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SUMMARY

Non-linear hyperelastic response of reinforced elastomers is modeled using a novel three-dimensional
mixed finite element method with a nonlocal pressure field. The element is unconditionally convergent
and free of spurious pressure modes. Nonlocal pressure is obtained by an implicit gradient technique and
obeys the Helmholtz equation. Physical motivation for this nonlocality is shown. An implicit finite element
scheme with consistent linearization is presented. Finally, several hyperelastic examples are solved to
demonstrate the computational algorithm including the inf–sup and verifications tests. Copyright q 2008
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The incompressibility, volume-preserving mode of deformation, is an important kinematic
constraint on the response of several materials. For example, in finite strain viscoelasticity or
viscoplasticity, the inelastic response of several polymers and alloys is assumed to be volume
preserving. It is well known that the modeling of such materials by the finite element method
requires a special attention to avoid the so-called ‘volumetric locking’ [1]. This numerical
deficiency may be assessed numerically by patch tests or mathematically by the Babuška–Brezzi
condition [2, 3].

In principle, stable methods for the Stokes equation (see, e.g. Zienkiewicz and Wu [4]) can
be adapted, with minor modifications, to finite strain problems. This approach has been taken in
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1186 P. AREIAS AND K. MATOUŠ

several recent papers with applications to solids. For incompressible bulk deformation, relatively
high-performance mixed elements were proposed, among others, by Hughes et al. [5], Chiumenti
et al. [6], and Ramesh and Maniatty [7]. Recently, Puso and Solberg [8] proposed an element
involving a convex combination with nodal quadrature, Tian et al. [9] developed a general purpose
tetrahedral element with a good balance of properties, and Hauret et al. [10] introduced a diamond
element based on discrete mechanics.

The motivation for our element construction is based on the successful application of ‘localization
limiters’ proposed by Lasry and Belytschko [11] and later modified by Peerlings et al. [12]. In their
work, a gradient formulation of a damage model for quasi-brittle fracture under small strains was
used to re-establish well-posedness. In our work, the nonlocal pressure is introduced to stabilize
the solution of incompressible finite strain hyperelasticity. Gradient and nonlocal methods have
been justified in the past to introduce a length artificially into a problem statement that does not
possess one.

For filled elastomers there exists a physical justification for the introduction of a nonlocal
pressure field [13, 14]. The clusters of reinforcing particles do not need to be in direct contact
to form a network that spans the whole material as shown in Figure 1. Adsorbed polymers have
segments that are parts of loops, trains, and tails, and loops and tails are long enough either to
be entangled with other loops and tails from other adsorbed chains or to be adsorbed on more
than one reinforcing aggregate. This supporting of the network by the polymer chains decreases

2
√

c0

Figure 1. Schematic illustration of the polymer-mediated network including the adsorption of polymer
chains on carbon black aggregates. The chains are not tightly bound to the carbon black, and the adsorbed
polymers have segments that are parts of loops, trains, and tails that are long enough to allow filler
aggregates to form a network without direct contact. For an equivalent poly(isobutylene) polymer, the

radius of gyration is calculated to be about 240 Å [13].
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STABILIZED ELEMENT WITH NONLOCAL PRESSURE 1187

the percolation threshold for network formation and effectively increases the apparent volume
fraction of the reinforcing aggregates [13]. Molecular dynamics studies were also performed to
show nonlocality of the bulk modulus and of the pressure [14].

In other contexts, both implicit and explicit gradient versions have been proposed [5, 15]. Implicit
gradients have the advantage of maintaining the original discretization while still allowing spreading
of the correspondent field, which in this case is the pressure. This is a decisive advantage of the
proposed model, because with the combined use of the Galerkin method it is possible to introduce
the Helmholtz equation directly, as done by Peerlings et al. [12] in the context of quasi-brittle
fracture, which can spread a scalar field, such as pressure as in this work, as a replacement for an
explicit nonlocal approximation. Incorrect averaging is avoided, and the stiffness bandwidth is not
altered as with nonlocal methods. However, certain peak values are filtered due to smoothing.

In this paper, we describe the governing equations and introduce the gradient-based pressure field
governed by the Helmholtz equation. A new mixed formulation is derived, and consistent tangent
modulus is presented. To assess the performance of the element in the nearly incompressible range,
we test the optimality and stability conditions (inf–sup). Several hyperelastic examples are solved
to demonstrate the computational algorithm including code verification.

Adopting conventional symbolic notation, we herein denote second-order tensors with upper-
case boldface and lower-case boldface Greek letters, e.g. P and s. The trace of a second-order
tensor is denoted by tr(A), and the tensor operations between two second-order tensors S and E are
indicated as SE for the tensor contraction (a second-order tensor) and S :E for the scalar product
(a double contraction). Other notational conventions are introduced as needed.

2. GOVERNING EQUATIONS

Let �0⊂R3 represent the reference configuration of a given body. Given a certain point X,X∈�0
identifies a material position as shown in Figure 2. If the body contains no discontinuities, then there

Figure 2. Problem description: pressure spreading is controlled by parameter c0.
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1188 P. AREIAS AND K. MATOUŠ

is a unique mapping �(X) such that x≡�(X) with x=X+u, where u is the displacement vector.
Next, we introduce F=∇0�(X) as the deformation gradient, with Jacobian given by J =det(F),
and we define left B=FFT and right C=FTF Cauchy–Green deformation tensors, respectively.
Here, ∇0 is the gradient with respect to X.

The equilibrium equations and boundary conditions involve the stress, body forces, surface
loads, and prescribed displacements:

∇0 ·PT+B0 = 0 in �0

u = u on �u

P ·N0 = t0 on �0t

(1)

where P is the first Piola–Kirchhoff stress tensor, u is the prescribed displacement on the boundary

�u , t0 is the known surface load on the boundary �0t , and N0=1/
√
n·(Bn)FTn, where n represents

the unit normal to �t . The boundary of the body is �=�u∪�t with �u∩�t =	.
If we introduce a strain energy density function, ŵ(u)≡ w̃(F), which measures the stored energy

in each point of the body as a function of its motion, and include t in the volume term (by means
of generalized functions), the work function (Lagrangian functional) is calculated by integrating
the strain energy density function w̃ and a constant body force B0:

L(u)=
∫

�0

[�0w̃(F)+B0 ·u]dV (2)

where �0= J� is the reference mass density and � denotes the deformed mass density. From the
stationarity of the work function, equilibrium equations are obtained.

2.1. Mixed formulation

We now present the formulation and a finite element numerical scheme for the boundary
value problem described above, with emphasis on accurate numerical treatment of the near-
incompressible response and consistent linearization of the non-linear problem. We use a
continuous mixed pressure–displacement weak formulation and a bubble-enhanced displacement
field. To model the pressure-spreading effect, as discussed in the Introduction, we adopt a strongly
nonlocal gradient model using the implicit version of Peerlings et al. [12]. The result is a finite
strain extension of the 4/3c element (MINI element) [16], which was shown to be stable and
convergent by Brezzi and Fortin [17], with a gradient term. We denote this element as 4/3cg. We
also consider a simplified version of the element (obtained by removing the bubble), which we
identify as 3/3cg. Although there are some differences, the 3/3cg element resembles the element
proposed by Hughes et al. [5] (denoted as stabilized P1/P1 element) and employed by Ramesh
and Maniatty [7] for viscoplasticity and by Matouš and Geubelle [18] for hyperelasticity with
cohesive fracture.

In general, the volume-preserving part of a deformation gradient is calculated from the Flory
decomposition:

F̂= J−1/3F (3)

and the volumetric term � reads

�= J (4)
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To facilitate the discussion, we introduce F̄=�1/3F̂ as a mixed deformation gradient, and � is now
an additional variable denoting a mixed representation for the Jacobian, �≡det(F̄). In the finite
element formulation, Equation (4) is satisfied in a weak sense to re-establish the correctness of
the governing equations. A mixed functional, equivalent to the original (2), yields

L̄(u,�;�)=
∫

�0

[�0w̃(F̄)+�(J−�)+B0 ·u]dV0 (5)

where � is the pressure conjugate to �. Functional (5) can be viewed as a form of the de Veubeke–
Hu–Washizu variational principle commonly used in computational mechanics [19–21].

The Kirchhoff stress tensor (a physically relevant stress measure for a near-incompressible
material) is obtained using Coleman’s relation:

s=�0
�w̃(F)

�F
FT⇔s=PFT (6)

and its deviatoric part reads

T=s− �̃1 (7)

where �̃=1/(J ) tr(s) represents the Kirchhoff hydrostatic pressure and 1 is the second-order
identity tensor. Satisfaction of poly-convexity requires a convex volumetric energy, U (J ), such
that �̃= J dU (J )/dJ .

The following equation is provided for �̃:

�̃≡g(J )=�[J 2− J+ ln(J )] (8)

where � is the bulk modulus. Physical requirements that this function must satisfy are given in [22].
In general, if � and � are pressure-like and dilatation-like quantities, respectively, then

� = g(�)≡�[�2−�+ ln(�)]
� = g−1(�)

(9)

where � is scaled by �. This introduces � as an implicit function of �. Due to direct application
of the Galerkin method, the relationship between volumetric energy U (J ), which would enter the

functional ¯̄L mentioned below, and g(J ) is not needed. The distortional component of the stress
is introduced in Section 2.2.

To introduce pressure nonlocality, the pressure field � obeys the following inhomogeneous form
of the Helmholtz equation:

�−c0∇2
0�− �̃=0 (10)

where ∇2
0 is the Laplace operator with respect to the material coordinates. Here, the area parameter

c0 controls the degree of nonlocality of the pressure field. The physical meaning of this nonlocality
parameter can be motivated by the arrangement of the polymer network and its interactions with
reinforcing aggregates (see Introduction and Figure 1). Note that Equation (10) will introduce an
approximation of the same order of magnitude as the one induced by the explicit gradient model

�= �̃+c0∇�̃ (11)
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1190 P. AREIAS AND K. MATOUŠ

which would require C1-continuity of the pressure field, whereas implicit approach selected in this
work enables a straightforward C0 finite element interpolation. A weak form of (10) is obtained
by using the test function �:∫

�0

�(�− �̃)dV0+c0

∫
�0

∇0�·∇0�dV0=0 (12)

for all admissible variations �∈[H1(�0)
1], where [H1(�0)

nsd] denotes the Sobolev space of
square-integrable functions with weak derivatives up to first order with range in Rnsd . Zero normal
flux at the boundaries is assumed (see Lasry and Belytschko [11]).

Owing to the relationship between � and � given by (9), the three-field formulation L̄(u,�;�)

given by (5) reduces to the two-field ¯̄L(u;�) [21]. After applying standard variational methods
and using (12), we state the equilibrium condition as follows: Find u(X) and �(X) such that

� ¯̄L(u;�) =
∫

�0

⎧⎨
⎩[s+(�− �̃)1]︸ ︷︷ ︸

s̄

:∇v

+�[�−g(J )]+c0∇0�·∇0�+B0 ·v
⎫⎬
⎭ dV0=0 (13)

for all admissible variations v and � satisfying

v∈[H1(�0)
3]∧�∈[H1(�0)

1], v=0 on �0u (14)

Here ∇•=∇0•F−1 is a gradient with respect to the deformed configuration. Note that both the
Kirchhoff stress tensor s=PFT and the gradient of the test function ∇v=�FF−1 are independent
of � and that we can determine an instantaneous bulk modulus �′ =1/�(g′−�/�). Also note that,

the functional ¯̄L(u;�) is not explicitly defined, since we directly use the Galerkin method leading
to unsymmetric stiffness. The equilibrium stress s̄ is obtained by replacing the mean stress with
the pressure field (related to �):

s̄=T+�1=s+(�− �̃)1 (15)

The stabilizing effect of (12) in the solution to (13) can be better understood if we observe that
a length scale is inserted in the problem, as illustrated in Figure 3. In this figure, we show the
impact of

√
c0 and the distribution of �̃ in the response �. We can observe that c0 has a strong

effect on the width and height of the equilibrium pressure and that spikes in pressure are filtered.
The variation of the left-hand side of (13) is required to evaluate the stiffness matrix, which is

used in the solution algorithm. We show the general derivation prior to the discretization stage.

Denoting the variation by �� ¯̄L(u;�),

�� ¯̄L(u;�) =
∫

�0

{
∇v :CT L :∇�u− 1

3
∇v : [1⊗(1 :CT L :∇�u)]− s̄ :(∇v∇�u)

+��1 :∇v+���− J�
dg

dJ
1 :∇�u+c0∇0�·∇0��

}
dV0 (16)

where CT L is the tangent modulus relating the time derivative of the Kirchhoff stress with the
velocity gradient. If the constitutive stress is trace-free, then the time derivative of T is given by
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STABILIZED ELEMENT WITH NONLOCAL PRESSURE 1191

Figure 3. Effect of c0 and the spatial distribution of �̃. We use the conditions �′(x=0)=0 and
limx→∞ �′ =0. Smearing of �̃ occurs and this allows an ‘artificial’ support for the pressure. The equation

�−c0�′′− �̃=0 is solved in x ∈]0,+∞[ and �̃=1 for x�a.

Ṫ=CT L :L, with L= ḞF−1. In our implementation, the initial stress term (third term in (16)) is
preceded by a minus sign, which is distinct from the usual Lie derivative (or Oldroyd modulus). Both
the tangent and Oldroyd moduli are introduced in Section 2.2. It is worth noting that exact calcu-
lation of (16) is necessary in order to attain the quadratic convergence rate of Newton’s method.

2.2. Constitutive law

Although the proposed element is applicable to a wide range of non-linear models, we focus here
on the hyperelastic behavior of reinforced elastomers, such as solid propellants and automobile
tires. For the hyperelastic case, the tangent modulus CT L used in (16), which relates the time
derivative of T with the velocity gradient L, is given by

CT L =2MeBe (17)

where Me=dT/dBe and satisfies

Ṫ=CT L :L=(2MeBe) :Le (18)
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with Le being the elastic velocity gradient. The Oldroyd modulus, employed in typical finite
element implementations (in particular by Simo and co-workers [23]), which makes use of the Lie
derivative, is given by

CL
i jkl =CT L

i jkl −Tjl�ik−Til� jk (19)

and the minor-symmetry of CL
i jkl is preserved by definition. For the hyperelastic isotropic case,

we can use the strain energy density function w̆(B) to calculate the tangent modulus:

CT L
i jrs =4�0Bik

�2w̆
�Bkj�Brm

Bms+Ti j�rs+Tis� jr (20)

Here, we use an indicial notation for convenience, e.g. [B]ik = Bik, [CT L ]i jrs =CT L
i jkl . The standard

neo-Hookean potential, w̆=(1/2)� tr(B), is used to solve the examples in Section 3.

2.3. Discretization

Here, we discuss the discretization used in constructing the finite element approximation space.
Standard linear shape functions of the four-node tetrahedron are used for both displacement and
pressure fields. The pristine version of this combination (P1/P1 element) is known to be unstable for
nearly incompressible systems [24]. Thus, an internal bubble function is used for the displacement
field, which leads to an additional displacement term. Enhancing the displacement field by a bubble
was found to be required for unconditional satisfaction of the inf–sup part of the stability and
convergence condition by Brezzi and Bathe [25].

To identify the discrete quantities, hereafter we use the subscript h and parent-domain coordinates
	K , K =1, . . . ,3. The following symmetric discretization is employed, with NK =	K for K =1,2,3
and N4=1−	1−	2−	3:

uh =
4∑

K=1
(NKuK )+N5u5, vh =

4∑
K=1

(NK vK )+N5v5

�h =
4∑

K=1
(NK�K ), �h =

4∑
K=1

(NK �K )

(21)

where N5 is the bubble function:

N5=	1	2	3(1−	1−	2−	3) (22)

A different application of this discretization scheme, including the static condensation of the
bubble degrees of freedom, was used by Masud and Kaiming [26]. After substituting (21) and
(22) into (13) and (16), discrete versions of the equilibrium equations and the stiffness tensor are
obtained.

2.4. Element assessment

To assess the element performance in the nearly incompressible range, we examine the optimality
and stability conditions for small strain elasticity (see [24], for example) using the inf–sup test of
Malkus [27]. More information on this topic can also be found in [28].
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In what follows, we use the Sobolev semi-norm ‖·‖1,�0 and note that the test function � is
continuous. Let V be our displacement solution space {v∈V :‖v‖1,�0<∞}, where v is a trial
function (for simplicity, satisfying homogeneous boundary conditions). A subspace ofV is obtained
by attributing a value to the divergence of v: K (�)={v :v∈V,divv=�}. In particular, K (0) is the
subspace of incompressible displacements. The divergence set, as a function of v, is D≡D(v)=
{� :�=divv for somev∈V}. Discrete counterparts of these spaces contain the representative mesh
size h: Vh , Kh(�h) and Dh(vh). The incompressible h-solution is given by uh(0). Two necessary
conditions for a well-posed problem are the ellipticity condition:∫

�0

�0ŵ(vh)dV0�‖vh‖21,�0
∀ vh ∈Kh(0) (23)

which requires that the strain energy be bounded from below in incompressible motion, and the
convergence condition

∀�h ∈Dh,∃eh ∈Kh(�h) :‖eh‖1,�0�c‖�h‖1,�0 (24)

where c is independent of h and the bulk modulus. The convergence condition can be stated as
follows: the difference between the projection of the solution u intoVh and the constrained solution
uh ∈K (0) should be sufficiently small for all h. We call this projection ũh and the difference
eh = ũh−uh(0). Equation (24) can now be expressed as

inf
�h∈Dh

sup
vh∈Vh

∫
�0

�hdivvh dV0

‖vh‖‖�h‖ �1

c
(25)

Note that the projection of the solution in the finite element space can coincide with uh , but in
general we have diveh �=0 and a poorer Kh(�h). Here, incompressibility was imposed strongly
whereas equilibrium was not. To use a weak form, a projection into Dh is employed: Ph(Dh) with
P2
h = Ph such that 0=∫

�0
[Ph(divvh)−divvh]�h dV0 replaces the strong form, with a new space

Qh generated by �h ∈Qh .
To test the element, the inf–sup condition is given by the generalized eigenvalue problem:

G/i =
iS/i (26)

where G=Ku�T−1K�u , with S the displacement norm matrix, T the pressure norm matrix, and
K�u and Ku� the stiffness cross-terms. For the 4/3c and 4/3cg elements, the subscript u also
incorporates the bubble degrees of freedom. The solution to (26) produces k−1 zero eigenvalues,
and the condition for the absence of spurious modes is given by NULL(G)={0}. The first nonzero
eigenvalue, 
k , provides information about both convergence and stability. The inf–sup value
IS=√


k . The number of spurious pressure modes is given by k−(nu−n p+1), where nu and n p
are the numbers of displacement and pressure degrees of freedom, respectively.

3. NUMERICAL TESTS

To illustrate the capabilities of the proposed element, we solve several hyperelastic examples. In
the first part, we discuss the convergence and stability of elements, and in the second part we
verify these against a different numerical scheme.
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3.1. Cook’s membrane test

We begin with element investigation and use the following tests to demonstrate the convergence and
stability of our scheme. We assess several different element types resulting from our formulation.
The elements listed in Table I are obtained by introducing a bubble approximation and pressure
spreading. For comparison, we also use the traditional four-node, displacement-based isopara-
metric tetrahedron, which we call displacement-based. To assess element behavior we analyze
Cook’s membrane, which is a typical benchmark test for both linear and non-linear problems. The
three-dimensional geometry and quasi-incompressible, neo-Hookean material properties, both in
consistent units, are taken from [29] and are shown in Figure 4.

Results shown in Figures 5 and 6 for the inf–sup test discussed in Section 2.4 lead to several
conclusions. Figure 5 shows that both 4/3c and 4/3cg elements are stable and convergent, as
expected. From the insert to Figure 5, one can see that the displacement-based element is stable
but does not appear to be sufficiently convergent. This is likely due to unconstrained surfaces and
cross-diagonal mesh arrangement that benefit the displacement-based formulation. Explanation of

Table I. Nomenclature for the element types.

Label Bubble function c0

3/3c No =0
3/3cg No �=0
4/3c Yes =0
4/3cg Yes �=0

Figure 4. Cook’s membrane: geometry, boundary conditions, and typical mesh arrangement
(crossed triangles). Two elements per thickness used for all Cook’s membrane examples.

All dimensions and properties in consistent units.
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this behavior was given by Nagtegaal et al. [30], who found that in the cross-diagonal pattern the
element performance improves. More interesting conclusions are seen in Figure 6, which shows
that the 3/3cg element is only conditionally stable and that the 3/3c element fails the inf–sup test
completely. This conditional stability is likely influenced by both the nonlocality parameter c0 and
the mesh size h, as the coarser meshes inhibit the sufficient spreading of the pressure. Thus, one
must calibrate the nonlocality parameter c0 for the particular model and discretization in order to
gain confidence in the results. Similar conclusions were obtained for the stabilized P1/P1 element,
which is similar to 3/3cg, and an elastoplastic model by Ramesh and Maniatty [7]. The bubble
function, although computationally expensive, eliminates this uncertainty as it makes the element
unconditionally stable.

Figure 7 presents the tip deflection convergence for all element types investigated. As expected,
the convergence of the 3/3c and displacement-based elements is slower. A more visible difference
in the performance is in the stress distribution shown in Figure 8, which is clearly poor for the 3/3c
element, which exhibits oscillations. The stress distribution for the displacement-based element
is even more oscillatory and is not displayed here. Figure 9 shows the response at the tip as a
function of the bulk modulus. The present mixed elements with pressure gradient (both with and
without bubble) are relatively close in performance, as is the 3/3c element, which is based on
the linear approximation of both displacement and pressure fields (P1/P1 element). Again, the
cross-diagonal mesh is likely helping to improve the performance of the 3/3c element. However,
the pure displacement-based element shows severe locking in the near-incompressible limit. To
investigate the influence of pressure spreading, we plot the tip deflection as a function of c0 in
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Figure 8. Cook’s membrane: Kirchhoff stress, �̄xx =Txx +�, contour plots for fully loaded configuration.
Discretization for this study is 32×32 elements. Mixed methods evaluated for c0=3.

Figure 10. It can be seen that the 4/4cg element is not sensitive to values of c0, but as the pressure
support grows the element softens. As expected, the 3/3cg element exhibits marked dependence
on c0. It is interesting to note that for large values of c0 both elements behave in a similar manner,
which can be attributed to increasing effect of the pressure spreading over the bubble function.
Note that the moderate value of c0=3 was selected for 4/4cg and 3/3cg elements to highlight
pressure smoothing (Figures 7–9). However, the high values of the nonlocality parameter c0>∼5
should be omitted, as undesirable material softening can be introduced as shown in Figure 10.

3.2. Hyperelastic billet compression

The compression of a hyperelastic billet is used to verify our numerical framework against a
different finite element technique. In particular, results of Puso and Solberg [8] are used for
comparison. The mesh consists of 35797 4/3cg elements with 6901 nodes, and only a quarter of
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Figure 9. Cook’s membrane: effect of bulk modulus. Discretization for this study is 32×32 elements.
Mixed methods evaluated for c0=3.
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Figure 11. Hyperelastic billet compression: comparison between the presented scheme and the
model by Puso and Solberg [8]. Consistent units used.

the geometry is discretized due to symmetry. Contact is enforced by Lagrange multipliers. Some
elements near the original edge suffer large distortions, but no instabilities were detected during the
loading process (neither hourglass patterns nor stress oscillations). Figure 11 shows the deformed
mesh at three stages of compression, the force–displacement diagram, and the compressive stress
contour plot. Good agreement can be observed between force–displacement curves obtained from
our model and results present in [8]. We see that the load is only moderately sensitive to parameter
c0 for the selected range and that for larger c0 softer response is obtained. Stresses are calculated
at each node by an arithmetic average of the neighborhood elements.

4. CONCLUSIONS

We have developed a novel three-dimensional finite element scheme for nearly incompressible
solids. The finite element framework is based on a mixed Galerkin method with a nonlocal pressure
field and a stabilization bubble. The pressure-spreading effect is governed by the Helmholtz equation
and it is motivated by the physical nonlocal response of the reinforced elastomers. A consistent

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:1185–1201
DOI: 10.1002/nme



1200 P. AREIAS AND K. MATOUŠ

linearization of the resulting system of non-linear equations has been derived and leads to an
efficient solution to the complex, highly non-linear problem. Various hyperelastic examples were
solved including the verification example to test the implementation. The element performance in
the nearly incompressible limit was assessed by the inf–sup optimality and stability conditions.

The emphasis of this work has been on the development of a three-dimensional computational
framework for the simulation of highly non-linear hyperelastic elastomers. For many materials,
such as solid propellants, it should also incorporate particle-matrix decohesion, matrix tearing, and
non-linear viscoelastic behavior of a binder. These requirements will increase the computational
costs associated with the analysis, therefore requiring an efficient parallel implementation of the
computational scheme.
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2. Babuška I. Error bounds for finite element methods. Numerische Mathematik 1971; 16:322–333.
3. Brezzi F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange

multipliers. Revue Francaise d’Automatique, Informatique, et de Recherche Serie Rouge Analyse Numerique
1974; 8(R-2):129–151.

4. Zienkiewicz OC, Wu J. Incompressibility without tears—how to avoid restrictions of mixed formulation.
International Journal for Numerical Methods in Engineering 1991; 32:1189–1203.

5. Hughes TJR, Franca LP, Balestra M. A new finite element formulation for computational fluid dynamics:
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