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Asynchronous multi-domain variational integrators
for non-linear problems
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SUMMARY

We develop an asynchronous time integration and coupling method with domain decomposition for linear
and non-linear problems in mechanics. To ensure stability in the time integration and in coupling between
domains, we use variational integrators with local Lagrange multipliers to enforce continuity at the domain
interfaces. The asynchronous integrator lets each domain step with its own time step, using a smaller time
step where required by stability and accuracy constraints and a larger time step where allowed. We show
that in practice the time step is limited by accuracy requirements rather than by stability requirements.
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1. INTRODUCTION

In time-dependent engineering applications, time integration is an important issue, especially when
different multi-physics components are coupled together. Typically, the partial differential equations
(PDEs) for these problems are solved by discretizing spatially using finite elements or finite
volumes, and then integrating over time using a numerical ordinary differential equation (ODE)
solver. Owing to their size, these simulations often require parallel computing, which can be
effectively done using domain decomposition. Both the coupling between domains and the time
integration must be handled with care to avoid numerical instability, since the stability and accuracy
of the coupling is dictated not only by individual local limits, but also by the data transfer method
between domains. We present a technique for integrating multi-domain non-linear problems, which
is stable and easily parallelized.
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For stability, the time step of explicit integrators is limited by the material properties and smallest
element size, as well as by the coupling scheme. The stability and accuracy requirements for
different domains may therefore necessitate different time steps. For example, a stiff domain may
require small time steps for numerical stability, or a fluid domain may require small time steps
to resolve turbulence accurately, whereas other domains may permit larger time steps. Typically,
the integrator is constrained to use the smallest of these time steps. To relax this constraint,
mixed methods use an explicit integrator in one domain and an implicit integrator in another,
whereas subcycling or multi-time methods use different time steps for each domain. Belytschko
and Mullen [1, 2] were the first to use a mixed explicit–implicit method with a nodal partition,
whereas Hughes and Liu [3, 4] introduced a mixed method using an element partition. Belytschko
et al. [5] introduced subcycling for first-order problems, and later extended it to non-integer time
step ratios [6]. Neal and Belytschko [7] developed subcycling with non-integer ratios for second-
order structural problems. Subcycling techniques for second-order problems are popular, but proofs
of their stability have been elusive. Smolinski and Sleith [8] contrived an explicit subcycling
algorithm that was proved stable [9], but is less accurate than other algorithms, whereas Daniel [10]
showed that Neal and Belytschko’s algorithm is ‘statistically stable,’ but unstable for certain time
steps smaller than the expected stability limit. More recently, Combescure and Gravouil [11, 12]
developed a FETI-like transient method that enforces continuity of velocities and is proved stable
but dissipative for subcycling. Prakash and Hjelmstad [13] improved this method to be stable
and non-dissipative for subcycling, but their method is based on binary trees for parallelism and
superposition, rendering it less suitable for high-performance computing and non-linear problems.

For accurate long-term integration, it is highly desirable that the integrator preserve energy and
momentum. ODE integrators that discretize the differential equation itself, such as Runge–Kutta
methods, often artificially dissipate energy to achieve numerical stability. Variational integrators,
in contrast, are derived by discretizing the Lagrangian and applying variational calculus, resulting
in symplectic methods that exactly preserve momentum and do not dissipate energy, making them
superior for long-term time integration. Variational integrators have been developed in Veselov
[14, 15], Wendlandt and Marsden [16], and Marsden and West [17], among others. Kane et al. [18]
show that the popular Newmark method [19] can also be derived variationally. Lew et al. [20, 21]
developed an explicit asynchronous variational integrator, where each element has its own time
step, with a parallel implementation in Kale and Lew [22]. We use a variational approach to take
advantage of its favorable properties. For those unfamiliar with variational integrators, we review
their derivation in Section 2.

For efficient parallel computing, domain decomposition is often used to create multiple domains
that can be solved concurrently. For elliptic problems, Farhat and Roux [23] proposed the popular
FETI method, which was subsequently extended to the transient problems [24, 25]. FETI enforces
continuity between domains by adding constraints with Lagrange multipliers. Park et al. [26]
developed a variant using local Lagrange multipliers that constrain domains to an intermediate
interface rather than directly to each other. Such an intermediate interface is used in Park et al.
[27] and Brezzi and Marini [28] to handle domains with non-matching meshes, as illustrated in
Figure 1. We will consider the case of PDEs with non-matching meshes in future work, and thus
introduce an intermediate interface here in anticipation.

We develop a method in Section 3 for integrating non-linear problems with domain decom-
position, which allows each domain to use its own time step, with arbitrary time step ratios
between domains. We linearly interpolate the interface motion and enforce continuity of displace-
ments by local Lagrange multipliers. A displacement constraint seems most natural and avoids the
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domain a domain binterface

Figure 1. Domain decomposition with interface between domains. Arrows represent the local Lagrange
multipliers constraining each domain to the interface.

discontinuities that develop between domains if continuity is imposed only for velocities. In the
Hamiltonian framework, our integrator constrains both displacement and velocity. By treating the
constraints variationally, we ensure stability in the domain coupling. The synchronous implicit
midpoint version achieves unconditional stability, whereas with asynchronous steps it is condition-
ally stable, but we show that in practice the time step is limited by the accuracy requirement rather
than by the stability requirement. For non-linear problems, the time step is also limited by the
convergence region of Newton’s method. We present examples in Section 4 involving a split single
degree-of-freedom system and a mesh of springs that demonstrate the robustness and accuracy of
our asynchronous method.

2. VARIATIONAL INTEGRATORS

2.1. Continuous Lagrangian and Hamiltonian frameworks

For completeness and clarity of presentation, we begin with a brief review of the governing
equations for a mechanical system; see Hairer et al. [29] for more details. The derivation of
variational integrators for computing the motion in the discrete setting will follow analogously.

Let Q be the configuration manifold of positions q, with phase space T Q of positions and
associated velocities q̇. The Lagrangian is a map on phase space, L :T Q→R, defined as kinetic
minus potential energy. We will assume a mechanical system with Lagrangian

L(q, q̇)= 1
2 q̇

TMq̇−V (q) (1)

where M is a symmetric positive-definite mass matrix and V (q) is the potential energy. The action
A is the integral of the Lagrangian from the initial time t0 to the final time tF,

A=
∫ tF

t0
L(q, q̇)dt (2)

Hamilton’s principle states that the motion of a system makes the action A stationary with respect
to all possible paths q(t) connecting the fixed initial position q0 and final position qF. Consider a
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variation q+��q with boundary conditions �q(t0)=�q(tF)=0. Applying integration by parts and
the boundary conditions yields

�A= �
��

A(q+��q)

∣∣∣∣
�=0

=
∫ tF

t0

(
�L
�q

− d

dt

�L
�q̇

)
·�qdt=0 (3)

Since this holds for any variation �q, we obtain the familiar Euler–Lagrange differential equation

�L
�q

− d

dt

�L
�q̇

=0 (4)

Turning now to the Hamiltonian framework, we define the momentum p by the Legendre transform
FL , which maps the position–velocity space T Q to the position–momentum space T ∗Q by

FL :(q, q̇) �→(q,p)=
(
q,

�L
�q̇

)
(5)

The Hamiltonian, given by H =pTq−L(q, q̇), then defines the total energy of the system.

2.2. Discrete Lagrangian and Hamiltonian frameworks

Our derivation of discrete variational integrators follows that of Veselov [14], Wendlandt and
Marsden [16], and Marsden and West [17]. We define the discrete state space to be Q×Q,
representing positions (qn,qn+1) at consecutive time steps tn, tn+1. The discrete Lagrangian is a
map, Ld :Q×Q→R, that approximates the Lagrangian (1) over one time step

Ld(qn,qn+1)≈
∫ tn+1

tn
L(q, q̇)dt (6)

and the discrete action sum is a map, Ad :QN+1→R, that approximates the action integral (2)
over N time steps from the initial time t0 to the final time tN ,

Ad(q0, . . . ,qN )=
N−1∑
n=0

Ld(qn,qn+1)≈
∫ tN

t0
L(q, q̇)dt (7)

Similar to the continuous case, the discrete Hamilton principle states that the motion makes the
discrete action sum stationary with respect to all paths q0, . . . ,qN with fixed endpoints q0 and qN .
Consider a variation qn+��qn for n=0, . . . ,N with boundary conditions �q0=0 and �qN =0,
which yields

�Ad= �
��

Ad({qn+��qn})
∣∣∣∣
�=0

=
N−1∑
n=0

�
�qn

Ld(qn,qn+1) ·�qn+ �
�qn+1

Ld(qn,qn+1) ·�qn+1

=
N−1∑
n=1

(
�

�qn
Ld(qn−1,qn)+ �

�qn
Ld(qn,qn+1)

)
·�qn =0
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The last step was accomplished by rearranging the sum and canceling the first and last terms due
to boundary conditions. As in the continuous case, since �qn is arbitrary, we obtain the discrete
Euler–Lagrange equations,

�
�qn

Ld(qn−1,qn)+ �
�qn

Ld(qn,qn+1)=0 (8)

which are solved for each qn+1 to obtain a recurrence relation. The Lagrangian integrator given
by (8) is a two-step method that updates position.

To formulate a Hamiltonian integrator, we define the discrete momentum pn by the discrete
Legendre transform, which maps the discrete state space Q×Q to the position–momentum space
T ∗Q by

F−Ld :(qn,qn+1) �→(qn,pn)=
(
qn,− �

�qn
Ld(qn,qn+1)

)
(9)

and gives an implicit equation for the next position qn+1,

pn =− �
�qn

Ld(qn,qn+1) (10)

Note that pn is simply the negative of the second term in the discrete Euler–Lagrange equations
(8). Written at n+1, this implies that the first term in the discrete Euler–Lagrange equations gives
an explicit equation for the next momentum,

pn+1= �
�qn+1

Ld(qn,qn+1) (11)

and the alternate discrete Legendre transform

F+Ld :(qn,qn+1) �→(qn,pn+1)=
(
qn,

�
�qn+1

Ld(qn,qn+1)

)
(12)

Equations (10) and (11) together result in a single-step method that updates both position and
momentum.

The momentum pn acts to store known quantities in the discrete Euler–Lagrange equations;
hence, the implementation of Lagrangian and Hamiltonian integrators is essentially identical.
The main advantage of the Hamiltonian integrator is a simpler initialization using p0=Mv0,
instead of requiring the first two positions q0,q1, as with the Lagrangian integrator. Adding
constraints in Section 3 will make the distinction between Lagrangian and Hamiltonian frameworks
more important.

2.3. Examples of variational integrators

Using different quadrature rules for the discrete Lagrangian (6) yields different variational inte-
grators. Consider the symmetric generalized midpoint approximation

Lsym,�
d (qn,qn+1)= 1

2
�t L

(
qn+�,

qn+1−qn
�t

)
+ 1

2
�t L

(
qn+1−�,

qn+1−qn
�t

)
(13)
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which yields second-order accurate integrators in both the Lagrangian and the Hamiltonian frame-
works. In the Lagrangian framework, the discrete Euler–Lagrange equations (8) become

1

2
�t (−�∇V (qn−1+�)−(1−�)∇V (qn−�)−(1−�)∇V (qn+�)−�∇V (qn+1−�))

−M
(
qn+1−2qn+qn−1

�t

)
=0 (14)

with the time step �t= tn+1− tn and abbreviation qn+� =(1−�)qn+�qn+1. For �=0 or 1, this
reduces to the explicit Newmark method [19], which is equivalent to the Verlet method [30],

M
(
qn+1−2qn+qn−1

�t2

)
=−∇V (qn) (15)

With the same Lsym,�
d , the Hamiltonian integrator defined by (10) and (11) becomes

pn = 1

2
�t (1−�)∇V (qn+�)+ 1

2
�t�∇V (qn+1−�)+M

(
qn+1−qn

�t

)
(16)

pn+1 = −1

2
�t�∇V (qn+�)− 1

2
�t (1−�)∇V (qn+1−�)+M

(
qn+1−qn

�t

)
(17)

For �=0 or 1, we recover the velocity Verlet method.
Since they both solve the discrete Euler–Lagrange equations (8), the Lagrangian and Hamiltonian

integrators are equivalent and will compute identical positions. In the Lagrangian framework, we
can use the simpler generalized midpoint rule

L�
d=�t L

(
qn+�,

qn+1−qn
�t

)
(18)

to derive identical integrators as from Lsym,�
d for �=0, 1

2 , and 1. However, in the Hamiltonian
framework, L�

d yields the symplectic Euler methods for �=0 and 1, which are only weakly

equivalent to the Lsym,0
d integrator in that all three compute the same positions qn but different

momenta pn . In particular, with an initial momentum p0=Mv0, the symplectic Euler methods
are only first-order accurate. If the initial momentum is contrived for the L0

d integrator so that it

agrees with the Lsym,0
d integrator on the first two positions q0 and q1, then they will agree on the

remaining positions and differ only on momenta.

3. DOMAIN DECOMPOSITION

We are interested in using variational integrators to solve problems that have been decomposed
into multiple domains to be solved in parallel. The continuity of positions at the domain interfaces
is enforced by the Lagrange multipliers. We employ the method of local Lagrange multipliers,
introduced by Park et al. [26], where each domain is constrained to an intermediate interface with
position w, as shown in Figure 2. This method eliminates over-constraints where more than two
subdomains meet, and is advantageous for non-matching meshes, as shown in Brezzi and Marini
[28] and Park et al. [27].
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Figure 2. Split single degree-of-freedom system with masses constrained together.

For simplicity, we will consider two domains, labeled with superscripts a and b. For domain a,
let the operator Ba extract the interface degrees of freedom from qa , and the operator Ca extract
the corresponding degrees of freedom from w such that the constraint

/a =Baqa−Caw=0 (19)

enforces continuity between the domain and the interface. Domain b has similar operators Bb, Cb,
and constraint /b. A standard Lagrangian for mechanical systems (1) is used for each domain. We
start with synchronous integrators, where both domains take the same time step, and then develop
asynchronous integrators, where each domain has its own time step.

3.1. Synchronous integrators

3.1.1. Lagrangian framework. To formulate a variational integrator with constraints, our treatment
follows that of Lew et al. [21, p. 165] and Marsden and West [17, p. 439]. For the constraint
/(q)=0, consider the augmented discrete Lagrangian

L̂d(qn,qn+1,kn+1)= Ld(qn,qn+1)+/(qn+1)
Tkn+1 (20)

where k is a vector of Lagrange multipliers. With the augmented action sum, Âd=∑N−1
n=0 L̂d(qn,

qn+1), the discrete Euler–Lagrange equations (8) become

� Âd

�qn
= �

�qn
L̂d(qn−1,qn)+ �

�qn
L̂d(qn,qn+1)+J�(qn)Tkn =0 (21a)

� Âd

�kn+1
=/(qn+1)=0 (21b)

where J� is the Jacobian matrix of /. This system is solved for the next position qn+1 and the
Lagrange multipliers at the current time step kn .

Consider our model problem with the two domains constrained to a common interface using
local Lagrange multipliers ka and kb, as shown in Figure 2. The augmented discrete Lagrangian
(20) yields

L̂d(qn,qn+1)= La
d(q

a
n,q

a
n+1)+Lb

d(q
b
n,q

b
n+1)+/a(qan+1)

Tkan+1+/b(qbn+1)
Tkbn+1 (22)

where La
d and Lb

d are the discrete Lagrangians for each subdomain. For more than two subdomains,

we can simply add additional terms to L̂d. Using the generalized midpoint rule L�
d (18) for La

d
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and Lb
d, the constrained discrete Euler–Lagrange equations (21) for domain a become

� Âd

�qan
= −��t∇V a(qan−1+�)−(1−�)�t∇V a(qan+�)

−Ma(qan+1−2qan+qan−1)/�t+BaTkan =0 (23a)

/a =Baqan+1−Cawn+1=0 (23b)

and similarly for domain b, plus

� Âd

�wn
=−CaTkan−CbTkbn =0 (23c)

for the interface. For �=0 or 1 this is the explicit SHAKE method [31], which is the constrained
version of Verlet. For other � it is implicit and must be solved using an iterative technique such
as Newton’s method,

x(i+1) =x(i)−Jg(x(i))−1g(x(i)) (24)

where i is the iteration index and x=[qa ka qb kb w]T is the solution vector. The residual function
g is given by (23), with the Jacobian

Jg =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fa BaT 0

Ba 0 −Ca

Fb BbT 0

Bb 0 −Cb

0 −CaT 0 −CbT 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

where

Fa = �(1−�)�tJaf (q
a
n+�)−Ma/�t

Fb = �(1−�)�tJbf (q
b
n+�)−Mb/�t

and Jaf is the Jacobian of the force fa(q)=−∇V a(q). The matrix Jg has a block-bordered form
amenable to parallel computation, with each block assigned to a different processor. For more
than two domains, each domain will have a block on the diagonal, and the interface will have
entries along the bottom and right-hand side, continuing the arrow form of (25). These types of
matrices can be efficiently solved in parallel by using a direct or iterative method to solve the
Schur complement for the interface unknowns, then solving each domain independently (see Chan
and Mathew [32] for further details).

3.1.2. Hamiltonian framework. Now turning to the Hamiltonian framework, to add a constraint
it is also necessary to keep the momentum on the constrained phase space T ∗N , since for the
augmented Hamiltonian scheme, the evolution of k is not uniquely defined at t0. Following Marsden
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and West [17, p. 435], let � :T ∗N →T ∗Q be the symplectic embedding given by

�=
{
(q,p)∈T ∗Q :/(q)=0 and J�(q)

�H
�p

(q,p)=0
}

(26)

The extra constraint J��H/�p=0 will enforce the continuity of velocity, in addition to continuity
of positions. Adding a second Lagrange multiplier ln to enforce this extra constraint yields the
constrained Hamiltonian integrator

pn = − �
�qn

Ld(qn,qn+1)−J�(qn)Tkn (27a)

�(qn+1) = 0 (27b)

which is solved implicitly for qn+1 and kn , and

pn+1= �
�qn+1

Ld(qn,qn+1)+J�(qn+1)
Tln (28a)

J�(qn+1)
�
�p

H(qn+1,pn+1)=0 (28b)

which is solved explicitly for pn+1 and ln .
To maintain second-order accuracy, we use the symmetric generalized midpoint rule Lsym,�

d
(13) for La

d and Lb
d. Substituting the augmented discrete Lagrangian (22) into the constrained

momentum equations (27) yields the system of equations

pan = 1
2 (1−�)�t∇V a(qan+�)+ 1

2��t∇V a(qan+1−�)+Ma(qan+1−qan)/�t−BaTkan (29a)

/a =Baqan+1−Cawn+1=0 (29b)

for domain a, and similarly for domain b, and

�L̂d

�wn
=−CaTkan−CbTkbn =0 (29c)

for the interface. Similar to the Lagrangian framework, for �=0 or 1 this is the explicit RATTLE
method [33], which is the constrained version of the velocity Verlet, while for other � we can solve
it using an iterative method. The Jacobian is again a block-bordered matrix of the same form as
(25), with

Fa = 1
2�(1−�)�t J af (q

a
n+�)+ 1

2�(1−�)�t J af (q
a
n+1−�)−Ma/�t

Fb = 1
2�(1−�)�t J bf (q

b
n+�)+ 1

2�(1−�)�t J bf (q
b
n+1−�)−Mb/�t

Once the positions have been computed using (29), we must compute the new momenta. For
our purposes, the extra constraint J��H/�p=0 on the momentum enforces continuity of velocity.
Because the common interface has no mass, we enforce the continuity of velocity directly between
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domains using

J�a
�H
�pa

−J�b
�H
�pb

=Ba(Ma)−1pan+1−Bb(Mb)−1pbn+1=0 (30)

Formally, this is the same condition for momentum that one would get without the interface w,
by substituting the constraint /=Baqan−Bbqbn =0 into (28b). With this condition, the constrained
momentum equations (28) for pn+1 and ln yield the system

pan+1 = − 1
2��t∇V a(qan+�)− 1

2 (1−�)�t∇V a(qan+1−�)+Ma(qan+1−qan)/�t+BaTln (31a)

pbn+1 = − 1
2��t∇V b(qbn+�)− 1

2 (1−�)�t∇V b(qbn+1−�)+Mb(qbn+1−qbn)/�t−BbTln (31b)

Ba(Ma)−1pan+1−Bb(Mb)−1pbn+1=0 (31c)

Note that (31) can always be solved explicitly, even when the force −∇V is non-linear, because
qn+1 is already known.

3.2. Asynchronous integrators

Since the stability and accuracy requirements for different domains may necessitate different time
step sizes, we develop an asynchronous integrator where each domain steps with its own step size.
The integrator takes sa substeps for domain a and sb substeps for domain b to make one system
time step �t , as shown in Figure 3. For intermediate steps, the position of each domain’s interface
is constrained to match the linear interpolation of the position w of the common interface. We
denote time steps of domain a by the subscript i , time steps of domain b by the subscript j ,
and system time steps by the subscript n. A different variational integrator may be used for each
domain, for example, �a = 1

2 for domain a and �b=0 for domain b, or vice versa. Unless otherwise
stated, we use the same integrator for each domain, with �=�a =�b.

3.2.1. The Lagrangian framework. The discrete Lagrangian for one system time step, augmented
with constraints, is given by

L̂d =
sa−1∑
k=0

La
d(qi+k,qi+k+1)+(Baqi+k+1−Cawi+k+1)

Tki+k+1

+
sb−1∑
k=0

Lb
d(q j+k,q j+k+1)+(Bbq j+k+1−Cbw j+k+1)

Tk j+k+1 (32)

where La
d and Lb

d are the discrete Lagrangians for domains a and b, respectively, and the position
of the common interface w is linearly interpolated by

wi+k =
(
1− k

sa

)
wn+

(
k

sa

)
wn+1 (33)

w j+k =
(
1− k

sb

)
wn+

(
k

sb

)
wn+1 (34)
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Figure 3. Substeps of system time step.

Each domain’s substep size is proportional to the system time step, �ta =�t/sa , and the appropriate
substep size should be used in the discrete Lagrangians La

d and Lb
d. Using the generalized midpoint

rule L�
d (18) for La

d and Lb
d, the constrained discrete Euler–Lagrange equations (21) yield sa

equations for the positions of domain a,

� Âd

�qi
= −��ta∇V a(qi−1+�)−(1−�)�ta∇V a(qi+�)

−Ma(qi+1−2qi +qi−1)/�t
a+BaTki =0 (35a)

...

� Âd

�qi+sa−1
= −��ta∇V a(qi+sa−2+�)−(1−�)�ta∇V a(qi+sa−1+�)

−Ma(qi+sa −2qi+sa−1+qi+sa−2)/�t
a+BaTki+sa−1=0 (35b)

sa equations constraining domain a to the interface at each substep,

/a(qi+1) =Baqi+1−Cawi+1=0 (35c)

...

/a(qi+sa ) =Baqi+sa −Cawi+sa =0 (35d)

and similar equations for domain b. For the interface, we have

� Âd

�wn
=

sa−1∑
k=0

CaT
[
−

(
k

sa

)
ki+k−sa −

(
1− k

sa

)
ki+k

]

+
sb−1∑
k=0

CbT
[
−

(
k

sb

)
k j+k−sb −

(
1− k

sb

)
k j+k

]
=0 (35e)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:1353–1378
DOI: 10.1002/nme



1364 M. GATES, K. MATOUŠ AND M. T. HEATH

As usual, for a non-linear problem this system must be solved using Newton’s method or another
iterative technique. The Jacobian is a block-bordered matrix; for example, with sa =3 and sb=1
we obtain

Jg =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fi+1 BaT

−Gi+2 Fi+2 BaT

Fi+2 −Gi+3 Fi+3 BaT

Ba − 1
3C

a

Ba − 2
3C

a

Ba −Ca

F j+1 BbT

Bb −Cb

−CaT − 2
3C

aT − 1
3C

aT −CbT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

Fi+1 = �(1−�)�taJaf (qi+�)− 1

�ta
Ma

Gi+1 = −�2�taJaf (qi−1+�)−(1−�)2�taJaf (qi+�)− 2

�ta
Ma

for domain a, and similar F j and G j for domain b. The solution vector is

x=[qi+1 qi+2 qi+3 ki ki+1 ki+2︸ ︷︷ ︸
domain a

q j+1 k j︸ ︷︷ ︸
domain b

wn+1︸ ︷︷ ︸
interface

]T (36)

For linear problems, the F and G submatrices will be constant; hence, they could potentially be
stored just once in the memory. For non-linear problems, each submatrix of the Jacobian depends
on a different position; hence, they will vary. This can make the Jacobian expensive to compute and
store. Alternatively, we could use an approximate Jacobian where the submatrices are all equal.
This would make the Jacobian much faster to compute, but could adversely affect the convergence
rate of Newton’s method.

To initialize the Lagrangian integrator, the positions and Lagrange multipliers for the entire
first system step must be known. Given an initial position and velocity, these can be computed
using a single step of the asynchronous Hamiltonian integrator. In our formulation, the Lagrangian
integrator results in a smaller system to solve than the Hamiltonian integrator, and hence is more
efficient for computing subsequent steps. Since the Lagrangian and Hamiltonian integrators are
equivalent, they will compute the same positions and have the same rate of convergence, as shown
in Section 4.
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3.2.2. The Hamiltonian framework. To derive the asynchronous Hamiltonian integrator, we apply
sa substeps of the single-step Hamiltonian integrator to domain a and sb substeps to domain b, with
the constraint at each substep that their interfaces match the linear interpolation of the common
interface. Since there is a mismatch between times in which momentum is computed for each
domain, we propose applying the momentum constraint on only the system time. Constraining a
linear interpolation of the momenta, as for displacements, would lead to a dissipative integrator.

Applying the symmetric generalized midpoint rule Lsym,�
d (13), and introducing the abbreviation

vi+1/2=(qi+1−qi )/�ta , we obtain sa equations for the positions of domain a,

pi = 1
2 (1−�)�ta∇V (qi+�)+ 1

2��ta∇V (qi+1−�)+Mvi+1/2−BaTki (37a)

...

pi+sa−1 = 1
2 (1−�)�ta∇V (qi+sa−1+�)+ 1

2��ta∇V (qi+sa−�)

+Mvi+sa−1/2−BaTki+sa−1 (37b)

and sa equations for momenta,

pi+1 = − 1
2��ta∇V (qi+�)− 1

2 (1−�)�ta∇V (qi+1−�)+Mvi+1/2 (37c)

...

pi+sa−1 = − 1
2��ta∇V (qi+sa−2+�)− 1

2 (1−�)�ta∇V (qi+sa−1−�)+Mvi+sa−3/2 (37d)

pi+sa = − 1
2��ta∇V (qi+sa−1+�)− 1

2 (1−�)�ta∇V (qi+sa−�)

+Mvi+sa−1/2+BaTln+1 (37e)

and similar equations for the positions and momenta of domain b, except in the last equation the
sign of l is changed,

p j+sb =− 1
2��tb∇V (q j+sb−1+�)− 1

2 (1−�)�tb∇V (q j+sb−�)+Mv j+sb−1/2−BbTln+1 (37f)

There is also an equation constraining the momentum at the final substep,

Ba(Ma)−1pi+sa −Bb(Mb)−1p j+sb =0 (37g)

and an equation for the interface,

sa−1∑
k=0

CaT
[
−

(
k

sa

)
ki+k−sa −

(
1− k

sa

)
ki+k

]

+
sb−1∑
k=0

CbT
[
−

(
k

sb

)
k j+k−sb −

(
1− k

sb

)
k j+k

]
=0 (37h)

Note that qi+2 depends on pi+1, qi+3 depends on pi+2, and so on. Hence, unlike in the previous
sections, the intermediate momenta must be computed simultaneously with the positions. The final
momenta pi+sa and p j+sb could still be post-processed along with the constraint on momentum,
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but we have not separated it here. As usual, this gives a block-bordered Jacobian matrix; for
example, with sa =2 and sb=1 we obtain

Jg =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fi+1 −Ba

−Gi+2 Fi+2 I −Ba

Gi+1 I

−Fi+2 Gi+2 I BaT

Ba − 1
2C

a

Ba −Ca

F j+1 −BbT

G j+1 I −BbT

Ba −Ba

Da −Db

−CaT − 1
2C

aT −CbT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

Fi = 1
2�(1−�)�taJaf (qi+�)+ 1

2�(1−�)�taJaf (qi+1−�)+Ma/�ta

Gi = 1
2�

2�taJaf (qi+�)+ 1
2 (1−�)2�taJaf (qi+1−�)−Ma/�ta

Da =Ba(Ma)−1

for domain a, and similar F j , G j , and Db for domain b. The solution vector is

x=[qi+1 qi+2 pi+1 pi+2 ki ki+1︸ ︷︷ ︸
domain a

q j+1 p j+1 k j︸ ︷︷ ︸
domain b

ln+1 wn+1︸ ︷︷ ︸
interface

]T (38)

As before, this block-bordered matrix naturally maps to parallel computing, with each processor
getting a diagonal block of the matrix.

3.3. Stability

For a linear problem without domain decomposition, the stability condition for the Verlet (�=0)
is �t<2/�, where �2 is the largest eigenvalue of the stiffness matrix and the midpoint method
(�= 1

2 ) is unconditionally stable. This can be shown using the modal analysis [34, p. 421] or by the
energy method [35]. For non-linear problems, there is ongoing research in the stability analysis.
A generally accepted condition is that the stability limits given above are met by eigenvalues of
the linearized problem at every Newton’s iteration. However, Skeel and Srinivas [36] have shown
that non-linearities may limit the time step more than this linearized analysis implies. The initial
guess must also be sufficiently close for Newton’s method to converge, which may further limit
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the time step from a computational perspective. Thus, in real non-linear simulations, one must pay
attention to all three time step limitations—stability, accuracy, and region of convergence.

4. NUMERICAL EXPERIMENTS

To investigate properties of the proposed integrators, we performed numerical experiments simu-
lating non-linear springs. The first set of numerical experiments uses a split single degree-of-
freedom system. For the second set of numerical experiments, we chose the asynchronous Hamil-
tonian integrator and investigate a mesh of springs in three dimensions.

4.1. Split single degree of freedom

The first problem, shown in Figure 2, has a stiff spring with a light mass in domain a, and a
non-stiff spring with a heavy mass in domain b, designed to accentuate potential problems with
the coupling. Each spring has force

f (q)=−c tanh
( q

2d

)
(39)

shown in Figure 4, and the parameters

Ma = 0.1, ca =45, da =0.5

Mb = 3.9, cb=3, db=0.5

Consistent units are used throughout the examples.
Owing to their variational nature, the integrators do not artificially dissipate energy. Figure 5

shows that all of the error is phase error, rather than amplitude error. Even over a very long time
interval, where we have integrated to time t=106 in Figure 6, the amplitude is maintained and
the energy continues to oscillate around the true energy. Another consequence of the variational
formulation of our integrators is that they are symplectic and so preserve area in the phase space.

For our non-linear model problem with domain decomposition, we found that for �= 1
2 the

synchronous integrator retained the unconditional stability. When we changed to asynchronous
steps, the unconditional stability was lost, but in our tests the stability limit for the time step still
exceeded the time step required to attain reasonable accuracy. Whether this holds is of course
problem dependent. Although we lost the unconditional stability, we gained the ability for each

 f
 c

 q

 d = 0.2

 f
 c

 q

 d = 0.5

 f
 c

 q

 d = 0.8

Figure 4. Non-linear spring force for various values of d .
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Figure 5. Convergence of the synchronous Hamiltonian integrator (29), (31) with �= 1
2 as time step

�t→0. Note that amplitude is same in all the cases; the only change is in the phase error.
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Figure 6. Long-term behavior of the synchronous Hamiltonian integrator (29), (31) with
�=0, showing results near t=0 and 106. Note that the amplitude does not change, and

energy oscillates about a fixed value.

domain to use a different time step for the required accuracy in that domain. For problems where
the accuracy requirement in one domain would otherwise limit the system time step, asynchronous
integrators allow other domains to use larger time steps.
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In the error plots that follow, we use percent error in the average length of the period, shown
in Figure 7 as this measurement is independent of the final time of integration. Figures 8–10
compare the stability limit with various levels of accuracy, showing that the time step for reasonable
accuracy requirements is much smaller than the stability limit. The solution with 15% error shown
in Figure 11 is clearly very coarse; hence, one would want to use a smaller time step than that. We
verified the stability by monitoring the eigenvalues of the amplification matrix at every Newton
step to ensure that they were never greater than 1 in magnitude. To estimate the error, we computed
a reference solution using the Verlet integrator, without domain decomposition, and �t=10−4.

We note some interesting features of the stability graphs. For �=0, the stability limit increases
as the number of substeps increases, and approaches the limit for the �= 1

2 case. This is not
entirely surprising: each substep is a linear interpolation between the system time steps, making the

Figure 7. Phase error is computed by comparing the average solution period,
p=∑n

i=1 pi/n, with the reference solution period.

1:1   2:1 4:1 8:1
0

1

2

3

4

5

6
 sb = 1

 sa:sb substep ratio

∆t

α = 1/2
α = 0
15% error
5% error
1% error

1:8   2:8 4:8 8:8
0

1

2

3

4

5

6
 sb = 8

 sa:sb substep ratio

∆t

Figure 8. Bold lines are stability limits. Thin lines are constant error curves showing �t that achieve
specified error. For both values of �, time step to achieve reasonable error is significantly below stability
limits. For �= 1

2 integrator, the stability limit initially drops from unconditional to conditional in changing
from synchronous to asynchronous, but then becomes independent of the time step ratio. For �=0

integrator, the stability limit increases by a factor of 2.13 from 1:1 to 8:1 ratio.
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15% error
5% error
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8:1   8:2 8:4 8:8
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∆t

Figure 9. The stability limit is largely unaffected by changing the number of substeps on non-stiff side b.

integrator semi-implicit. It also shows that the coupling is as important as the individual integrators
used in each subdomain. The stability limit then plateaus and becomes independent of the time
step ratio as the number of substeps increases. Such behavior is important if one wants to utilize an
arbitrary time step ratio without decreasing the stability limit. Changing the number of substeps on
the non-stiff side has little effect on the stability limit, indicating that the limit is largely dictated
by the stiff domain, as expected. When using different integrators for each domain, with �a = 1

2
and �b=0, or vice versa, the results are bounded by those shown using the same value of � for
both domains, as shown in Figure 10.

For non-linear problems, the convergence of Newton’s method at each time step is important
for overall speed. Figure 12 shows that fast convergence is retained throughout the spring’s cycle.
This is as expected, since we used the actual Jacobian in the iteration.

Both the synchronous and asynchronous integrators achieved second-order convergence rates
for positions, as shown in Figure 13. For the Lagrangian integrator, we computed velocities using a
second-order finite difference, yielding a second-order convergence rate. For the Hamiltonian inte-
grator, we computed velocities directly from the momentum. The synchronous integrator achieves
second-order convergence for velocities, but the asynchronous integrator achieves only first-order
convergence for velocities.

Examining how time refinement affects the error, we see in Figure 14 that refining on the stiff
side reduces the error by half, whereas refining on the non-stiff side has little effect. This indicates
that we can take larger steps on the non-stiff side without affecting the accuracy, and smaller steps
on the stiff side to gain the accuracy required. The greatest change in error is adding a single
substep from 1:1 to 2:1, so that even a moderate number of substeps may be sufficient to attain
the desired accuracy.

4.2. Mesh of springs

To extend the results to a system with many degrees of freedom, we applied the asynchronous
Hamiltonian integrator to a mesh of springs on the unit square with 147 degrees of freedom, shown
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Figure 10. Results for the mixed explicit–implicit integrator are bounded by results in Figures 8 and 9
with the same value of � for both domains.

in Figure 15. Meshes of springs are used, for example, in computer graphics to simulate cloth,
where Runge–Kutta or backward Euler integration is often employed [37, 38]. The spring force
between node i and node j is

f(xi ,x j )=−c tanh

(‖w‖−l0
2d

)
w

‖w‖ (40)

where xi =[xi yi zi ]T is the position of node i , w=xi −x j , and l0 is the spring’s rest length. The
left domain a has stiff springs with ca =45 and da =0.5, whereas the right domain b has non-stiff
springs with cb=3 and db=0.5. Each node has a mass of M=0.1. Nodes on the boundary are
homogeneous Dirichlet. The initial condition is a bubble function,

zi =sin(�xi )sin(�yi ) (41)

Solutions at various time steps are shown in Figure 16.
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0 2 4 6 8 10

 –1

 –0.5

0

0.5

1

time

po
si

tio
n

Solutions at various error tolerances

reference
1% error
5% error
15% error

Figure 11. A comparison of solutions at various error tolerances, showing poor quality of
solutions at higher error tolerances. One would undoubtedly choose a time step smaller than
that used for 15% error solution, which is still under the stability limit. Here we use the percent

error in a period. Solutions were computed using �= 1
2 ,s

a =8,sb =1.
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Figure 12. Newton’s method exhibits fast convergence throughout the whole spring cycle. The graph
on the left shows the convergence for three sample positions; the graph on the right depicts the
position and force at those sample positions. Results for sa =8, sb =1 ratio are shown. The residual

is normalized relative to the initial residual of first step, R=‖g(i)
n ‖/‖g(0)

0 ‖.

The stability results in Figure 17 bear out the conclusions from the single degree-of-freedom
case. For the �= 1

2 integrator, the stability limit initially decreases but then levels out as the stiff
side is refined. For the �=0 integrator, the stability limit doubles as the stiff side is refined. For
this problem, the eigenvalue analysis of the linearized system did not yield useful information
about the stability limit; hence, we based our stability analysis on running for at least 2000 time
steps and testing whether any position exceeded a bounding volume.

The error measurements in Table I indicate that for this problem, the accuracy limit is again
below the stability limit. For instance, to realize an accuracy of 5% would require choosing a
�t about half the stability limit for �=0, and significantly below the stability for �= 1

2 . Because
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Figure 13. The Hamiltonian and Lagrangian integrators both achieve the second-order convergence
for positions. The Hamiltonian integrators, on top, become first-order accurate for velocities when
going from synchronous to asynchronous, whereas the Lagrangian integrators, on bottom, retain the
second-order accuracy for velocities. Asynchronous results shown are for sa =8, sb =1 ratio. Similar

results are obtained for different ratios. The error is ‖q−qref‖L2 .

there is no readily identifiable period for this problem, we used the L2 error measure, ‖q−qref‖L2 ,
integrated from the initial time to the final time. This represents a cumulative global error, which
grows with time. The final time of integration is arbitrary; we chose tF=100 so that the system
would go through several major periods. For a reference solution we used Verlet without domain
decomposition, with �t=0.0002.

As before, the integrators achieve the second-order accuracy for positions shown in Figure 18.
However, now the asynchronous integrator also achieved the second-order accuracy for velocities,
instead of only first-order accuracy as in the first test problem (Figure 13). From this, we conjecture
that velocities at the interface are less accurate, but do not pollute the rest of the domain. A more
rigorous investigation is required. We also observed that the extra momentum constraint (37g)
reduces the velocity error by a constant factor, but does not affect the convergence rate.
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Figure 14. The change in error as time steps for stiff domain a and non-stiff domain b are refined,
with fixed system time step �t . As the stiff time step is refined, along the left axis, error is reduced
by half. As the non-stiff time step is refined, along the right axis, there is little change in error.
With this system time step �t , all errors are less than 1%. Results shown are for the asynchronous

Hamiltonian integrator with �= 1
2 .

Figure 15. Mesh of springs on a unit square, containing 112 springs and 147 degrees of freedom.
Domain a, with 0�x� 1

2 , has stiff springs in dashed line. Domain b, with 1
2�x�1, has non-stiff springs

in solid line. Boundary nodes are Dirichlet.

5. CONCLUSIONS

In this paper, we have shown how to derive both synchronous and asynchronous integrators with
domain decomposition in both the Lagrangian and Hamiltonian frameworks. For the Lagrangian
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Figure 16. The initial condition and solution at selected times. For visualization purposes, the mesh is
drawn as a solid surface and colored by z height. Black lines indicate springs.
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Figure 17. For �= 1
2 integrator, the stability limit drops when taking asynchronous steps,

but then levels off. For �=0 integrator, refining the stiff side doubles the stability limit,
whereas refining the non-stiff side does not affect the stability limit.

integrator we enforce the continuity of position at the interface, whereas for the Hamiltonian inte-
grator we enforce the continuity of both position and velocity at the interface. Each domain can be
computed in parallel, making the method suitable for parallel computing. The similarity of imple-
mentation to the Newmark method makes our integrators easy to incorporate into the existing codes.

As we show by various examples, these integrators have stability properties superior to traditional
integrators for long-term time integration. Experiments on a non-linear problem have shown that
our methods are symplectic and approximately preserve energy, such that the energy oscillates

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:1353–1378
DOI: 10.1002/nme



1376 M. GATES, K. MATOUŠ AND M. T. HEATH

Table I. The relative percent error ‖q−qref‖L2/‖qref‖L2 at time t=100 for various integrators.

�=0 �= 1
2

�t Verlet 1:1 Ratio 8:1 Ratio 1:8 Ratio Midpoint 1:1 Ratio 8:1 Ratio 1:8 Ratio

0.16 — — — — 19 18 — 12
0.08 — — 12 — 11 11 9.6 9.6
0.04 8.1 7.8 4.9 3.0 12 11 8.1 7.4
0.02 3.0 2.9 1.7 1.6 5.0 4.9 3.1 3.0
0.01 1.4 1.3 0.50 1.2 2.1 2.0 0.92 1.7
0.005 0.44 0.42 0.13 0.39 0.87 0.84 0.23 0.79
0.0025 0.11 0.11 0.032 0.10 0.23 0.22 0.059 0.21
0.00125 0.028 0.027 0.0088 0.025 0.058 0.056 0.015 0.053

Blank entries are numerically unstable runs. To realize error less than 5%, �t must be chosen less than the
stability limit. In addition, note that the error does not increase when changing from undecomposed Verlet and
midpoint integrators to synchronous decomposed 1:1 integrators.

10 –3 10– 2 10– 1

10 –4

10 –2

100

∆t

∆t2

Sync. Hamiltonian integrators

time step ∆t

L
2 e

rr
or

velocity, α = 0
position, α = 0
velocity, α = 1/2
position, α = 1/2

10– 3 10 –2 10 –1

10 –4

10 –2

100

∆t

∆t2

Async. Hamiltonian integrators

time step ∆t

L
2 e

rr
or

Figure 18. Both the synchronous and asynchronous Hamiltonian integrators achieved the
second-order convergence for positions and velocities. Asynchronous results are for the 8:1

ratio. The error is ‖q−qref‖L2/‖qref‖L2 .

about a fixed value. The stability limit becomes independent of the time step ratio, and in practice
the system time step is limited by the accuracy requirement rather than by the stability requirement.

There are a number of directions for future work. We are interested in further investigating
the asynchronous scheme to improve its order of accuracy and stability, particularly the loss of
unconditional stability. One potential direction is to investigate other interpolations of the system
interface than the linear interpolation we used here. Another improvement for the Hamiltonian
integrator would be to constrain the velocity at every substep, rather than at just the system time
step. Composition methods [17] also afford a means of generating variational integrators with
higher-order accuracy, which may benefit the asynchronous integrators.

We plan to add external forces and dissipation, whose effects can be accurately computed by
variational integrators [18]. We intend to extend the methods developed here to PDEs and investigate
how to solve the resulting systems efficiently in parallel. We are also interested in extending this
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work to domains with non-matching meshes at the interface. To handle non-matching meshes, we
believe that the common interface between domains that we have included in this work will be
of vital importance [39]. Ultimately, we want to extend the proposed method to multi-physics
problems.
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