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For heterogeneous materials, obtaining an accurate statistical description has remained an outstanding 
problem. We accurately evaluate the three-point microstructural parameter that arises in third-order 
bounds and approximations of effective material properties. We propose new adaptive methods for 
computing n-point probability functions obtained from three-dimensional microstructures. We show that 
for highly packed systems our methods result in a 45% accuracy improvement compared to the latest 
techniques, and third-order approximations agree well with simulation data. Furthermore, third-order 
estimates of the effective behavior are computed for tomographically characterized systems of highly 
filled polydisperse ellipsoids and cuboids for the first time.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The accurate characterization of many-body systems is a long 
studied problem with applications in many scientific fields at a va-
riety of length scales from molecular arrangements [1,2] up to het-
erogeneous material microstructures [3] and celestial bodies [4–6]. 
Often, these systems have varying degrees of randomness at short 
and long range scales and often only lend themselves to statistical 
characterization. However, obtaining accurate higher order statisti-
cal correlations of many-body systems has proved difficult and is a 
limiting factor in understanding their physical processes.

Of particular interest in this Letter is determining effective 
transport and mechanical properties of many particle compos-
ites from higher order statistical data, which is a fundamental 
problem that has captured the attention of great minds includ-
ing Einstein [7] and Maxwell [8]. The past fifty years have seen 
the formulation of rigorous bounds and approximations relying 
on a higher order statistical description of microstructures [9–12]. 
Especially third-order models have shown good agreement with 
experimental data [3]. While many theoretical advancements have 
been made for both linear and nonlinear material behavior [3,13,
14], demonstration of these theories has been severely restricted 
to strong microstructural assumptions due to difficulties in accu-
rately characterizing complex configurations. Various approxima-
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tions have been formulated to describe complex configurations of 
random spheres [15–17], but direct computation of the statistical 
functions in three dimensions with resolution required in third-
order models has been elusive.

In this Letter, we present adaptive methods rooted in compu-
tational mechanics and high performance computing for efficiently 
obtaining statistical functions without utilizing approximations of 
the shape and spatial configuration for random particulate systems. 
Third-order bounds and approximations of the effective thermal 
conductivity are computed using this high-fidelity statistical de-
scription. These computational methods, which we rigorously ver-
ify, allow for computation of statistical descriptors directly from 
complex three-dimensional microstructures with unprecedented 
accuracy. We show that previously formulated approximations of 
these statistical functions for systems of impenetrable monodis-
perse spheres result in significant inaccuracies, especially at higher 
volume fractions. Moreover, we extend these methods to other 
shapes, e.g. crystals, while accounting for degree of polydispersity. 
For the first time, we compute third-order bounds and approxi-
mations of the effective thermal conductivity for tomographically 
characterized three-dimensional packs of polydisperse ellipsoids 
and cuboids.

2. Theory of effective material behavior

In this Letter, we explore the effective behavior of steady-state 
heat conduction described by the conservation of energy assum-
ing Fourier’s law. Utilizing the variational principles of minimum 
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energy and minimum complementary energy assuming ergodic-
ity, statistical and material isotropy, Beran [18] derived third-order 
bounds of the effective conductivity, κe . Torquato [19] and Mil-
ton [10] independently simplified these bounds for two-phase 
composites to κ L ≤ κe ≤ κU , where

κ L = cpκp + cmκm − cmcp(κp − κm)2

cmκp + cpκm + 2
( ζp
κp

+ ζm
κm

)−1
. (1)

In this formulation, the bounds depend on the individual phase 
conductivities κi (i = m (matrix) or p (particle)), the volume frac-
tions ci , and the microstructure parameters ζi . This microstructural 
parameter depends on the one-, two- and three-point probability 
functions (Si = ci , Sii , and Siii ) and is defined as

ζi = 9

2cpcm

∫
3 cos2 θ − 1

2r1r2
S̃ iii(r1, r2, θ)d(cos θ)dr1 dr2, (2)

where

S̃ iii(r1, r2, θ) = Siii(r1, r2, θ) − Sii(r1)Sii(r2)

ci
. (3)

For isotropic two-phase systems, Torquato [20] derived a three-point
approximation (TPA) that has shown good agreement with simula-
tions [21]. This estimate is given as

κe

κm
= 1 + 2cpβpm − 2cmζpβ2

pm

1 − cpβpm − 2cmζpβ2
pm

, (4)

where

βpm = κp − κm

κp + 2κm
. (5)

While these bounds and approximations were derived decades 
ago, progress has been slow in accurately determining the mi-
crostructural parameter ζi (Eq. (2)) due to difficulties in computing 
the n-point probability function in Eq. (3). For highly filled ran-
dom particulate composites, no one has been able to compute 
the probability functions from three-dimensional domains with the 
fidelity required by these third-order models. As analytical expres-
sions of the n-point probability functions do not generally exist for 
composites with random configurations, a Monte Carlo-based sta-
tistical sampling algorithm is utilized. The accuracy of this method 
is O(1/

√
Nr), where Nr is the number of random samples used to 

compute one function value of Siii(r1, r2, θ), Sii(r), or Si . A ran-
dom sample consists of a random translation (described by 3 posi-
tion values) and random rotation (described by three angles) of a 
(n − 1)-simplex within the three-dimensional material domain. To 
speed up the analysis, we use high performance computing, where 
the Nr random samples are decomposed on O(103) computing 
cores. Others [22,23] have attempted a Monte Carlo sampling strat-
egy to compute the probability functions, but on regular structured 
grids.

3. Adaptive interpolation and sampling method

Since computations on a structured grid are inefficient, we 
propose an adaptive triangulation technique. This method in-
volves iteratively constructing a Delaunay triangulation of tetra-
hedrons, which we will refer to as T , to create an interpolant 
of S̃ iii(r1, r2, θ) with C0 continuity. Summarizing the algorithm, 
an initial regular tetrahedral grid is constructed for the domain 
[r1 = 0, r1 = r∞] × [r2 = 0, r2 = r1] × [θ = 0, θ = π ] (note that 
this is half of the integration domain since the function is sym-
metric about the axis r1 = r2). This triangulation and associated 
Fig. 1. Illustration of resulting adaptive triangulation of S̃ iii(r1, r2, θ) for system of 
impenetrable monodisperse spheres with cp = 0.6.

function values, S̃ iii(r1, r2, θ) which appear in the integral ker-
nel of Eq. (2), define the initial interpolant Tl=0 (l is the adap-
tive iteration level). For a given iteration, a bisection method is 
used to refine the triangulation based on the local error of the 
statistics. For all tetrahedrons in a given iteration of the inter-
polant Tl , the local accuracy is evaluated at each edge midpoint 
by considering the difference between the interpolated and com-
puted probability functions. If an edge midpoint does not satisfy 
the error indicator function εa = ∣∣ S̃ iii(r1, r2, θ) − Tl(r1, r2, θ)

∣∣ < tol, 
where tol is a set tolerance, each edge of the tetrahedron is bi-
sected and added to Tl+1. If all midpoints in a tetrahedron satisfy 
εa , the tetrahedron is added to Tl+1 unchanged. This iterative 
process is repeated until all grid points satisfy the error indica-
tor function. After a convergence study, it was determined that 
tol = (1/200)max{ S̃ iii(r1, r2, θ)} results in low numerical error for 
all computations presented in this Letter. An example of the result-
ing triangulation for a highly filled (cp = 0.6) monodisperse system 
of spheres with diameter D is shown in Fig. 1. Note that this func-
tion is 0 in a majority of the domain, but sharp variations exist 
near the origin (r1 = 0, r2 = 0, θ = 0), along the diagonal r1 = r2
and near the edge of the domain where r1 = r2 = 0. The trian-
gulation for this example contains O(107) tetrahedrons with a 
minimum edge length of 2.78 · 10−17 D , a mean edge length of 
3.61 ·10−2 D , and a maximum edge length of 1.55D , thus revealing 
the wide range of length scales required for accurately represent-
ing this function. The resulting interpolant T is then used as the 
basis for computing ζi via simplex integration of Eq. (2). In this 
work, Monte Carlo integration of each tetrahedron is performed. A 
convergence study determined that using Nint = 1000 random in-
tegration points per tetrahedron is sufficient for all microstructures 
presented in this Letter. Given that there are O(107) tetrahedrons 
in a typical interpolant, O(1010) integration points are required to 
evaluate the integral (2).

4. Verification

The proposed adaptive triangulation technique is verified by 
considering a two-phase system of overlapping spheres, which is 
one of a few configurations where the n-point probability func-
tions of the matrix phase m can be defined analytically as:

Sm...m(x1, x2, . . . , xn) = exp(−ρVn) (6)

Here, ρ is the number density of spheres and Vn is the union 
volume of n spheres with diameter D . Considering four volume 
fractions of this model, ζm was computed with r∞ = 6D . The re-
sults and errors associated with the computations are provided in 
Table 1. An error measure is defined as εP S = ∣∣ζm − ζ R1

m

∣∣/ζ R1
m ×

100 [%], where ζm is the result from this work, and ζ R1
m is the 

most accurate result presented in the literature [24]. Note that all 
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Table 1
Verification of the adaptive interpolation and integration method for computing 
Eq. (2) assuming penetrable sphere model. Comparison is made between results 
of this work (ζm) and results in [24] (ζ R1

m ).

cp ζm ζ R1
m εP S

0.2 0.5187 0.5174 0.24%
0.4 0.6571 0.6489 1.26%
0.6 0.7743 0.7702 0.54%
0.8 0.9039 0.8866 1.95%

Table 2
Comparison of ζp for random impenetrable monodisperse sphere systems. Compar-
ison is made between results presented in this work (ζp) and results in [17] (ζ R2

p ).

cp ζp ζ R2
p εI S

0.2 0.0442 0.0409 8.17%
0.4 0.0883 0.0765 15.37%
0.5 0.1114 0.0938 18.78%
0.6 0.1967 0.134 46.78%

results for ζm are within 2%. This verifies our adaptive triangula-
tion technique.

Following verification of the adaptive interpolation and in-
tegration method, packs of impenetrable monodisperse spheres 
were considered. Such systems have been studied extensively 
by Torquato and collaborators [15–17]. However, despite signifi-
cant progress, computing the microstructural parameter for three-
dimensional systems directly has been unachievable until this Let-
ter due to the complexity of the n-point probability functions. 
The hard sphere systems were generated using a packing algo-
rithm [25] based on the Lubachevsky–Stillinger method [26,27]. 
Cubic domains consisting of O(104) particles with diameter D
were generated using a high expansion rate to ensure statisti-
cal isotropy. After a convergence study, it was determined that 
r∞ = 12D is required to compute ζp with acceptable accuracy. Fur-
thermore, the convergence study revealed that it is necessary to 
use Nr = 107 random samples for each n-point probability function 
evaluation in Eq. (3) to satisfy the tight tolerance tol. The results 
are presented in Table 2 and are compared with the best known 
approximations given in [17], denoted here as ζ R2

p . The improve-

ment of ζp from ζ R2
p is quantified by introducing an error metric 

εI S = ∣∣ζp − ζ R2
p

∣∣/ζ R2
p × 100 [%]. Note that reasonable agreement is 

shown for lower volume fractions, but significant improvement has 
been achieved for higher volume fractions. ζp is then used to com-
pute the lower bound (Eq. (1)) and TPA (Eq. (4)) of κe for a contrast 
ratio of κp/κm = ∞, and the results are presented in Fig. 2. These 
calculations are also compared to simulation data (circles) given 
in [21]. Excellent agreement is shown between the TPA with well 
resolved (WR) statistics, which we denote WR-TPA, and the simu-
lation data. Note that all differences are below 2%, thus verifying 
the Monte Carlo statistical sampling technique within our adap-
tive triangulation framework. Note that the WR-three-point lower 
bound (dashed line) has been improved from [17] (dotted line) by 
4.53%, and the WR-TPA (solid line) has been improved from [17]
(dash-dotted line) by 17.8% for the cp = 0.6 volume fraction case.

5. Examples

Following the rigorous verification of well-studied systems, 
third-order bounds and approximations for materials with arbi-
trary particle shapes and dispersity are analyzed. This demon-
strates that a large class of systems, which have been previously 
unfeasible to study, can now be examined. Note that realizations 
of these systems can be generated from imaging methods [28]
or from packing algorithms [29], but the characterization tech-
niques are not the focus of this Letter. These characterization 
Fig. 2. Third-order lower bound and approximation of κe for random systems of im-
penetrable monodisperse spheres for κp/κm = ∞. The dotted and dash-dotted lines 
correspond to computations using ζ R2

p from Ref. [17], while the solid and dashed 
lines employ ζp with well resolved (WR) statistics. The circles represent simula-
tion data from [21]. The inset image is a representative subsection of the pack with 
cp = 0.6.

techniques have been demonstrated in [28], for example. In this 
Letter, highly filled polydisperse systems are characterized using 
X-ray computer tomography, which has become a viable method 
for non-destructively obtaining accurate three-dimensional repre-
sentations [30,23]. Samples are prepared with a manual random-
ized packing strategy while limiting sample boundary effects. The 
three samples studied in this Letter contain (i) polydisperse spher-
ical particles (mustard seed), (ii) polydisperse ellipsoidal particles 
(Teff grains), and (iii) polydisperse cuboids (salt crystals). Con-
sistent with the packs of monodisperse spheres analyzed above, 
O(104) particles are contained in each sample. These samples are 
tomographically characterized and image processing algorithms are 
used to identify individual particles. Then, all particles in the re-
sulting voxelized data set are modeled as idealized shapes in or-
der to provide a description of the micro-computed tomography 
data in continuous Euclidean space, reduce the data set size, and 
thus improve the understanding of these complex systems. See our 
prior work for details of these characterization steps [28].

The distributions of particles with an inset image of a represen-
tative sub-volume of the system for each tomographically charac-
terized pack are shown in Fig. 3. In these figures, the variable d and 
s are the representative sphere diameter (diameter computed from 
volume of a particle assuming a spherical shape) and representa-
tive cube side length (side length of a cube computed from volume 
of particle assuming a cubic shape), respectively. The parameter, 
e, measures the eccentricity of a particle (ratio of semi-axes a, 
b, and c) and is computed as e = 1

3

(√
a2−b2

a +
√

b2−c2

b +
√

a2−c2

a

)
, 

where a > b > c. e = 0 corresponds to a sphere and a cube, respec-
tively. Considering the distributions in Fig. 3, the system of nearly 
spherical grains (Fig. 3(a)) contains particles with low eccentric-
ity and an average representative diameter of d̄ = 1.87 mm. The 
average semi-axis lengths are ā = 1.044 mm, b̄ = 0.940 mm, and 
c̄ = 0.843 mm. The system of more eccentric ellipsoids (Fig. 3(b)) 
has mean geometric properties of d̄ = 0.686 mm, ā = 0.535 mm, 
b̄ = 0.285 mm, and c̄ = 0.266 mm. The system of cuboidal parti-
cles (Fig. 3(c)) has mean geometric properties of s̄ = 0.296 mm, 
ā = 0.161 mm, b̄ = 0.142 mm, and c̄ = 0.142 mm, which indicate 
nearly cubic particles with low eccentricities.

Using the idealized shape representation of these systems 
within the adaptive triangulation and Monte-Carlo based statistical 
sampling methods, the microstructural parameter ζp is computed 
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Fig. 3. Distributions of particles for tomographically characterized systems. (a) Distribution for pack of spheres. (b) Distribution for pack of ellipsoids. (c) Distribution for pack 
of cuboids. In these figures, d, s, and e are the representative sphere diameter, representative cube diameter, and eccentricity. The inset figure of each distribution shows a 
representative subsection of each system.
Table 3
Three-point lower bound κWR-L

e and approximation κWR-TPA
e with well resolved 

(WR) statistics for polydisperse systems of spheres, ellipsoids, and cuboids assuming 
κp/κm = ∞.

Pack type cp ζp κWR-L
e /κm κWR-TPA

e /κm

Spheres 0.682 0.2441 8.826 13.38
Ellipsoids 0.619 0.2378 6.891 10.30
Cuboids 0.568 0.3266 6.226 12.39

using the same parameters given for the monodisperse impenetra-
ble spheres (Nr = 107 and r∞ = 12 {d̄ or s̄}). The resulting values 
and associated well-resolved lower bounds (WR-L) and WR-TPAs 
of κe are given in Table 3. The shape effect and degree of disper-
sity of these systems result in higher values of ζp , when compared 
to the monodisperse sphere systems. This leads to higher effective 
conductivities for a given volume fraction.

6. Conclusions

In conclusion, we have demonstrated that effective properties of 
highly filled random polydisperse particulate systems can be com-
puted with unprecedented accuracy from rich three-dimensional 
microstructural data. We have described novel adaptive methods 
for computing third-order bounds and approximations of the effec-
tive thermal conductivity for polydisperse composites. With these 
techniques, proper assessment of the rich mathematical history in 
computing effective material properties including diffusivity, mag-
netic and fluid permeability, etc. is now realizable. Furthermore, 
extension to a wide array of particle types including any Platonic 
or Archimedean solid is now possible. As random and heteroge-
neous many-body systems are common in several fields, use of 
these statistical characterization techniques has wide ranging ap-
plication in physics, e.g. molecular arrangements, celestial configu-
rations, and beyond.
References

[1] D. Srolovitz, T. Egami, V. Vitek, Phys. Rev. B 24 (1981) 6936.
[2] F. Wooten, K. Winer, D. Weaire, Phys. Rev. Lett. 54 (1985) 1392–1395.
[3] S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic 

Properties, vol. 16, Springer, 2002.
[4] H. Totsuji, T. Kihara, Publ. Astron. Soc. Jpn. 21 (1969) 221.
[5] H.K. Eriksen, F.K. Hansen, A.J. Banday, K.M. Górski, P. Lilje, Astrophys. J. 605 

(2004) 14.
[6] Y. Wiaux, P. Vielva, E. Martinez-Gonzalez, P. Vandergheynst, Phys. Rev. Lett. 96 

(2006) 151303.
[7] A. Einstein, Ann. Phys. (Leipz.) 324 (1906) 289–306.
[8] J. Maxwell, A Treatise on Electricity and Magnetism, vol. 1, Clarendon Press, 

1873.
[9] Z. Hashin, S. Shtrikman, J. Appl. Phys. 33 (1962) 3125–3131.

[10] G.W. Milton, Phys. Rev. Lett. 46 (1981) 542.
[11] S. Torquato, Phys. Rev. Lett. 79 (1997) 681.
[12] J.R. Willis, in: H.G. Hopkins, M.J. Sewell (Eds.), Mechanics of Solids: The Rodney 

Hill 60th Anniversary Volume, Pergamon Press, 1982, pp. 653–686.
[13] G.W. Milton, The Theory of Composites, vol. 6, Cambridge University Press, 

2002.
[14] P.P. Castañeda, Phys. Rev. B 57 (1998) 12077.
[15] J. Beasley, S. Torquato, J. Appl. Phys. 60 (1986) 3576–3581.
[16] S. Torquato, F. Lado, Phys. Rev. B 33 (1986) 6428.
[17] C. Miller, S. Torquato, J. Appl. Phys. 68 (1990) 5486–5493.
[18] M. Beran, Nuovo Cimento 10 (38) (1965) 771–782.
[19] S. Torquato, Microscopic approach to transport in two-phase random media, 

Ph.D. Thesis, 1980.
[20] S. Torquato, J. Appl. Phys. 58 (1985) 3790–3797.
[21] I.C. Kim, S. Torquato, J. Appl. Phys. 69 (1991) 2280–2289.
[22] D.A. Coker, S. Torquato, J. Appl. Phys. 77 (1995) 6087–6099.
[23] H. Lee, M. Brandyberry, A. Tudor, K. Matouš, Phys. Rev. E 80 (2009), 

061301-1–061301-12.
[24] A. Helte, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 450 (1995) 651–665.
[25] M. Skoge, A. Donev, F. Stillinger, S. Torquato, Phys. Rev. E 74 (2006) 041127.
[26] B. Lubachevsky, F. Stillinger, J. Stat. Phys. 60 (1990) 561–583.
[27] A. Donev, S. Torquato, F. Stillinger, J. Comput. Phys. 202 (2005) 737–764.
[28] A. Gillman, K. Matouš, S. Atkinson, Phys. Rev. E 87 (2013) 022208.
[29] D.S. Stafford, T.L. Jackson, J. Comput. Phys. 229 (2010) 3295–3315.
[30] T. Aste, M. Saadatfar, T. Senden, Phys. Rev. E 71 (2005) 061302.

http://refhub.elsevier.com/S0375-9601(14)00861-5/bib73726F6C6F7669747A3139383172616469616Cs1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib776F6F74656E31393835636F6D7075746572s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib746F72717561746F3230303272616E646F6Ds1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib746F72717561746F3230303272616E646F6Ds1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib746F7473756A6931393639636F7272656C6174696F6Es1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib6572696B73656E323030346173796D6D657472696573s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib6572696B73656E323030346173796D6D657472696573s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib776961757832303036676C6F62616Cs1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib776961757832303036676C6F62616Cs1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib65696E737465696E313930366E657565s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib6D617877656C6C313837337472656174697365s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib6D617877656C6C313837337472656174697365s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib68617368696E31393632566172696174696F6E616Cs1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib6D696C746F6E31393831626F756E6473s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib746F72717561746F313939376578616374s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib57696C6C69735F31393832s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib57696C6C69735F31393832s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib6D696C746F6E323030327468656F7279s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib6D696C746F6E323030327468656F7279s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib63617374616E656461313939387468726565s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib626561736C657931393836626F756E6473s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib746F72717561746F31393836656666656374697665s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib6D696C6C657231393930656666656374697665s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib626572616E31393635757365s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib746F72717561746F313938306D6963726F73636F706963s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib746F72717561746F313938306D6963726F73636F706963s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib746F72717561746F31393835656666656374697665s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib6B696D31393931656666656374697665s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib636F6B65723139393565787472616374696F6Es1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib4C65654D61743039s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib4C65654D61743039s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib68656C746531393935666F75727468s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib736B6F6765323030367061636B696E67s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib6C75626163686576736B793139393067656F6D6574726963s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib646F6E6576323030356E65696768626F72s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib67696C6C6D616E323031336D6963726F737472756374757265s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib73746166666F7264323031307573696E67s1
http://refhub.elsevier.com/S0375-9601(14)00861-5/bib617374653230303567656F6D6574726963616Cs1

	Third-order model of thermal conductivity for random polydisperse particulate materials using well-resolved statistical descriptions from tomography
	1 Introduction
	2 Theory of effective material behavior
	3 Adaptive interpolation and sampling method
	4 Veriﬁcation
	5 Examples
	6 Conclusions
	References


