
Three-dimensional reconstruction of statistically optimal unit

cells of multimodal particulate composites∗

B.C. Collins2, K. Matouš1†and D. Rypl3
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Abstract

In the current digital age, it is befitting that complex heterogeneous materials, such as

solid propellants, are characterized by digital computational and/or experimental techniques.

Of those, micro computer tomography (micro-CT) and advanced packing algorithms are the

most popular for identifying the statistics of multimodal, random, particulate composites. In

this work, we develop a procedure for the characterization and reconstruction of periodic unit

cells of highly filled, multimodal, particulate composites from a packing algorithm. Rocpack,

a particle packing software, is used to generate the solid propellant microstructures and one-,

two- and three-point probability functions are used to describe their statistical morphology.

However, both the experimentally scanned or computationally designed packs are usually non

optimal in size and likely too big to be fully numerically resolved when complex nonlinear

processes such as combustion, decohesion, matrix tearing, etc. are modeled. Thus, domain
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reduction techniques, which can reconstruct the optimal periodic unit cell, are important to

narrow the problem size while preserving the statistics. The three dimensional reconstruction is

carried out using a parallel Augmented Simulated Annealing algorithm. Then, the resulting cell

geometries are discretized, taking into consideration the periodic layout using our master/slave

approach implemented into a sophisticated meshing generator T3D. Final discretized geometries

show only a small loss of volume fraction. Particulate systems composed of 40% and 70%

volume fractions are investigated, and the unit cells are reconstructed such that the statistical

correspondence to the original packs is maintained.

1 Introduction

The macroscropic properties of a random heterogeneous composite are often closely correlated to

the material microstructure and the material microscale behavior [1, 2]. Conventional methods

for computing the macroscopic properties of such composites often use limited information,

such as the volume fraction. However, the microstructure of random heterogeneous composites

is usually complicated and such limited information is not enough to be representative of a

material. An example of the complicated microstructure can be seen in Figure 1, which shows

a sample of a heterogeneous solid propellant along with its tomographic image [3], and the

computationally generated microstructure by Rocpack [4].

(a) Material sample [3]. (b) Tomography based pack [3]. (c) Computer generated pack [4].

Figure 1: Typical members of the micro-CT based and the computationally generated ensemble.

The present work is focused on the characterization of random composite microstructures,

primarily on highly packed systems, such as heterogeneous solid propellants. Solid propellants

are composite materials made of crystalline Ammonium Perchlorate (AP) and Aluminum (Al)

particles embedded in a fuel binder to increase the burning temperature and thus the thrust.

Solid propellants are generally composed of particle sizes of AP and Al ranging from five to three

hundred microns. This wide range of particle sizes is divided into different modes. Most indus-

trial propellants are prepared by mixing several modes to achieve required thermo-mechanical
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and combustion properties.

There are multiple methods to determine the macroscopic properties of random composites

which are described above. This work is concerned with multiscale methods, where analyses are

generally conducted on a representative volume element (RVE) [5, 10]. The definition imposed

by Hill [1] implies that the RVE should be big enough to contain a large number of inclusions in

order to account for all the possible configurations of the inclusions in a composite. Povirk [6]

proposed another approach to determine the RVE. The method relies on a description of the

microstructure using a certain statistical descriptor function. The RVE can then be determined

by requiring the same statistical descriptor function for the RVE to match the function of the

original microstructure. The second approach is adopted here.

There is a strong physical evidence that the RVE size is deeply effected by material processes.

For example, Swaminathan and Ghosh show that in the presence of damage the RVE size grows

rapidly [7]. In their two-dimensional investigation, the statistically equivalent RVE was reported

to be thirty six times the diameter of a fiber. In three-dimensions, the effect in usually more

pronounced. Experimental investigation of Liu [8] has also demonstrated that for a highly

packed plastically bonded explosive, like PBX 9501, the RVE size should be large. In his

study, the RVE size was reported about fifteen times the mean diameter of the crystals in the

material. Thus, a detailed understanding of a material morphology and the proper makeup of

the computational domain is essential.

In order to characterize the complex microstructure described above (Figure 1), statisti-

cal descriptors are used. A number of statistical descriptors are available, many of which are

described in [13]. In the present study, the general n-point probability functions are used to

quantify the statistics of the microstructure [14]. The n-point probability functions give the

probability of simultaneously locating n points inside the matrix or the other particle phases.

Due to difficulties in computation, most works focus on the first and second probability func-

tions, disregarding the higher order statistics [22]. This paper addresses the first, second, and

third order probability functions in attempt to verify whether higher order descriptors are justly

discounted. Our code, Stat3D, computes the statistics in parallel, allowing for large domains

to be quickly evaluated and higher statistical moments to be computed accurately.

Early work with n-point probability functions was performed by Corson, by manually sam-

pling micrographs of real composite materials [15]. Here, sampling grids are used to numerically

evaluate and average n-point probability functions in parallel using Message Passing Interface

(MPI). For non-digitized media, Smith and Torquato [16] proposed the use of a sampling tem-

plate for evaluation of two-point probability functions. This template is implemented in the

current work during the calculation of the two- and three-point probability functions as well.

The reconstruction of random media using microstructural information based on a specific

statistical descriptor is the primary focus of this work. In order to address this issue, Yeong

and Torquato [17] proposed a method of reconstruction of random media based on two-point
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probability functions using Simulated Annealing (SA). Bochenek and Pyrz [18] also used the

Simulated Annealing procedure in conjunction with the pair correlation function and the stress

interaction parameter for a reconstructed unit cell. However, a simple pair correlation function

does not represent the disparate particle modes, and thus, it restricts the probability spectrum

to be optimized. Another approach introduced by Sundararaghavan and Zabaras [19] employs

the support vector machines for three-dimensional reconstruction of microstructures.

The present paper is an extension on our earlier work [20], where two-dimensional periodic

cells of multimodal fibrous composites were reconstructed, emphasizing the discrete nature of

the whole probability spectrum. Here, we advance this methodology to three dimensions and

apply it to the reconstruction of multimodal particulate composites, where the full second-

order probability spectrum is optimized. Inspiration is also obtained from [21] and [22], where

a Periodic Unit Cell (PUC) was reconstructed for a two-phase fibrous composite using two-

point probability functions, a lineal path function and a second-order intensity function. Our

code, Recon3D, reconstructs the unit cell in parallel, preserving the end-to-end parallelism and

allowing for the optimal computational domain to be generated quickly.

Finally, we also present the finite element discretization of our cells. In the present work,

periodic boundary conditions are enforced and directly embedded in geometry description using

our meshing approach [9] based on the T3D meshing tool [11]. Periodic boundary conditions are

extensively used in computational studies due to their simplicity, reasonable physical relevance

and their deep mathematical foundation [12]. This allows the microstructure to be replaced by

an infinite domain, and thus, the complicated microstructure can be replaced by a periodic unit

cell. This PUC contains many less inclusions than the original microstructure, but still contains

important statistical information, allowing for an accurate material response to be captured by

the model.

2 Morphology of Microstructure

It is well established that the effective properties of a heterogeneous material are dependent

both on the properties of each phase and the microstructural layout [1, 23]. Moreover, the

effective properties of a material are not simply relations involving only the volume fraction

of each phase, but are also dependent on the complex interactions between phases, which is

determined by the microstructural information [13, 24].

2.1 n-point Probability Functions

The tools that are necessary to characterize the morphology of a heterogeneous composite are

described in this section. Specifically, the statistical descriptors known as the one-, two- and

three-point probability functions that characterize the random microstructure morphology are

described for completeness of the presentation. In order to characterize the statistical description
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of a material, an indicator function, or the characteristic function χr(x, ω) is defined:

χr (x, ω) =

{

1 x ∈ Dr(ω)

0 otherwise,
(1)

where x is a random point thrown into the material, ω is a particular ensemble member and Dr

represents the domain occupied by the r-th phase. This definition allows for the formulation

of the n-point probability function, Sr1,r2,...,rn
, which gives the probability of finding phases

r1, r2, . . . , rn simultaneously at points x1, x2, . . . , xn:

Sr1,...,rn
(x1, . . . ,xn) = χr1

(x1) . . . χrn
(xn), (2)

where the overbar indicates the ensemble average:

χr(x) =

∫

S

χr(x, ω)p(ω)dω. (3)

Here p(ω) denotes the probability density of ω in the ensemble space S. An ensemble is defined

to be a large collection of microstructure samples that are different in their microscopic details,

but identical in the macroscopic sense.

The probability functions that are used hereafter are the one-point, two-point, and three-

point probability functions, which are shown as

Sr (x) = χr (x),

Srs

(

x,x′
)

= χr (x)χs (x′),

Srsq

(

x,x′,x′′
)

= χr (x)χs (x′)χq (x′′). (4)

Evaluation of probability functions is expensive, but can be simplified if the microstructure

of the material under consideration is ergodic, statistically isotropic, and homogeneous [25].

Ergodicity, statistical isotropy and homogeneity reduce the evaluation costs, since they lead

to ensemble member independence, directional independence and translation independence,

respectively. For a random heterogeneous material that meets these criteria, the one-, two-, and

three-point probability functions can be reduced to

Sr (x) = Sr = cr,

Srs

(

x,x′
)

= Srs

(

x − x′
)

= Srs

(

‖x − x′‖
)

,

Srsq

(

x,x′,x′′
)

= Srsq

(

x − x′,x − x′′
)

= Srs

(

‖x − x′‖, ‖x − x′′‖
)

, (5)

where cr represents the volume fraction of phase r in the composite, ‖x − x′‖ represents the

distance between points x and x′, and ‖x − x′′‖ represents the distance between points x and

x′′. Further properties of the two-point probability functions yield

Srr (0) = Sr = cr,

Srs

(

‖x − x′‖
)

= Sr (x)Ss

(

x′
)

= crcs, (6)

5



provided that ‖x − x′‖ is sufficiently large. Likewise, properties for the three-point probability

functions are

Srrr (0) = Sr = cr,

Srrq

(

‖x − x′‖
)

= Srrq

(

0, ‖x − x′‖
)

= Srq

(

‖x − x′‖
)

,

Srsq

(

‖y − y′‖, ‖y − y′′‖
)

= Sr (y)Ss

(

y′
)

Sq

(

y′′
)

= crcscq, (7)

provided that ‖y − y′‖ and ‖y − y′′‖ are sufficiently large.

2.2 Numerical Sampling

The n-point probability functions for a given microstructure are typically highly complex, and

therefore finding a closed form representation of these functions would be unlikely. Instead, the

probability space can be discretized and the probability functions can be numerically sampled

via the Monte-Carlo method. In addition, a particular sampling template can be used in order

to increase the sampling efficiency and take advantage of cases where the microstructure may

be statistically isotropic [16].

Figure 2: Three-dimensional sampling template.

In this work, a spherical sampling template is used to compute the discrete probability

functions of a continuous heterogeneous material (Fig. 2). Details on the parallel implementation

are discussed in section 5.3. It should be noted that the accuracy of the evaluated statistics

depends both on the number of random samples taken and the template resolution, therefore

a convergence study is performed for every material type (given pack) to assure numerically

converged solutions.
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3 Reconstruction of Periodic Unit Cells

This section is dedicated to the reconstruction of a three-dimensional periodic unit cell of general

particulate composites. As mentioned in section 1, the microstructure of the real material

may be obtained via tomographic data or by a packing code such as Rocpack [4, 24]. In this

section, the PUC is determined such that it has similar statistical properties as the original

microstructure (pack). In order to ensure similarity between the original microstructure and

the PUC, an objective function is constructed, which incorporates the statistical descriptors

discussed in section 2.

There are two main steps to the reconstruction of the PUC: finding the optimal PUC di-

mensions and finding the optimal particle locations within the PUC, subjected to the constraint

that particles do not overlap. Finding the optimal dimensions of the PUC can be solved with

a closed-form solution, but finding the optimal particle positions is a more complex process.

Since it requires solving the minimization problem on a multimodal function, use of a stochastic

algorithm is preferable to gradient search methods [21]. A variety of stochastic algorithms are

available, with an Augmented Simulated Annealing being chosen for the current work.

3.1 Objective Function and Problem Definition

Once the statistics of a heterogeneous microstructure are determined, a PUC of an optimal

size can be reconstructed. In the present study, a PUC is considered to be representative of

the original microstructure if its geometric descriptors, or n-point probability functions, are

similar to those of the actual material (pack or tomographic image). In particular, the one- and

two- point probability functions are optimized. These optimization conditions are described as

follows:

(a) The volume fraction of each phase in the PUC must be similar to that of the mi-

crostructure. The length scale of the PUC, Hin, is obtained by examining where the two-point

probability functions saturate and therefore become statistically independent. Based on this

initial guess, the corresponding volume fractions and particle radii, we compute the number of

particles Ni needed in each bin i. Note that only a whole particle can be added into a cell intro-

ducing an error between the corresponding volume fraction values. Thus, for this given number

of particles Ni of phase i, volume fractions ci and the particle radius ri the PUC dimension

H is found such that the differences in the volume fractions are minimized using the following

objective function:

G (H) =

√

√

√

√

np
∑

i=1

(

ci −
4Niπr3

i

3H3

)2

, (8)

where np is the number of particle phases in the composite. This optimization problem can be
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solved analytically to get the optimal dimensions of the PUC to be:

dG

dH
= 0 ⇒ H =

(

4π
∑np

i=1
N2

i r6
i

3
∑np

i=1
ciNir3

i

)

1

3

. (9)

This optimization procedure on the one-point probability functions is performed in order to

ensure that the volume fractions between the PUC and the original microstructure are similar.

(b) After determining the optimal length scale of the PUC using Equation (9), and therefore

optimizing its one-point probability functions, the two-point probability functions of the PUC

are optimized. This is done by finding the optimal positions of the particle centers by minimizing

the following objective function based on the two-point probability distributions:

F (xN ) =

m
∑

r=1

m
∑

s=1

‖Sorig
rs − Srs‖L2

=

m
∑

r=1

m
∑

s=1

√

∫ H

0

(

Sorig
rs − Srs

)2

dr, (10)

where xN = {x1, y1, z1, . . . , xN , yN , zN}T is the vector of the positions of particle centers, xi,

yi, and zi correspond to the x, y, and z coordinates of the i-th particle, respectively, m is the

total number of phases in the composite (m = np +1), Sorig
rs are the two-point probability func-

tions computed for the original microstructure and Srs are the two-point probability functions

computed for the PUC. Note that discrete L2 norm is used in the numerical implementation.

Since the objective function in Equation (10) does not contain any information on the overlap

of particles inside the PUC, a constraint restricting the overlap of particles is added to ensure

the solution feasibility. Thus, the solution vector xN should comply with

√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 ≥ ri + rj, ∀i = 1, . . . , N − 1, j = i + 1, . . . , N, (11)

where N is the total number of particles, and ri and rj are the radii of i-th and j-th particles,

respectively. Instead of solving the minimization problem with a constraint, the constrained

optimization problem is changed into an unconstrained optimization problem with a penalty:

min (F (xN ) + γp (xN )) , (12)

where γ is a penalty coefficient, equal to 1 in the present work, and p is a penalty function.

This penalty function is based on a particle overlap, and is defined below.

Based on the distance between the centers of a pair of particles, the overlap is divided into

two classifications: partial and complete overlap. Two particles are considered to be partially

overlapped if the distance between the centers is less than the sum of the radii. They are

considered to be completely overlapped if the distance between the centers is less than either

of the radii of the particles. This is shown graphically in Figure 3(a). Let the number of

occurrences of partial overlap be denoted as Np and the number of occurrences of complete

overlap be denoted as Nc. The amount of overlap in a potential solution is described by the
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parameter η as

η =



























2

Np

N
∑

i=1

N
∑

j=i

Voverlap

(Vi + Vj)
Nc = 0

2

Np

N
∑

i=1

N
∑

j=i

Voverlap

(Vi + Vj)
+ 0.5 Nc > 0.

(13)

If no instance of complete overlap occurs within the PUC (i.e., Nc = 0), the penalty parameter

r1 r2

r

d r

1

2

C

d

Partial overlap

Complete overlap

(a)

p

1.0

α0 η
(b)

Figure 3: (a) Two types of overlap encountered. (b) Penalty function used.

is simply a global mean of the ratio of the volume of overlap to the mean volume of a pair of

particles. The limiting case of this expression occurs when a smaller particle center is on the

circumference of a larger particle. Since a complete overlap is a highly undesirable and infeasible

situation, it is penalized heavily. In order to treat this scenario, 0.5 is automatically added to

the overlap parameter η when there is a case of complete overlap that is encountered, so that

the value of η lies within 0 and 1.

Based on the amount of overlap given by the parameter η, a constraint function, also known

as a penalty function, is established as shown in Figure 3(b). The formulation of the constraint

function is based on a similar one used in [26] and follows a simple power law,

p =















0 η = 0
(

η
α

)β
0 < η < α

1.0 η ≥ α

(14)

where α is the upper cutoff of overlap above which p = 1 and β is the exponent of the penalty

function in the range 0 ≤ η ≤ α.
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Combining the objective function described by Equation (10) and the constraint function in

Equation (14), the overall objective function, or the fitness function, is defined to be

f =

∑m
r=1

∑m
s=1

‖Sorig
rs − Srs‖L2

max
P0

m
∑

r=1

m
∑

s=1

‖Sorig
rs − Srs‖L2

+ p, (15)

where max
P0

m
∑

r=1

m
∑

s=1

‖Sorig
rs − Srs‖L2

represents the value of the objective function of the worst

individual of the starting population P0. The value of f always lies between 0 and 2.

3.2 Genetic Algorithm

The fitness function in Equation (15) is multimodal and contains a number of local minima.

Therefore, an optimization using the conventional gradient-based methods is not suitable for

this scenario. In order to address this issue, stochastic optimization methods based on the

principle of evolution, such as genetic algorithms (GA) and simulated annealing (SA), are used

to solve this minimization. These methods have been previously used efficiently to solve such

complex optimization problems [21, 20]. In the present work, the parallel Augmented Simulated

Annealing (AUSA) technique, which effectively exploits the essentials of GA in combination

with SA, is employed to minimize the overall objective function. This algorithm is identical to

that used in [20] and [26]. More information about genetic algorithms can also be found in [27].

3.3 Mass-Spring Operator

It has been observed in [20] that although the penalty parameter works to reduce overlap over

time, many generations are needed for packs containing a high volume fraction. In order to

reduce the computational time necessary for the optimization, a problem specific mass-spring

dynamic mutation operator is employed [20]. In this work, we extend this operator to three

dimensions and describe it hereafter for clarity of the presentation.

For a pair of overlapping particles, a stiff repulsive spring is introduced to push the particles

away from each other and for a pair of non-overlapping particles, a soft attractive spring is

introduced to keep particles close together, such that the statistics are not altered substantially

by the new operator. It is assumed that the mass of the particle is directly proportional to its

volume, and that the force-displacement relation for the springs is linear, with spring stiffnesses

of κ or κ̄ for repulsive or attractive springs, respectively, as shown in Figure 4(a). The separation,

dij , between the particles i and j is computed simply as

dij = ‖xi − xj‖ − (ri + rj), (16)

where xi and ri are the position vectors of the center and radius of particle i, respectively.
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Repulsive

κ

κ
Attractive

d

F

ij

(a)

y

y
2

1

d

5

1

4

3

2

12

(b)

Figure 4: (a) Force-displacement (spring) relation. (b) Delaunay triangulation and position of springs

in a potential cell. Symbol dij denotes the separation between particles i and j, and symbols κ and

κ represent repulsive and attractive spring constants, respectively.

The placement of springs in a potential PUC, for two-dimensional pack, is shown schemati-

cally in Figure 4(b). First, a three-dimensional Delaunay triangulation is created from the set

of particle centers using DeWall [28]. Then, particles sharing a tetrahedron are identified as

neighbors and only neighbors interact through springs. For example in Figure 4(b), particles 1

and 2 are neighbors, while particles 1 and 4 are not. Overlapping neighbors interact through

a stiff repulsive spring, as shown by solid lines in Figure 4(b), while the soft attractive springs

between non-overlapping neighbors are shown in broken lines. Based on the standard spring

dynamics, we construct the equation of motion as follows:

Mü + Ku = F |t=0, (17)

where u is the displacement vector, M is the diagonal mass matrix, K represents the global

stiffness matrix and F |t=0 = Ky0. The initial displacement conditions on u are zero and an

initial vector y0, containing the starting overlap, reads

y0 =
1

2











N̄1
∑

i=2

d1i,

N̄2
∑

i=1
i6=2

d2i, . . . ,

N̄N
∑

i=1
i6=N

dNi











T

(18)

where N denotes the number of particles and N̄i represents the number of neighbors for i-th

particle. The vector dij is computed as

dij =

{

xi − xj

‖xi − xj‖

}T

, (19)
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where x is the particle location. The global stiffness and mass matrices K and M are con-

structed from their standard element counterparts by the usual assembly procedure.

The standard implicit Newmark predictor-corrector scheme is used for the time integration

of Equation (17) because of its stability and simple implementation [29]. The SuperLU library

is utilized for the LU decomposition [30]. The numerical integration is carried out until the

overlap inside a potential PUC goes to zero or a prescribed number of time-steps is reached.

In order to prevent particles from changing periodic boundary conditions during the run, and

therefore requiring a new triangulation, the pack size is treated to be larger than the PUC. This

creates a periodic layer of particles surrounding the PUC, acting as a buffer, which restricts a

change in particle boundary conditions. In the current study, a buffer size equivalent to the

diameter of the largest particle is used. This mutation operator is applied to those population

members having only a partial overlap, and is activated with a small probability of 0.05.

4 Computational Geometry and Meshing

Once the reconstruction stage is completed and the geometric model is created, the material

constants of the microstructure can be evaluated. It is infeasible to obtain a closed-form solution

for the complicated unit cell makeup, so it is instead discretized for subsequent numerical

analysis (by the finite element method, for example). In the current study, the cell is discretized

into finite elements, where the periodic mesh boundary is taken into account. Here we use our

master-slave approach as proposed in [9] and extend it to three-dimensions.

Figure 5: Various meshes of cut particles.

In order to deal with the issues described above, as well as to convert the geometrical

representation into the Bézier representation needed by the meshing tool, a preprocesssing

algorithm was developed. This algorithm shrinks particles in contact with other particles and/or
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the reference box, computes refinement parameters for a non-uniform meshing, and constructs

Bézier representations of particles both completely contained in the PUC and split by the

reference box. Then, the periodic mesh is created using the software T3D developed by D.

Rypl [11]. T3D is based on an advancing front technique and can mesh complex two-dimensional

and three-dimensional domains into triangular and tetrahedral meshes of a high quality. An

array of different potential configurations is shown in Figure 5.

4.1 Periodic meshing - Master/Slave approach

Since the identical meshes can not be obtained by an advancing front technique due to the

round-off errors and mesh density control, we adopt here the master/slave model. The mirror

master surface is discretized in the standard way using the advancing front technique [32]. Next,

we create nodes on the mirror slave surface with the parametric coordinates as their counterparts

on the mirror master (Figure 6). Mapping of the geometry of the mirror slave surface is used to

re
al

 s
pa

ce
pa

ra
m

et
ri

c 
sp

ac
e

mirror master mirror slave

Figure 6: Mirroring of the surface mesh. The arrows visualize the flow of information to create nodes

(empty arrows) and to form elements (full arrows) on the mirror slave surface.

describe their real coordinates. We use pointer arithmetics to map individual geometric entities.

Each of the nodes on the mirror master surface temporarily stores a pointer to its counterpart

on the mirror slave surface. Similar pointers are also established on curves bounding the mirror

master surface. To create the final periodic mesh, we traverse the elements on the mirror master

surface and create for each of them a new element on the mirror slave surface using the nodes

being stored as pointers (Figure 6). These pointers are discarded once all the elements on a

particular mirror slave have been constructed. In this way, topologically identical meshes of

the same geometry are produced for all pairs of mirrored surfaces. Note that the discretization

of boundary curves of mirrored surfaces, which actually precedes the surface discretization, is
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performed in a similar manner. However, the mirroring of appropriate pairs of curves (derived

from the mirroring of opposite surfaces) is performed automatically by T3D.

A similar meshing strategy for PUCs was employed by Wentorf et al. [31]. However, in our

work the discretization is performed directly in the real space and the parametric space is used

only for the mirroring of nodes. This concept avoids the demanding generation of anisotropic

meshes in the parametric space, where distortion and stretching induced by the mapping may

generally occur.

4.2 Particle Shrinking

Although the output from the reconstruction algorithm described in section 3 is geometrically

very simple, it is directly unsuitable to be used in a numerical framework as contacting particles

would lead to singularities. In order to prevent such occurrences, two particles (or a particle and

the bounding box) that are closer in proximity than some user-defined parameter are shrunk

until they meet the user defined tolerance.

The separation distance between particles i and j is computed as

δij = ‖Y i − Y j‖ − (ri + rj), (20)

where Y corresponds to particle location. Whenever δij is less than a user defined minimum

separation between the surfaces of adjacent particles, λ, the radii of the corresponding particles

are modified such that

rnew
i = ri − (λ − δij)

ri

ri + rj
,

rnew
j = rj − (λ − δij)

rj

ri + rj

. (21)

4.3 Mesh Refinement

In addition to the particle contact, the existence of nearly touching particles pose some impor-

tant challenges in the finite element discretization, because very small elements need to be used

in those regions in order to capture the underlying physics. To address this issue, spatially de-

pendent refinement factors are added between geometric objects that are within close proximity

of each other. The refinement factor modifies the element size and is given by

σij =







0.1 +
0.9

ε − λ
(δij − λ) if λ ≤ δij ≤ ε,

1.0 if δij ≥ ε,
(22)

where ε is the user-defined maximum distance to be influenced by refinement. Since the resulting

mesh depends on the parameters ε, λ, and the default element size h, they must be chosen

carefully with some numerical experience.
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5 Numerical Examples

This section is devoted to the discussion of the results of the statistical descriptors, optimization

procedures, and PUC meshing presented in sections 2, 3, and 4. We also report on the parallel

scalability of our framework.

5.1 Trimodal Pack with 40% Volume Fraction

In the task of reconstructing a periodic unit cell, a 40% pack is chosen as a starting point

(Figure 7(a)). This three-dimensional pack contains 50000 trimodal particles with a particle

volume fraction of 40% and an edge length of 3000 µm. The largest particle has a diameter of

200 µm with a volume fraction of 20% (mode 1), the medium particle has a diameter of 100 µm

with a volume fraction of 10% (mode 2), and the smallest particle has a diameter of 50 µm with

a volume fraction of 10% (mode 3). It was determined numerically that the pack is statistically

isotropic and homogeneous [33].
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Figure 7: (a) 40% trimodal particle pack containing 50000 particles. (b) Selected two-point proba-

bility functions for the 40% pack.

The optimal radial spacing was determined to be 3 µm, and the optimal number of template

throws was calibrated to be 4000 (optimal parameters were determined by a convergence study).

The two-point probability functions for the pack can be seen in Figure 7(b). The initial size of

the PUC, Hin, for this problem is chosen to be 600 µm. Using Equation (9), the optimal size

of the PUC is determined to be H = 596.6 µm.

The parallel AUSA algorithm described in section 3.2 is then used to reconstruct a periodic

unit cell. All the AUSA runs consisted of a population, P0, of 512 individuals and 16 individuals

in the mating pool, Mt. During the initialization of the genetic algorithm, 50% of the individuals
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are generated completely randomly and 50% of the individuals are generated using ballistic

deposition, only allowing a certain degree of overlap. Table 1 lists the values used for the

GA and AUSA parameters employed in the present study. The simulation is stopped when

the maximum number of iterations is reached, itmax = 10000, or the best individual is not

improved for 300 generations. The genetic algorithm was run five times on 128 processors on

Turing computer at the University of Illinois.

The results from the minimization process can be observed in Table 2, which depicts the

initial and final values of the objective function, the number of iterations needed for convergence,

and the value of overall overlap η̃ (η̃ is simply defined as Vo/Vp, where Vo is a volume of overlap

and Vp denotes a volume of the particles). It should be noted that the overlap is completely

removed in each of the five runs. The improvement of the raw fitness of the best individual

ranged from 92.7% to 96.3% over the duration of the runs.

Figure 8 shows the comparison of the mean two-point probability functions of the five re-

constructed PUCs and the original pack. The error bars indicate the spread in the evaluation of

the two-point probability functions in the five original packs, as well as the numerical error as-

sociated with the optimal sampling parameters. It can be observed that a very good agreement

between the statistics of the pack and cell has been obtained.

One of the five reconstructed unit cells can be seen in Figure 9 together with the initial pack

for visual comparison. After reconstruction, each of the periodic unit cells contain 381 particles,

which is a large reduction in size compared to the original 50000 particle pack.

Due to the costly evaluation of the three-point probability functions (Figures 10-12), they

are not included in the current optimization procedure. Instead, the three-point probability

functions of the original pack are compared to the reconstructed unit cell. The pack and

the reconstructed cell were sampled with 50000 template throws, and their respective S311

probability functions are shown in Figures 11 and 12.

Please note that statistical isotropy was assumed in computing the third-order statistics,

Description Parameter Value

Population size Pt 512

Mating Pool size Mt 16

Probability of mutation, crossover, dynamic mutation pmut, pcro, pdyn 0.7, 0.3, 0.1

Minimum - Maximum annealing temperature Tmin, Tmax 1.5E-6, 0.05

Ratio of cooling Tmult 0.999

Shape parameter for non-uniform mutation b 2.0

Penalty function parameters α, β 0.3, 1.0

Table 1: Parameters used in the implementation of the AUSA algorithm. See [20] and [33] for details

on individual parameters.
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Pack #

Raw Fitness F (Eq. 10)

# of iter.

Overall

Before GA After GA overlap

Min Mean Max Min Mean Max (η̃)

Run 1 9.826 30.160 40.733 0.385 0.564 1.046 1224 0.0000

Run 2 9.465 30.327 40.798 0.361 0.554 0.980 900 0.0000

Run 3 9.302 23.088 40.732 0.422 0.633 1.570 521 0.0000

Run 4 9.404 30.182 40.727 0.345 0.558 1.642 430 0.0000

Run 5 9.279 30.270 40.752 0.414 0.678 1.347 950 0.0000

Table 2: Final objective function values, number of iterations needed for convergence and overall

overlap for the 40% pack.
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Figure 8: Comparison of the selected two-point probability functions of the original pack (solid line)

and the reconstructed PUC (dashed line) for the 40% pack.

except for planar interactions. We average all possible orientations of two randomly generated

vectors except its in-plane correlations as shown in Figure 10. Thus, seventh dimensional space

of S(x,x′,x′′) is reduced to forth dimensional S(‖x − x′‖, ‖x − x′′‖, θ), which is possible to

visualize (Eq. (5), Figure 11). When two random directions coincide r1 ≡ r2 for θ = 0◦, the

Srsq goes to Srs. However, physically more interesting situation occurs when a small particle

sits between two big ones, θ = 180◦, and the probability of such arrangement is ≈ 1.5 %,

(Figure 11(c)).

The S311 probability function was selected for evaluation, as it informs on the probability of

finding a small particle between two large ones. Such a configuration leads to stress concentra-

tions and a potential debonding. The differences between S311 of the pack and the cell (Figs. 11

and 12) are shown in Figure 13. It can be observed that there are noticeable differences be-
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(a) (b)

Figure 9: (a) Initial pack consists of 50000 particles. (b) Statistically identical unit cell consists of

381 particles.

Figure 10: Concept of the three-point probability function evaluation.
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Figure 11: Various samples of the 3-point probability function S311 on the original pack.

tween the statistics of the original pack and its reconstructed cell, even though the second-order

probabilities are in excellent agreement (Fig. 8). These differences indicate that optimization

of the three-point probability functions may be a necessary future step.

The cell reconstructed from run four was chosen for meshing, as it had the lowest raw fitness
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Figure 12: Various samples of the 3-point probability function S311 on a reconstructed cell.

r
1

 (µm)

r 2
 (

µ
m

)

50 100 150 200 250

50

100

150

200

250

(a) 0◦

r
1

 (µm)

r 2
 (

µ
m

)

50 100 150 200 250

50

100

150

200

250

(b) 72◦

r
1

 (µm)
r 2

 (
µ

m
)

50 100 150 200 250

50

100

150

200

250

1

2

3

4

5

6

x 10
−3

(c) 180◦

Figure 13: Various samples of |Sorig
311

− Scell
311

|.

Description Parameter Value

Minimum separation distance λ 2.0 µm

Maximum refinement distance ε 10.0 µm

Volume fraction before, after Vi, Va 0.400, 0.377

Number of tetrahedra Ne 6,260,115

Number of nodes Nn 1,102,304

Table 3: Parameters and the mesh information for 40% cell.

value (Table 2). The mesh information can be seen in Table 3 and the periodic mesh can

be observed in Figure 14. For the defined minimum separation distance of 2.0 µm, the total

volume fraction of particles was decreased by 5.75%. Note that this variation in volume fraction

represents a very small change in particle diameters. Moreover, this difference is added to the

small, non-discretized particles to create a homogenized blend. The particle mesh and matrix

mesh are shown separately for visualization purposes. Refinements in the mesh can be observed

in areas of close particle proximity, resulting in a high mesh quality.
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(a) (b)

Figure 14: 40% pack: (a) Particle Mesh. (b) Matrix mesh.

5.2 Trimodal Pack with 70% Volume Fraction
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Figure 15: (a) 70% trimodal particle pack containing 50000 particles. (b) Selected two-point prob-

ability functions for the 70% pack. Full radius of 1500 µm is not plotted to show the complexity at

the origin.

As pointed out in the introduction, materials such as solid propellants are highly packed

systems. Thus, we turn our attention to packs with 70% volume fractions to investigate the

robustness of our method to reconstruct a highly filled medium. As in the 40% case, 50000
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particles are generated in a pack with an edge length 2677.81 µm. However, for such high volume

fraction, the packing code can not reach the theoretical packing density since the inclusions lock

in a pack before the theoretical packing density is reached. Therefore, the largest particle with

a diameter of 200 µm has a volume fraction of 38.96%, the medium particle has a diameter of

100 µm with a volume fraction of 14.61%, and the smallest particle has a diameter of 50 µm

with a volume fraction of 14.61%. This gives the total volume fraction of 68.18%. Selected

probability functions together with the pack are shown in Figure 15. Statistical isotropy and

homogeneity were again numerically verified.

As can be seen in Figure 15(b), the probability functions are of a more complex shape as

compared to the 40% case, and in addition they do not saturate as quickly as before. We

select the initial unit cell edge length, Hin, by investigating the derivative of the most dominant

probability function, S11, along the radial direction (Fig. 16) to accurately account for particle

to particle interactions. Figure 16 shows that S11 probability function becomes statistically

independent for distance r > 600 µm. After substituting this initial cell edge length, Hin =

1200 µm, into Equation (9), an optimal cell dimension is computed as H = 1199.5 µm and the

cell volume fraction yields 67.50 %. This is less than 1% error of the total volume fraction of

the pack. However, as one can observe, the 70% composite requires twice the length size than

the 40% composite. A similar unit cell size has been observed experimentally by Liu [8], for a

highly packed plastically bonded explosive PBX 9501, who reported RVE size 1.5 mm or about

15 times the average diameter of the crystals of the material.
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Figure 16: The derivative of the S11 probability function with respect to the radial distance, dS11

dr
.

Due to the complexity of the probability space and in order to test the potential of the

reconstruction scheme, we use very fine sampling parameters (number of throws 50000, number

of radial points 2000 and number or circumferential rays 20 (see Fig. (2)). This renders the

optimization problem very difficult and we use 2048 processors on the Red Storm computer at

Sandia National Laboratories, NM. All the AUSA parameters are the same as those reported

in section 5.1. We again perform five optimization runs, from which results are reported in
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Pack #

Raw Fitness F (Eq. 10)

# of iter.

Overall

Before GA After GA overlap

Min Mean Max Min Mean Max (η̃)

Run 1 7.828 17.406 28.569 0.511 0.590 0.713 628 0.0000

Run 2 7.729 17.388 27.838 0.477 0.538 0.746 792 0.0000

Run 3 7.574 17.171 28.050 0.488 0.600 0.897 1026 0.0000

Run 4 7.735 17.203 28.450 0.553 0.616 0.762 999 0.0000

Run 5 7.755 17.147 27.840 0.572 0.663 0.906 874 0.0000

Table 4: Final objective function values, number of iterations needed for convergence and overall

overlap for the 70% pack.

Table 4. The cells have been optimized by about 92% again with no overlap present.
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Figure 17: Comparison of the selected two-point probability functions of the original pack (solid line)

and the reconstructed PUC (dashed line) for the 70% pack.

Figure 17 shows the comparison of the mean two-point probability functions of the five

reconstructed PUCs and the original pack. As in the 40% case, the error bars indicate the

standard deviation in the evaluation of the two-point probability functions in the five original

packs as well as the numerical error associated with the optimal sampling parameters. However,

due to the very high quality of sampling selected for this problem, the standard deviation is

very small for all selected probability functions. Very good agreement has been obtained even

for this highly packed system.

To compare the pack and the statistically optimal unit cell, we plot them side by side with

the same scale in Figure 18. The cell size is approximately one-eighth of the large pack in
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(a) (b)

Figure 18: (a) Initial pack consists of 50000 particles. (b) Statistically identical unit cell consists of

4501 particles.

volume, which is a large reduction of the computational space compared to the actual pack.

(a) (b)

Figure 19: 70% pack: (a) Particle Mesh. (b) Matrix mesh.

The pack discretization is very complex, due to the particle to particle proximity. We use the

same mesh control parameters as for the 40% case (Table 3). This leads to the volume fraction

reduction by 7.11% (Before discretization, 67.50%. After discretization, 62.70%). Note that a

better volume fraction control can be obtained by stringent shrinking parameters. However, this

leads to a large mesh density. Removed particle volume is added into a binder and homogenized

into a blend. The resulting mesh has 3,232,787 nodes and 18,561,290 tetrahedra elements. High
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quality discretization of the statistically optimal cell is shown in Figure 19.

5.3 Parallel Performance
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Distribute Members

…

Slaves Slaves

Distribute Throws
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Figure 20: Parallelization of GA.

Due to the independence of statistical sampling, this problem is naturally parallelizable.

The only part of the AUSA algorithm that is numerically intensive is the fitness evaluation of

members. Taking this into regard, a master-slave parallelization technique, shown in Figure

20, is implemented. The master processor performs all the genetic operations and when fitness

evaluations are required, individuals are distributed to slave processors where the computations

take place.
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Figure 21: (a) Time for 50000 template throws. (b) Speedup for 50000 template throws.

The master processor first distributes each member to be evaluated to a sub-master, who

in turn distributes it to its own slaves. Then, among each subgroup, the number of template

throws are divided evenly among the processors. The final probability functions are sent back

to the sub-master, who evaluates the fitness and reports it to the master. If the number of

processors is less than the number of individuals to be evaluated, the scheme described above

is simplified in the fact that there is only one level of parallelization.
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In order to test the robustness of our parallelization, the genetic algorithm cycle is run for

a total of 50000 template throws on a varying number of processors (40% pack is used for this

study). The time and speedup for the runs can be seen in Figure 21. It is observed that the

speedup is nearly linear, which is expected for this naturally parallel problem.

6 Conclusions

An efficient and highly parallel procedure to reconstruct a statistically optimal periodic unit

cell from a computer generated microstructure has been developed. This procedure consists

of finding the statistical descriptors of a random composite, then using stochastic optimization

methods to create a PUC with statistics that are similar to those of the original microstructure.

It is important to note that the reconstructed periodic unit cells are only representative from a

geometrical statistics point of view and that the representativity of the PUC must also account

for the physical processes of interest. However, the construction of a geometrically equiva-

lent periodic unit cell is an important first step in describing behavior of complex particulate

materials, such as solid propellants.

For the present study, one-, two- and three-point probability functions have been identified as

the suitable statistical descriptors. Higher order statistics will allow for more accurate material

description once the nonlinear processes are investigated. Such processes are highly influenced,

for example, by small particles acting like stress concentrators in between two big particles.

Such occurrences can be statistically measured by the third-order probability functions and this

information can be used in advanced homogenization schemes.

Computer generated, highly filled, particulate composites have been statistically character-

ized and optimal unit cells have been reconstructed with a high accuracy. For a highly packed

system, unit cell dimensions obtained from our analysis are consistent with those experimentally

observed. Novel periodic meshing, based on the master/slave approach, has been extended to

three-dimensions and the reconstructed cells of 40% and 70% volume fraction have been suc-

cessfully discretized for subsequent analysis. The linear scalability of the optimization scheme

has been demonstrated.

A natural direction of further research is to extend this procedure to include optimization of

three-point probability functions. Another possible future research direction involves extending

the genetic algorithm to include optimization of other geometric objects, such as ellipsoids,

rhombi, etc. Also, direct reconstruction from tomographic data is of interest.
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