford, 1978.

Binder K and Heermann DW. Monte Carlo Simulation in Statistical
Physics: An Introduction, Series in Solid-State Sciences, vol. 80,
Springer-Verlag, 1998.

Bochenek B and Pyrz R. Reconstruction of random micro-
structures – a stochastic optimization problem.Comput. Mater. Sci.
2004; 31(1):93–112.

Bosco E, Kouznetsova VG, Coenen EWC, GeersMGD and Salvadori
A. A multiscale framework for localizing microstructures towards
the onset of macroscopic discontinuity. Comput. Mech. 2014;
54(2):299–319.

Bosco E, Kouznetsova VG and Geers MGD. Multi-scale compu-
tational homogenization–localization for propagating disconti-
nuities using X-FEM. Int. J. Numer. Methods Eng. 2015;
102(3–4):496–527.

Chandler D. Introduction to Modern Statistical Mechanics. Oxford
University Press: New York; 1987.

Clément A, Soize C and Yvonnet J. Computational nonlinear
stochastic homogenization using a non-concurrent multiscale
approach for hyperelastic heterogenous microstructures analysis.
Int. J. Numer. Methods Eng. 2012; 91(8):799–824.

Coenen EWC, Kouznetsova VG and Geers MGD. Computational
homogeneization for heterogeneous thin sheets. Int. J. Numer.
Methods Eng. 2010; 83(8–9):1180–1205.

Coenen EWC, Kouznetsova VG and Geers MGD. Multi-scale
continuous-discontinuous framework for computational-
homogenization-localization. J. Mech. Phys. Solids 2012a;
60(8):1486–1507.

Coenen EWC, Kouznetsova VG, Bosco E and Geers MGD. A
multi-scale approach to bridge microscale damage and macroscale
failure: a nested computational homogenization-localization
framework. Int. J. Fract. 2012b; 178(1–2):157–178.

Coenen EWC, Kouznetsova VG and Geers MGD. Novel boundary
conditions for strain localization analyses in microstructural
volume elements. Int. J. Numer. Methods Eng. 2012c; 90(1):1–21.

Collins BC,Matous K and Rypl D. Three-dimensional reconstruction
of statistically optimal unit cells of multimodal particulate compos-
ites. Int. J. Multiscale Comput. Eng. 2010; 8(5):489–507.

Cong Y, Nezamabadi S, Zahrouni H and Yvonnet J. Multiscale
computational homogenization of heterogeneous shells at small
strains with extensions to finite displacements and buckling. Int.
J. Numer. Methods Eng. 2015, DOI: 10.1002/nme.4927.

Curtin WA and Miller RE. Atomistic/continuum coupling in compu-
tational materials science. Modell. Simul. Mater. Sci. Eng. 2003;
11:R33–R68.

De Lorenzis L and Wriggers P. Computational homogenization of
rubber friction on rough rigid surfaces. Comput. Mater. Sci. 2013;
77:264–280.

Doghri I and Friebel C. Effective elasto-plastic properties of
inclusion-reinforced composites. Study of shape, orientation and
cyclic response. Mech. Mater. 2005; 37(1):45–68.

Doghri I, Brassart L, Adam L and Gerard JS. A second-moment
incremental formulation for the mean-field homogenization of
elasto-plastic composites. Int. J. Plast. 2011; 27(3):352–371.



Homogenization Methods and Multiscale Modeling: Nonlinear Problems 29

Drugan WJ and Willis JR. A micromechanics-based nonlocal consti-
tutive equation and estimates of representative volume element size
for elastic composites. J. Mech. Phys. Solids 1996; 44(4):497–524.

Duvaut G. Homogenéisation d’une classe de problèmes non linéaires.
C.R. Acad. Sci. 1979; A288:775–778.

Dvorak GJ. Transformation field analysis of inelastic composite
materials. Proc. R. Soc. London, Ser. A 1992; 437:311–327.

Ebinger T, Steeb H and Diebels S. Modeling macroscopic extended
continua with the aid of numerical homogenization schemes.
Comput. Mater. Sci. 2005; 32(3–4):337–347.

Ehlers W, Ramm E, Diebels S and D’Addetta GA. From particle
ensembles to Cosserat continua: homogenization of contact forces
towards stresses and couple stresses. Int. J. Solids Struct. 2003;
40(24):6681–6702.

Eshelby JD. The determination of the elastic field of an ellipsoidal
inclusion. Proc. R. Soc. London, Ser. A 1957; 241:376–396.

Feyel F and Chaboche J-L. FE2 multiscale approach for modelling
the elasto-viscoplastic behaviour of long fibre SiC/Ti composite
materials.Comput. Methods Appl. Mech. Eng. 2000; 183:309–330.

Fillep S, Mergheim J and Steinmann P. Computational homog-
enization of rope-like technical textiles. Comput. Mech. 2015;
55(3):577–590.

Fish J. Bridging the scales in nano engineering and science. J.
Nanopart. Res. 2006; 8:577–594.

Fish J (ed.) Multiscale Methods: Bridging the Scales in Science and
Engineering. Oxford University Press: Oxford, 2009.

Fish J and Fan R. Mathematical homogenization of nonperiodic
heterogeneous media subjected to large deformation transient
loading. Int. J. Numer. Methods Eng. 2008; 76(7):1044–1064.

Fish J and Kuznetsov S. Computational continua. Int. J. Numer.
Methods Eng. 2010; 84(7):774–802.

Fish J, Shek K, Pandheeradi M and Shephard MS. Computational
plasticity for composite structures based on mathematical homog-
enization: theory and practice. Comput. Methods Appl. Mech. Eng.
1997; 148(1–2):53–73.

Fish J, Filonova V and Yuan Z. Hybrid impotent-incompatible eigen-
strain based homogenization. Int. J. Numer. Methods Eng. 2013;
95(1):1–32.

Fish J, Filonova V and Fafalis D. Computational continua revisited.
Int. J. Numer. Methods Eng. 2015; 102(3–4):332–378.

Forest S, Pradel F and Sab K. Asymptotic analysis of heterogeneous
Cosserat media. Int. J. Solids Struct. 2001; 38:4585–4608.

Fritzen F and Boehlke T. Nonuniform transformation field analysis
of materials with morphological anisotropy. Compos. Sci. Technol.
2011; 71(4):433–442.

Fritzen F and Leuschner M. Reduced basis hybrid computa-
tional homogenization based on a mixed incremental formulation.
Comput. Methods Appl. Mech. Eng. 2013; 260:143–154.

Fritzen F, Hodapp M and Leuschner M. Gpu accelerated compu-
tational homogenization based on a variational approach in a
reduced basis framework. Comput. Methods Appl. Mech. Eng.
2014; 278:186–217.

Garikipati K and Hughes TJR. A variational multiscale approach to
strain localization - formulation for multidimensional problems.
Comput. Methods Appl. Mech. Eng. 2000; 188(1–3):39–60.

Geers MGD, Kouznetsova VG and Brekelmans WAM.
Gradient-enhanced computational homogenization for the
micro-macro scale transition. J. Phys. IV 2001; 11(5):5145–5152.

Geers MGD, Kouznetsova VG and Brekelmans WAM. Multi-scale
second-order computational homogenization of microstruc-
tures towards continua. Int. J. Multiscale Comput. Eng. 2003;
1(4):371–386.

Geers MGD, Coenen EWC and Kouznetsova VG. Multi-scale
computational homogenization of structured thin sheets. Modell.
Simul. Mater. Sci. Eng. 2007; 15:S393–S404.

Geers MGD, Kouznetsova VG and Brekelmans WAM. Multi-scale
computational homogenization: trends & challenges. J. Comput.
Appl. Math. 2010; 234(7):2175–2182.

Germain P. Continuum thermodynamics. J. Appl. Mech. 1983;
50:1010–1020.

Ghosh S, Lee K and Moorthy S. Two scale analysis of heteroge-
neous elastic-plastic materials with asymptotic homogenization
and Voronoi cell finite element model. Comput. Methods Appl.
Mech. Eng. 1996; 132:63–116.

Ghosh S, Lee K and Raghavan P. A multi-level computational model
for multi-scale damage analysis in composite and porousmaterials.
Int. J. Solids Struct. 2001; 38(14):2335–2385.

Gillman A and Matouš K. Third-order model of thermal conductivity
for random polydisperse particulate materials using well-resolved
statistical descriptions from tomography. Phys. Lett. A 2014;
378(41):3070–3073.

Gillman A, Matouš K and Atkinson S. Microstructure-
statistics-property relations of anisotropic polydisperse partic-
ulate composites using tomography. Phys. Rev. E 2013;
87(2):022208-1–022208-19.

Gillman A, Amadio G, Matouš K and Jackson TL. Third-order
thermo-mechanical properties for packs of Platonic solids using
statistical micromechanics. Proc. R. Soc. London, Ser. A 2015;
471(2177):20150060-1–20150060-20.

Gitman IM, Askes H and Sluys LJ. Coupled-volume multi-scale
modelling of quasi-brittle material. Eur. J. Mech. A Solids 2008;
27(3):302–327.

Grmela M. Why GENERIC? J. Non-Newtonian Fluid Mech. 2010a;
165:980–986.

Grmela M. Multiscale equilibrium and nonequilibrium thermo-
dynamics in chemical engineering. Adv. Chem. Eng. 2010b;
39:75–129.

Gurson AL. Continuum theory of ductile rupture by void nucleation
and growth: Part I yield criteria and flow rules for porous ductile
media. J. Eng. Mater. Technol. 1977; 99(1):2–15.

Hager G and Wellein G. Introduction to High Performance
Computing for Scientists and Engineers. CRC Press, 2010.

Halphen B and Nguyen Q. Sur les matériaux standards généralisés.
J. Méc. 1975; 14(1):39–63.

Hashin Z. Viscoelastic behavior of heterogeneous media. J. Appl.
Mech. 1965; 32:630–636.

Hashin Z. Complex moduli of viscoelastic composites - I. General
theory and application to particulate composites. Int. J. Solids
Struct. 1970; 6:539–552.

Hashin Z and Shtrikman S. A variational approach to the theory of
the elastic behaviour of multiphase materials. J. Mech. Phys. Solids
1963; 11:127–140.



30 Homogenization Methods and Multiscale Modeling: Nonlinear Problems

Helfen CE and Diebels S. Computational homogenisation of
composite plates: consideration of the thickness change with
a modified projection strategy. Comput. Math. Appl. 2014;
67(5):1116–1129.

Hettich T, Hund A and Ramm E. Modeling of failure in composites
by X-FEM and level sets within a multiscale framework. Comput.
Methods Appl. Mech. Eng. 2008; 197(5):414–424.

Hill R. Elastic properties of reinforced solids: some theoretical prin-
ciples. J. Mech. Phys. Solids 1963; 11(5):357–372.

Hill R. Continuum micromechanics of elastoplastic polycrystals. J.
Mech. Phys. Solids 1965; 13:89–101.

Holmes P, Lumley JL and Berkooz G. Turbulence, Coherent Struc-
tures, Dynamical Systems and Symmetry. Cambridge University
Press: Cambridge, 1996.

Hughes TJR, Feijóo GR, Mazzei L and Quincy J. The variational
multiscale method - a paradigm for computational mechanics.
Comput. Methods Appl. Mech. Eng. 1998; 166:3–24.

Hutchinson JW. Bounds and self-consistent estimates for creep
of polycrystalline metals. Proc. R. Soc. London, Ser. A 1976;
394:87–119.

Hütter M and Tervoort TA. Finite anisotropic elasticity and
material frame indifference from a nonequilibrium thermody-
namics perspective. J. Non-Newtoninian Fluid Mech. 2008a;
152(1–3):45–52.

Hütter M and Tervoort TA. Coarse graining in elasto-viscoplasticity:
bridging the gap from microscopic fluctuations to dissipation. Adv.
Appl. Mech. 2008b; 42:253–317.

Iltchev A, Marcadon V, Kruch S and Forest S. Computational
homogenisation of periodic cellular materials: application to struc-
tural modelling. Int. J. Mech. Sci. 2015; 93:240–255.

Inglis HM, Geubelle PH and Matouš K. Boundary condition effects
on multiscale analysis of damage localization. Philos. Mag. 2008;
88(16):2373–2397.

Javili A, Chatzigeorgiou G and Steinmann P. Computational homog-
enization in magneto-mechanics. Int. J. Solids Struct. 2013;
50(25–26):4197–4216.

Kaczmarczyk L, Pearce CJ and Bicanic N. Scale transition and
enforcement of RVE boundary conditions in second-order compu-
tational homogenization. Int. J. Numer. Methods Eng. 2008;
74(3):506–522.

Kaczmarczyk L, Pearce CJ and Bicanic N. Studies of microstructural
size effect and higher-order deformation in second-order
computational homogenization. Comput. Struct. 2010;
88(23–24):1383–1390.

Kanit T, Forest S, Galliet I, Mounoury V and Jeulin D. Deter-
mination of the size of the representative volume element for
random composites: statistical and numerical approach. Int. J.
Solids Struct. 2003; 40:3647–3679.

Kanit T, N’Guyen F, Forest S, Jeulin D, Reed M and Singleton
S. Apparent and effective physical properties of heteroge-
neous materials: representativity of samples of two materials
from food industry. Comput. Methods Appl. Mech. Eng. 2006;
195:3960–3982.

Keip MA, Steinmann P and Schröder J. Two-scale computational
homogenization of electro-elasticity at finite strains. Comput.
Methods Appl. Mech. Eng. 2014; 278:62–79.

Keller JB. A theorem on the conductivity of a composite medium. J.
Math. Phys. 1964; 5:548–549.

Keller JB. Effective behavior of heterogeneous media. In Statistical
Mechanics and Statistical Methods in Theory and Application: A
Tribute to Elliott W. Montroll, Landman U (ed.). Plenum, 1977.

Kerfriden P, Rodenas JJ and Bordas SPA. Certification of
projection-based reduced order modelling in computational
homogenisation by the constitutive relation error. Int. J. Numer.
Methods Eng. 2014; 97(6):395–422.

Khisaeva ZF and Ostoja-Starzewski M. On the size of RVE in finite
elasticity of random composites. J. Elast. 2006; 85(2):153–173.

Knap J and Ortiz M. An analysis of the quasicontinuum method. J.
Mech. Phys. Solids 2001; 49(9):1899–1923.

Kouznetsova VG. Computational homogenization for the multi-scale
analysis of multi-phase materials. PhD thesis, Eindhoven Univer-
sity of Technology, Mechanical Engineering Department, 2002.

Kouznetsova VG, BrekelmansWAM and Baaijens FPT. An approach
to micro-macro modeling of heterogeneous materials. Comput.
Mech. 2001; 27:37–48.

Kouznetsova VG, Geers MGD and Brekelmans WAM. Advanced
constitutive modeling of heterogeneous materials with a
gradient-enhanced computational homogenization scheme.
Int. J. Numer. Methods Eng. 2002; 54:1235–1260.

Kouznetsova VG, Geers MGD and Brekelmans WAM. Size of
a representative volume element in a second-order computa-
tional homogenization framework. Int. J. Multiscale Comput. Eng.
2004a; 2(4):575–598.

Kouznetsova VG, Geers MGD and Brekelmans WAM. Multi-scale
second-order computational homogenization of multi-phase mate-
rials: a nested finite element solution strategy. Comput. Methods
Appl. Mech. Eng. 2004b; 193:5525–5550.

Kröner E. Berechnung der elastischen konstanten des vielkristalls aus
den konstanten des einkristalls. Z. Phys. 1958; 151:504–518.

Kröner E. Zur plastischen verformung des vielkristalls. Acta Metall.
1961; 9:155–161.

Kulkarni MG, Geubelle PH and Matouš K. Multi-scale modeling
of heterogeneous adhesives: effect of particle decohesion. Mech.
Mater. 2009; 41(5):573–583.

Kulkarni MG, Matouš K and Geubelle PH. Coupled multi-scale
cohesive modeling of failure in heterogeneous adhesives. Int. J.
Numer. Methods Eng. 2010; 84(8):916–946.

Kumar H, Briant CL and Curtin WA. Using microstructure recon-
struction to model mechanical behavior in complex microstruc-
tures.Mech. Mater. 2006; 38:818–832.

Kumar NC, Matouš K and Geubelle PH. Reconstruction of peri-
odic unit cells of multimodal random particulate composites using
genetic algorithms. Comput. Mater. Sci. 2008; 42:352–367.

Larsson F, Runesson K and Su F. Variationally consistent compu-
tational homogenization of transient heat flow. Int. J. Numer.
Methods Eng. 2010; 81(13):1659–1686.

Larsson F, Runesson K, Saroukhani S and Vafadari R. Computational
homogenization based on a weak format of micro-periodicity
for RVE-problems. Comput. Methods Appl. Mech. Eng. 2011;
200(1–4):11–26.

Lee H, Brandyberry M, Tudor A and Matouš K. Three-dimensional
reconstruction of statistically optimal unit cells of polydisperse
particulate composites from microtomography. Phys. Rev. E 2009;
80(6):061301-1–061301-12.



Homogenization Methods and Multiscale Modeling: Nonlinear Problems 31

Lee H, Gillman AS and Matouš K. Computing overall elastic
constants of polydisperse particulate composites from microtomo-
graphic data. J. Mech. Phys. Solids 2011; 59(9):1838–1857.

Liang YC, Lee HP, Lim SP, Lin WZ and Lee KH. Proper orthogonal
decomposition and its applications - part I: theory. J. Sound Vib.
2002; 3:527–544.

Lions J-L. Remarks on some asymptotic problems in composite
materials and in perforated materials. In Variational Methods in
Mechanics of Solids, Nemat-Nasser S (ed.). Pergamon Press, 1979.

Liu WK, Karpov EG, Zhang S and Park HS. An introduction to
computational nanomechanics and materials. Comput. Methods
Appl. Mech. Eng. 2004; 193:1529–1578.

Liu XK, Liang YB, Duan QL, Schrefler BA and Du YY. A
mixed finite element procedure of gradient cosserat continuum for
second-order computational homogenisation of granular materials.
Comput. Mech. 2014; 54(5):1331–1356.

Loehnert S and Belytschko T. A multiscale projection method for
macro/microcrack simulations. Int. J. Numer. Methods Eng. 2007;
71(12):1466–1482.

Lumley JL. The structure of inhomogeneous turbulent flows. InAtmo-
spheric Turbulence and RadioWave Propagation, YaglomAM and
Tataski VI (eds). Publishing House: Nauka, 1967; 166–178.

Markenscoff X and Dascalu C. Asymptotic homogenization anal-
ysis for damage amplification due to singular interaction of
micro-cracks. J. Mech. Phys. Solids 2012; 60(8):1478–1485.

Massart TJ, Peerlings RHJ andGeersMGD.An enhancedmulti-scale
approach for masonry wall computations with localization of
damage. Int. J. Numer. Methods Eng. 2007a; 69(5):1022–1059.

Massart TJ, Peerlings RHJ and Geers MGD. Structural damage anal-
ysis of masonry walls using computationa homogenization. Int. J.
Damage Mech. 2007b; 16:199–226.

Matouš K and Geubelle PH. Multiscale modelling of particle
debonding in reinforced elastomers subjected to finite deforma-
tions. Int. J. Numer. Methods Eng. 2006; 65(2):190–223.

Matouš K and Maniatty AM. Finite element formulation for
modelling large deformations in elasto-viscoplastic polycrystals.
Int. J. Numer. Methods Eng. 2004; 60(14):2313–2333.

Matouš K and Maniatty AM. Multiscale modeling of
elasto-viscoplastic polycrystals subjected to finite deformations.
Interact. Multiscale Mech. 2009; 2(4):375–396.

Matouš K, Kulkarni MG and Geubelle PH. Multiscale cohesive
failure modeling of heterogeneous adhesives. J. Mech. Phys. Solids
2008; 56(4):1511–1533.

Mesarovic SD, Padbidri J. Minimal kinematic boundary conditions
for simulations of disordered microstructures. Philos. Mag. 2005;
85:65–76.

Michel J-C and Suquet P. Nonuniform transformation field analysis.
Int. J. Solids Struct. 2003; 40(25):6937–6955.

Miehe C. Numerical computation of algorithmic (consistent) tangent
moduli in large-strain computational inelasticity.Comput.Methods
Appl. Mech. Eng. 1996; 134:223–240.

Miehe C. Strain-driven homogenization of inelastic microstructures
and composites based on an incremental variational formulation.
Int. J. Numer. Methods Eng. 2002; 55(11):1285–1322.

Miehe C and Bayreuther CG. On multiscale FE analyses of hetero-
geneous structures: from homogenization to multigrid solvers. Int.
J. Numer. Methods Eng. 2007; 71(10):1135–1180.

Miehe C and Koch A. Computational micro-to-macro transition of
discretized microstructures undergoing small strain. Arch. Appl.
Mech. 2002; 72:300–317.

Miehe C, Schröder J and Becker M. Computational homogeniza-
tion analysis in finite elasticity: material and structural insta-
bilities on the micro- and macro-scales of periodic composites
and their interaction. Comput. Methods Appl. Mech. Eng. 2002;
191(44):4971–5005.

Miehe C, Schotte J and Schröder J. Computational micro-macro
transitions and overall moduli in the analysis of polycrystals at
large strains. Comput. Mater. Sci. 1999a; 16(1–4):372–382.

Miehe C, Schröder J and Schotte J. Computational homogenization
analysis in finite plasticity. Simulation of texture development
in polycrystalline materials. Comput. Methods Appl. Mech. Eng.
1999b; 171:387–418.

Milton GW. The Theory of Composites, vol. 6. Cambridge University
Press: Cambridge, 2002.

Moës N and Belytschko T. Extended finite element method for
cohesive crack growth. Eng. Fract. Mech. 2002; 69(7):813–833.

Mori T and Tanaka K. Average stress in the matrix and average elastic
energy of materials with misfitting inclusions. Acta Metall. 1973;
21:571–574.

Mosby M and Matouš K. Hierarchically parallel coupled finite strain
multiscale solver for modeling heterogeneous layers. Int. J. Numer.
Methods Eng. 2015a; 102(3–4):748–765.

Mosby M and Matouš K. On mechanics and material length scales of
failure in heterogeneous interfaces using a finite strain high perfor-
mance solver.Modell. Simul. Mater. Sci. Eng. 2015b; 23:085014.

Mosby M and Matouš K. Computational homogenization at extreme
scales. Extreme Mech. Lett. 2016; 6:68–74.

MPI Forum. A Message-Passing Interface Standard: Version 3.0.
University of Tennessee: Knoxville, TN, 2012.

Nemat-Nasser S. Retrospect and prospect: micromechanics. In
Proceedings of the Ninth conference on Engineering Mechanics,
College Station, TX, 1992.

Nemat-Nasser S and Hori M.Micromechanics: Overall Properties of
Heterogeneous Materials. Elsevier: Amsterdam, 1993.

Nemat-Nasser S and Obata M. Rate-dependent finite elasto-plastic
deformation of polycrystals. Proc. R. Soc. London, Ser. A 1986;
407:343–375.

Nezamabadi S, Yvonnet J, Zahrouni H and Potier-Ferry M. A multi-
level computational strategy for handling microscopic and macro-
scopic instabilities. Comput. Methods Appl. Mech. Eng. 2009;
198(27–29):2099–2110.

Nguyen VP, Lloberas-Valls O, Stroeven M and Sluys LJ. Computa-
tional homogenization for multiscale crack modeling. Implemen-
tational and computational aspects. Int. J. Numer. Methods Eng.
2012; 89(2):192–226.

Nguyen VD and Noels L. Computational homogenization of cellular
materials. Int. J. Solids Struct. 2014; 51(11–12):2183–2203.

Nilenius F, Larsson F, Lundgren K and Runesson K. Computational
homogenization of diffusion in three-phase mesoscale concrete.
Comput. Mech. 2014; 54(2):461–472.

Niyonzima I, Sabariego RV, Dular P and Geuzaine C. Nonlinear
computational homogenization method for the evaluation of eddy
currents in soft magnetic composites. IEEE Trans. Magn. 2014;
50(2): Article Number: 7001304.



32 Homogenization Methods and Multiscale Modeling: Nonlinear Problems

NRC. A National Strategy for Advancing Climate Modeling. The
National Academy Press, 2012.

Ohman M, Larsson F and Runesson K. Computational homogeniza-
tion of liquid-phase sintering with seamless transition frommacro-
scopic compressibility to incompressibility. Comput. Methods
Appl. Mech. Eng. 2013; 266:219–228.

Ortiz M. Computational micromechanics. Comput. Mech. 1996;
18(5):321–338.

Ostoja-Starzewski M, Boccara SD and Jasiuk I. Couple-stress moduli
and characteristic length of a two-phase composite. Mech. Res.
Commun. 1999; 26(4):387–396.

Öttinger HC. Beyond Equilibrium Thermodynamics. John Wiley &
Sons, Inc., 2005.

Özdemir I, Brekelmans WAM and Geers MGD. Computational
homogenization for heat conduction in heterogeneous solids. Int.
J. Numer. Methods Eng. 2008a; 73(2):185–204.

Özdemir I, Brekelmans WAM and Geers MGD. FE2 computa-
tional homogenization for the thermo-mechanical analysis of
heterogeneous solids. Comput. Methods Appl. Mech. Eng. 2008b;
198(3–4):602–613.

Pearson K. On lines and planes of closest fit to systems of points in
space. Philos. Mag. 1901; 6:559.

Peerlings RHJ and Fleck NA. Numerical analysis of strain gradient
effects in periodic media. J. Phys. IV 2001; 11:153–160.
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