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Abstract

Damage evolution in heterogeneous solids is modeled using transformation field analysis and imperfect interface

model. Stress changes caused by local debonding are simulated by residual stresses generated by equivalent trans-

formation strains or eigenstrains. Decohesion and both overall and local stress and strain rates are derived from

thermodynamics of irreversible processes, which provide an excellent framework for the development of constitutive

equations. Both tangent and unloading secant stiffness tensors are found along any prescribed mechanical loading path.

Numerical simulation of debonding evolution in glass/elastomer composites is compared with experimental data and

provides good agreement between the model and experiments.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Particulate composites represent a large group of materials used in a variety of applications, such as

automobile tires and/or solid rocket propellant. The mechanical behavior of these materials depends upon

properties of constituents and any microstructural changes that may occur in the body under loading. The

main source of such changes in a material can be a nonlinear response of a matrix and/or damage. The
damage in reinforced composites appears to be associated with microcracks initiating and growing within a

matrix and along the matrix–particle interfaces. The mechanical behavior of these phenomena has been

studied extensively over many years: Farris (1968) studied vacuole formation and growth; Mullins (1969)

discovered the Mullins effect; Schapery (1999), Park and Schapery (1997), Ha and Schapery (1998) and

Simo (1987) studied viscoelasticity with growing damage; Swanson and Christensen (1983) described strain

softening; Christensen and Lo (1979) proposed models for stiffness reduction in coated particles and/or

fibers, and Hashin (1991) provided analytical expressions of local and overall stress and strain fields as

functions of the phase moduli and interfacial properties. Interface friction or sliding theories have been also
investigated by Hutchinson and Jensen (1990). Another group of models published in recent years devoted

to progressive interfacial decohesion of composite and other material systems has been proposed as well by

Krajcinovic (1996) and Chaboche et al. (2001). However, the micromechanics-based models have not been
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fully utilized yet in damage evolution, except in finite element methods of unit cell models described, for

example, by Zhong and Knauss (1997).

The present work follows up the article published by Dvorak and Zhang (2001), who presented a

procedure for analysis of progressive damage in composite materials, which incorporates the local stress
averages provided by Dvorak�s transformation field analysis (TFA) method (Dvorak and Benveniste, 1992;

Dvorak, 1992) involving certain influence functions. Here such analysis is extended from a stress-based into

a strain-based approach, enriched by thermodynamics, and both total and rate formulations are developed.

At the beginning of Section 2, we summarize principal equations of TFA and present decomposition of a

volume fraction of a reinforcement to bonded and debonded phases. Decohesion of the particles is modeled

by an equivalent eigenstrain, which modifies local stress fields in the affected volume to values implied by

Hashin�s imperfect interface model (Hashin, 1991). Section 3 illustrates the procedures for damage evo-

lution law based on thermodynamics of irreversible processes, which provide an excellent framework for
the development of constitutive equations. Such a framework has been extensively used during the past

decade, in many different contexts (Chaboche, 1997; Ju, 1989; Lubarda and Krajcinovic, 1995). Finally, an

application is made to a rubber reinforced composite with several different reinforcement densities, and

compared to experiments performed by Vratsanos and Farris (1993).

The symbolic notation adopts lower-case boldface Greek letters e.g. r for (6� 1) vectors representing

second-order tensors, and upper-case boldface italics letters e.g. S, E for (6� 6) matrices representing

fourth-order tensors. The symbol marked by bar, V , denotes quantity V at the overall level, so that L
denotes the overall stiffness matrix.

2. Partially debonded elastic composite systems

Consider a composite medium, shown in Fig. 1, at a certain time of the loading path, consisting of three

phases: matrix, bonded and debonded particles, with representative volume fractions cm þ cb þ cd ¼ 1,

c2 ¼ cb þ cd where subscripts, m, b, d, and 2, represent matrix, bonded, debonded phases and total rein-

forcement, respectively. For simplicity the superscript, t, which refers to the value at the current time
t 2 Rþ, has been dropped. The value of the volume fraction of debonded phases and its rate cd, _ccd are given
by the corresponding damage condition and evolution law as shown later in the article. Two limit cases can

be observed; for cd ¼ 0, reinforcement is fully bonded, and for cd ! c2, cb ! 0, the system converts into a

porous medium with a cavity volume fraction c2 and overall elastic properties dependent only on the elastic
moduli of a matrix. The local stress strain relation in a representative volume element (RVE), which is

subdivided into certain sub-volumes r; s ¼ m; b; d and loaded by uniform overall strain �ee, reads,

rr ¼ Lrðer � lrÞ; er ¼ Ar�ee þ
X3
s¼1

Drsls ð1Þ

where Lr represents phase elastic stiffness and lr denotes eigenstrain, which represents stress free strain

induced in the system by thermal and/or inelastic effects. The Ar, Drs denote certain mechanical and

transformation tensors, respectively. Evaluation of the mechanical Ar and concentration Drs tensors for the

three phase composite medium can be found in the studies by Dvorak and Benveniste (1992) and Dvorak

(1992),

Ar ¼ AI
r

X3
s¼1

csA
I
s

 !�1

¼ ðL	 þ LrÞ�1ðL	 þ LÞ; AI
s ¼ ðL	 þ LsÞ�1ðL	 þ L0Þ

Drs ¼ ðI � ArÞðLr � LÞ�1ðdrsI � csA
T
s ÞLs

ð2Þ
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where in the present context, Lb ¼ Ld ¼ L2; Ab ¼ Ad ¼ A2, L denotes stiffness of the homogeneous ma-

terial, and drs represents the Kronecker symbol. The A2 tensor is evaluated in a perfectly bonded medium

with Hill�s constraint tensor L	 ¼ L0S
�1ðI � SÞ, where S is the Eshelby (Eshelby, 1957) tensor, and L0

denotes stiffness of a comparison medium; AI
r denotes partial mechanical concentration tensor usually used

in the Mori–Tanaka method, where a matrix serves as a comparison medium L0 ¼ Lm, and AI
m is equal to

an identity matrix I .
At the macroscale, the overall strain �ee and stress �rr are related by

�ee ¼ cmem þ cbeb þ cded

�rr ¼ cmrm þ cbrb þ cdrd; �rr ¼ Lð�ee � �llÞ
ð3Þ

and the overall eigenstrain �ll follows from Levin�s formula,

�ll ¼
X3
r¼1

crB
T
r lr; Br ¼ ðM	 þM rÞ�1ðM	 þMÞ ð4Þ

Note that compliance of a homogeneous system M ¼ L
�1
, compliance of a cavity M	 ¼ ðL	Þ�1, and

concentration tensors Ar, Br must satisfy
P3

r¼1 crAr ¼
P3

r¼1 crBr ¼ I . Similar requirements for transfor-
mation influence tensors Drs are described by Dvorak and Benveniste (1992).

2.1. Overall stiffness and selection of comparison medium

As pointed out by Dvorak and Srinivas (1999) a number of estimates of composite stiffness L of any
statistically homogeneous RVE consisting of r ¼ 1; 2; . . . ;N phases of the same shape and orientation, but

possibly different sizes, can be written as,

Fig. 1. Damage evolution in a composite medium and decomposition of volume fraction of particles.
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L ¼
XN
r¼1

crðL	

"
þ LrÞ�1

#�1
� L	 ð5Þ

Moreover, Walpole (1969a,b) proved that Eq. (5) satisfies Hashin and Shtrikman (1962) first-order vari-

ational bounds on the actual overall elastic properties, where bounds L
þ
and L

�
on the actual L are ob-

tained by selecting the stiffness L0 of a comparison medium.

For particulate reinforced composite materials where progressive damage does not create entirely un-

supported cavities and overall moduli depend still on M2, one can use for 06 cd 6 c2 the comparison

medium suggested by Dvorak and Srinivas (1999),

L0 ¼ a1Lm þ a2L2; a1 þ a2 ¼ 1 ð6Þ

However, in the medium that eventually becomes porous cd ! c2, the overall stiffness L might not depend

onM2; therefore, as indicated by Dvorak and Zhang (2001) the definition of the comparison medium yields

for / > c2,

L0 ¼ Lm½cmð1þ ac2Þ�; 0 < a < 1=cm ð7Þ
and for 0 < /6 c2,

L0 ¼ Lm½ðcm/Þ�1ð/ � c2Þ� ð8Þ

where / denotes the percolation threshold of a closely packed reinforcement and cd ! /6 c2. The upper
limit on a in Eq. (7) gives M0 ¼ Mm, as in the Mori–Tanaka method, which provides a lower bound on the

overall compliance of a porous media. The additional material constraint condition for percolation

threshold / can be obtained at the point of failure of the medium, as shown later in Section 4. We recall

that L0 enters the analysis only in evaluation of the constraint tensor L	, or the related Eshelby tensor S.
Selection of the comparison medium can be broadly divided into those that make L0 depend on cd and
possibly other parameters or those that keep L0 constant. The second choice with L0 constant, Eq. (6),

through debonding process, was used in the present analysis.

2.2. Total strain formulation

Here we rearrange the equations originally proposed by Dvorak and Zhang (2001) from the total stress

formulation into the total strain formulation. The equivalent eigenstrain ld induced in the sub-volume

Vd 2 V is used in evaluation of the local fields in a heterogeneous system under the progressive damage by

interfacial debonding. The current value of the averaged stress in the debonded particles rd is obtained

employing Hashin�s (Hashin, 1991) imperfect interface model where,

rd ¼ Wrm ð9Þ

and W denotes partial stress concentration factor with coefficients dependent on Mm, M2 and interface

properties. If W ! 0, no force transfer between matrix and debonded particles occurs and sudden deb-

onding is modeled; moreover, partial debonding is not permitted by this model, which is in accordance with

averaging scheme applied. The more detailed description of the imperfect interface model is summarized in

Appendix A.
For the sake of simplicity we do not assume the thermal effect and inelastic deformation of constituents,

lm ¼ lb ¼ 0. Therefore, only one nonzero eigenstrain ld remains in the analysis after substituting Eq. (9)

into Eq. (1) for stress in the debonded phases rd,

ld ¼ N�1R�ee; N ¼ L2ðDdd � IÞ �WLmDmd; R ¼ WLmAm � L2A2 ð10Þ
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where it is important to recall that Ab ¼ Ad ¼ A2 continue to hold through the analysis, because they are

evaluated on the initial configuration and damage being treated as the eigenstrain (the TFA choice). The

final form of the local stresses in terms of the overall strain �ee and the current value of cd are obtained

employing Eq. (10) into Eq. (1) as

rr ¼ LrAr�ee; r ¼ m; b; d ð11Þ
where damage mechanical tensors yield

Ar ¼ Ar þ ðDrd � drdIÞN�1R: ð12Þ
The overall stress follows from Eq. (3) in the form,

�rr ¼ L�ee; L ¼ ½cmLmAm þ cbL2Ab þ cdL2Ad� ð13Þ
where the secant stiffness tensor L denotes a symmetric rank fourth-order unloading damage modulus. It is

assumed that all interfacial cracks caused by debonding of particles from the matrix close upon unloading,

and therefore no permanent deformation exists upon complete unloading. Fig. 2 shows overall elastic and
secant modulus for 1D example, where one can observe that the gap between origin (point O) and point A is

actually the inelastic eigenstrain �ll due to debonding during the loading process.

2.3. Strain rate formulation

The incremental strain approach is very important for successful implementation of the proposed model

into a finite element environment. Moreover, the formulation of the tangent stiffness matrix is essential in

successful implementation of the global iterative solver. Therefore, incremental constitutive equations and
the tangent stiffness tensor are derived in the following section.

Taking the time derivative of constitutive equations (1) and keeping in mind that _llm ¼ _llb ¼ 0, we arrive

at

_rrr ¼ Lrð_eer � _llrÞ
_eer ¼ Ar _�ee�ee þ _DDrdld þDrd _lld

_rrr ¼ LrAr _�ee�ee þ Lr
_DDrdld þ LrðDrd � drdIÞ _lld; r ¼ m;b; d

ð14Þ

L

dc = 0

σ

dc c 2=

ε

ε
µ

porous medium

initial debonding

total debonding

AO

Fig. 2. Stress–strain curve for debonding model.
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where concentration tensors, Eq. (2)2, are functions of elastic moduli, mechanical tensors and volume

fractions cr. However, only volume fractions cb, cd of fully bonded and debonded particles vary through

time. Therefore, differentiation of DrdðcdðtÞÞ with respect to time takes the form

_DDrd ¼
oDrd

ocd
_ccd ¼ �QrA

T
2L2 _ccd ð15Þ

and Qr ¼ ðI � ArÞðLr � LÞ�1. Similarly, taking the time derivative of the debonding eigenstrain ld, Eq. (10),

and using results from (15) we obtain

_lld ¼ N�1R_�ee�ee þN�1ðL2Q2 �WLmQmÞAT
2L2N

�1R�ee _ccd ð16Þ

The incremental form of the local strain fields is then given by

_eem ¼ Am
_�ee�ee þ Bm�ee _ccd

_eeb ¼ Ab
_�ee�ee þ Bb�ee _ccd

_eed ¼ fAAd
_�ee�ee þfBBd�ee _ccd

ð17Þ

and local incremental constitutive equations (14)1 read,

_rrr ¼ LrAr _�ee�ee þ LrBr�ee _ccd; r ¼ m; b; d ð18Þ
where

Br ¼ ðDrd

�
� drdIÞN�1ðL2Q2 �WLmQmÞ �Qr

	
AT

2L2N
�1RfAAd ¼ Ad þDddN

�1RfBBd ¼ DddN
�1ðL2Q2

�
�WLmQmÞ �Qd

	
AT

2L2N
�1R

ð19Þ

3. Damage evolution

The proposed approach employs irreversible thermodynamics and the internal state variables theory to

describe a damage evolution process in particulate reinforced composites. Similar formulations have been

applied to a variety of continuum damage mechanics problems, (Ju, 1989; Simo and Ju, 1987a,b; Lemaitre,

1985; Lubarda and Krajcinovic, 1995); however, most of these formulations deal only with homogeneous

or homogenized materials.
To introduce damage behavior, let us consider the free energy potential assuming small deformations as,

Wð�ee; cdÞ ¼ 1
2
�eeTL�ee ð20Þ

Confining our attention to the purely mechanical theory, the Clausius–Duhem inequality reads,

� _WW þ �rrT _�ee�ee P 0 ð21Þ
so that dissipative inequality arrives after taking the time derivative of (20) as,

D � �1
2
�eeT _LL�ee ¼ �1

2
�eeTJ�ee _ccd ¼ Y _ccd P 0 ð22Þ

where

J ¼ cmLmBm þ cbL2Bb þ cdL2Bd þ L2½ðDdd � IÞ �Dbd �N�1R ð23Þ
Differentiation of the overall secant stiffness tensor L in Eq. (20) with respect to cd requires some

mathematical algebra; one has to differentiate complicated damage mechanical tensors Ar, Eq. (12), which
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depend on concentration tensors DrdðcdðtÞÞ, respectively. The proposed thermodynamic force (damage

energy release rate) conjugated to the damage volume fraction cd yields,

Y ¼ �1
2
�eeTJ�ee ð24Þ

Significant similarity can be observed with the thermodynamic force Y ¼ �ð1=2Þ�eeTL�ee proposed by Ju
(1989) for homogeneous material and the isotropic damage model characterized by damage potential in the

form Wð�ee;xÞ ¼ ð1� xÞð1=2Þ�eeTL�ee, where x denotes the isotropic damage variable. However, the main

difference comes from the operator J, which is derived from implemented micromechanical analysis.

To define the onset or continuation of debonding, one can adopt the approach based on a damage

surface customarily introduced (Ju, 1989; Bittnar and �SSejnoha, 1996) in an analogy to the yield surface of

the theory of plasticity. The state of damage in the material is characterized by the damage criterion

given by,

gðY ; vtÞ ¼ GðY Þ � vt
6 0; t 2 Rþ ð25Þ

where vt denotes the softening parameter usually set as vt¼0 ¼ 0. The function GðY Þ that characterizes the
damage process in the material can be given by the Weibull distribution,

GðY Þ ¼ c2 � c2 exp


� Y � Yin

p1Yin

� �p2
ð26Þ

where Yin denotes the initial threshold (energy barrier), and p1 and p2 are scale and shape parameters.

The damage potential Wð�ee; cdÞ depends on cd in a complicated way, as shown by the expression (23), and
the thermodynamic force Y cannot be expressed as a simple function of W. Nevertheless, the initial energy

barrier Yin � Y ðcd ¼ 0;�eeÞ can be estimated from experimentally measured overall strain �ee and free energy

per unit volume stored in systems with different reinforcement densities before the first debonding occurs

and is assumed to be a material parameter. As will be shown, free energy per unit volume stored in the

system does not differ too much for composites with low and high concentration of particles. Such ob-

servation leads to the conclusion to use only two initial thermodynamic forces for all reinforcement
spectrum.

Indeed, damage initiation can take place only if a nucleation stress exceeds a critical value, (which is

approximately equal to Young�s modulus of a rubber as a result of a local geometrical instability as shown
in Gent and Lindley (1958)). Although the nucleation criterion is satisfied a priori due to the experimentally

measured initial energy release rate Yin, an additional condition to (25) is defined for the surface averaged

interfacial normal stress,

rin > 0 ð27Þ
Eq. (27) shows that if hydrostatic pressure is applied rin < 0 while the material is deformed, the pressure

will not initiate a void formation in the present approach. Thus proposed model describes damage evo-

lution for any loading path where surface averaged interfacial normal stress rin is tensile and damaged

material converts into a porous medium. A similar damage function to Eq. (25) can be used for damage

evolution in compressive regime, rin < 0, if such and/or similar damage mechanism exists. In such a case,

the system converts into a debonded particulate filled material and debonded particles can still carry part of
compressive forces. This behavior can be simulated by calibration of interface properties used in partial

stress concentration factor W (see Eq. (9) and Appendix A).

The damage process is derived in terms of the following irreversible, dissipative equation of evolution,

_ccd ¼ _jj
og
oY

¼ _jjH ; H ¼ oGðY Þ
oY

ð28Þ
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where j is a damage consistency parameter, which defines damage loading–unloading conditions according

to Kuhn–Tucker relations,

_jj P 0; gðY ; vtÞ6 0; _jjgðY ; vtÞ � 0 ð29Þ

In addition, we define that _vvt ¼ _jjH , and the parameter j is determined from the consistency condition
_gg ¼ 0, from which follows,

_jj ¼ _YY ; _YY ¼ ��eeTJ_�ee�ee � 1
2
�eeTK�ee _ccd ð30Þ

where

K ¼ 2JR�1ðL2Q2 �WLmQmÞAT
2L2N

�1R ð31Þ
After introducing Eqs. (31) and (30) into (28), the increment of damage volume fraction in matrix notation

leads to,

_ccd ¼ � H
1þ H

2
�eeTK�ee

�eeTJ_�ee�ee ¼ PT _�ee�ee ð32Þ

Please note that the vector PT of dimension (1� 6) represents a second-order tensor so that notation PT _�ee�ee
reads P : _�ee�ee. Eq. (32) can now be used to relate the local strain _eer and stress _rrr rates to the overall strain rate
_�ee�ee as,

_eem ¼ ½Am þ Bm�eeP
T�_�ee�ee

_eeb ¼ ½Ab þ Bb�eeP
T�_�ee�ee

_eed ¼ ½fAAd þfBBd�eeP
T�_�ee�ee

ð33Þ

where matrix notation �eePT ð6� 1Þð1� 6Þ ¼ ð6� 6Þ corresponds to its tensor equivalent �ee  P, and

_rrr ¼ ½LrAr þ LrBr�eeP
T�_�ee�ee; _rrr ¼ Lr _�ee�ee; r ¼ m; b; d ð34Þ

Finally, when employing the equation of equilibrium written in terms of phase stresses and phase volume

fractions,

_�rr�rr ¼ cm _rrm þ cb _rrb þ cd _rrd þ ðrd � rbÞ _ccd; _�rr�rr ¼ L_�ee�ee ð35Þ
we arrive at the desired form of the overall tangent stiffness matrix,

L ¼ ½cmLm þ cbLb þ cdLd þ L2ðAd � AbÞ�eePT� ð36Þ
This form of the material tangent stiffness modulus can be used in the Newton–Raphson method to provide

the equilibrium of the system for a given load increment. The resulting modulus is a symmetric rank fourth-

order tensor; the symmetry depends crucially on the form of the thermodynamic force (Simo and Ju,
1987a,b). In fact, it is very difficult to prove that L is diagonally symmetric, and alternative definition of

Eq. (24) would result in the non-symmetric tangent operator.

It follows that an accurate response prediction requires an incremental analysis. Specifically, the overall

as well as local stresses corresponding to the jþ 1th increment yield,

�rrjþ1 ¼ �rrj þ LD�ee

rjþ1
r ¼ rj

r þ LrD�ee
ð37Þ

and the internal state variable (damage volume fraction) is provided by implicit Euler backward integra-

tion,

cjþ1d ¼ cjd þ PTD�ee ð38Þ
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Finding the increment Dcd ¼ PTD�ee of the debonded volume fraction cjþ1d for a given loading increment

leads to an iterative procedure,

kþ1ðDcdÞ ¼ �
kH

1þ kH
2

k�eeTkKk�ee
k�eeTkJD�ee ¼ kPTD�ee ð39Þ

and usually three to five iterations k are sufficient to reach the convergence criterion,

jjkþ1ðDcdÞ � kðDcdÞjj
jjkðDcdÞjj

6 tol ð40Þ

4. Examples

As an illustration and verification of the proposed model, we analyzed simple tension experiments by

Vratsanos and Farris (1993) on polyurethane reinforced by spherical S-glass particles 60 lm in radius with

the standard deviation of the particle size of 0.042, which corresponds to a very narrow size distribution.

Concentrations of c2 ¼ 0:12, 0.24, 0.48 and 0.58 were used in the analysis. The average elastic moduli of the
unfilled matrix and the elastic moduli of the reinforcement are listed in Table 1. All constituents were
regarded as homogeneous isotropic elastic solids. For a good agreement with the measured overall elastic

properties of all concentrations c2, we selected the comparison medium (6) with a1 and a2 shown in the fifth
and sixth column of Table 1, which also presents the elastic moduli of the homogenized composite system

obtained from Eq. (5). The very low magnitude of spring constants n ¼ g ¼ 0:1 MPa/m was selected to

simulate a sudden complete debonding of particles.

The particular choice of this material was motivated by the availability of experimental data for different

reinforcement densities. Although experiments show the presence of large deformations (at least for low

densities of reinforcement), which are not included by the proposed theory, the comparison of measure-
ments and predictions is in good agreement, and the present model provides novel findings into the damage

evolution in rubber reinforced composite materials. In general, the experimental data shows more curvature

in stress–strain curves. This curvature is most likely caused by the behavior of the matrix. The unfilled

rubber is assumed to act as a linear elastic solid in the present model, and all deviations from linearity are

assumed to be due to debonding. Therefore, extension of the model using the nonlinear viscoelasticity or

other constitutive laws for rubber will improve the agreement.

The material scale p1 ¼ 6:4 and shape p2 ¼ 0:9 parameters used in the damage function, Eq. (26), were

obtained by fitting the measured stress strain curve for the 24% reinforcement density. The initial energy
release rate Yin was estimated using the overall strain �ee and the free energy per volume stored in the system before

first debonding occurred, Eq. (24), where cd ¼ 0. Two values of the initial thermodynamic force were used for

the low and high reinforcement densities, as Yinð12–24%Þ ¼ 0:085 MJ/m3 and Yinð48–58%Þ ¼ 0:018 MJ/m3,

Table 1

Constituent and overall elastic properties of S-glass/polyurethane composites

Material E (MPa) G (MPa) m a1 a2

S-glass 86:8� 103 35:0� 103 0.24 – –

Polyurethane 0.49 0.164 0.49 – –

Composite, c2 (%)
12 0.981 0.331 0.483 0.99998281 0.00001719

24 2.174 0.740 0.468 0.99996907 0.00003093

48 3.817 1.305 0.462 0.99998246 0.00001754

58 13.830 4.921 0.405 0.99993001 0.00006999
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respectively. All the above material parameters were fixed in the numerical analysis. In what follows, the

presented results are obtained employing simple integration algorithm given by Eqs. (37)–(40).

Fig. 3 displays comparisons of the experimental and predicted tensile stress–strain curves for the four

reinforcement volume fractions. Only one result for the particle density of c2 ¼ 48% does not match the

experimental data perfectly. Possible causes of this anomalous behavior were discussed in Vratsanos and

Farris (1993) and can be given for example by poor curing of this particular specimen. Other possibilities

were discussed in Dvorak and Zhang (2001).
Table 2 shows the corresponding computed overall strains, stresses, and energies per unit volume stored

in the system when the first debonding takes place. One can see that energies stored in the system do not

differ rapidly for the two low and the two high densities, respectively. Therefore, only two initial ther-

modynamic forces were selected as described above. However, a substantial difference in energy between

the low and high concentrations is observed. It is evident that the energy stored in the system necessary for

debonding decreases as the material density increases, and thus the system becomes more brittle.

Fig. 4 shows the propagation of damage as a function of the overall strain and volume fraction, sug-

gesting a much more progressive debonding, or apparently brittle response of the highly reinforced and
thus much stiffer materials. To show the capability of the present model, the complete loading path from a

fully bonded to a porous medium is depicted in both Figs. 3 and 4. However, rupture of specimens occurred

Fig. 3. Comparison of the predicted and measured overall response of S-glass/polyurethane composite at four reinforcement densities

and the standard deviation of the particle size distribution 0.042.

Table 2

Strain, stress and energy potential at first debonding

c2 (%)

12 24 48 58

�ee11 0.178 0.130 0.049 0.025

�rr11 (MPa) 0.175 0.283 0.187 0.346

W (MJ/m3) 0.0155 0.0184 0.0045 0.0043
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much earlier before decohesion of all particles. A possible explanation for such behavior is the strain lo-

calization caused by the clustering of particles especially for high densities, in which a material becomes

more brittle and particles have no time to fully debond before the material ruptures.

At the point of failure of the material, a linear dependency between the percentage of debonded particles

and the total volume fraction of reinforcement in the composite was observed (Fig. 5). This important

 

Fig. 4. Evolution of debonding as a function of the overall tensile strain �ee11.

Fig. 5. Percentage of debonded particles in the system at the rupture of specimen.
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finding shows that for low densities almost all particles debond before rupture and thus a material becomes

porous and the fracture is very similar to ductile. On the other hand, when a high reinforcement density is

present in a material, the system is more brittle, and thus only a small percentage of particles debond before

a sudden rupture appears. A similar discovery was presented by Vratsanos and Farris (1993). One can use

this finding to formulate the additional material constraint condition for the percolation threshold of a

closely packed reinforcement /, used in Eq. (8), and limit damage evolution as cd ! / < c2, so that limit
stress and strain at the failure can be determined for cd ¼ /.
Fig. 6 shows degradation of the elastic modulus as a function of the overall tensile strain. As expected,

slow degradation is observed for 12% reinforcement, where stiffness of the porous material is very close to

the pure polyurethane. The rapid change in Young�s modulus is obtained for 58% volume fraction, so that

the material converts to the porous medium with material properties lower that those for the unfilled

matrix.

5. Conclusion

The proposed mathematical model, based on Dvorak�s TFA together with thermodynamics of irre-

versible processes and the internal state variables theory, which induces sufficient constraints against a set

of possibilities which is too large, is shown to describe successfully the damage evolution in particulate

reinforced elastomers. Stress changes caused by local debonding are simulated by residual stresses gene-
rated by equivalent transformation strains or eigenstrains, which are derived from Hashin�s imperfect in-
terface spring-layer model. The energy release rate is derived from the free energy function, and both the

total and incremental strain-based formulations, including loading tangent and unloading secant stiffness

tensors, are found for any loading path.

The current numerical approach is limited to small deformations; however, good agreement between the

model and experiments for the uniaxial tension test performed by Vratsanos and Farris (1993) was obtained

for several densities of reinforcement. The material completely ruptures before decohesion of all particles,

especially for high reinforcement densities, and thus much stiffer and brittle system. However, for low
densities almost all particles debond before rupture, so that the material becomes porous and the fracture is
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Fig. 6. Degradation of the elastic modulus as a function of the overall tensile strain �ee11.
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very similar to ductile. Based on such observations, the material constraint condition for the percolation

threshold of a closely packed reinforcement is proposed and limits the total decohesion.

Further study is required to extend the model to cover the nonlinear deformation of matrix. Moreover,

implementation of the theory into a finite element code is necessary for the solution of complex geometry
and/or boundary and loading conditions.
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Appendix A

Here we describe the imperfect interface spring-layer model proposed by Hashin (1991). The geometry

and loading conditions are shown in Fig. 7. Both the particle, d, and matrix, m, are isotropic elastic solids,

with elastic properties Em;Gm; mm and E2;G2; m2. The interface traction-displacement relations are prescribed
as,

Tq ¼ g½uq�; Th ¼ n½uh�; Tu ¼ n½uu� ðA:1Þ

where g and n are the normal and tangential spring constants of the interface, respectively. The displace-

ment jumps across the interface are represented by ½uq;h;u�. The average stress in the inclusion can be found

by integration of local stress distribution r̂rd as,

rd ¼
1

Vd

Z
V

r̂rd dV ¼ 3

4p

Z p

0

du
Z p

0

sin hdh
Z 1

0

r̂rdb
2 db ðA:2Þ

where b ¼ q=a is the normalized radial distance. The result can be, according to Hashin, reduced to the

matrix form required in Eq. (9),

Vm

Vd

t

n

m

a

z

y

Vd

q

σ

ϕ

θ

ρ

X

Fig. 7. A spherical inclusion with imperfect interface.

K. Matou�ss / International Journal of Solids and Structures 40 (2003) 1489–1503 1501



rd ¼ Wrm; W ¼

c þ 2#

3
c � #

3
c � #

3
0 0 0

c � #

3
c � #

3
0 0 0

c � #

3
0 0 0

# 0 0

# 0

sym #

26666666666664

37777777777775
ðA:3Þ

where # ¼ G2ð21A2 þ 5B2Þ=5Gm, c ¼ K2ð3Km þ 4GmÞ=½3Kmð3K2 þ 4Gmð1þ 3iÞÞ�, Kr is a bulk modulus, and

i ¼ K2=ðgaÞ denotes the interface parameter. Constants A2, B2 can be obtained from the following system of

equations,

2ð5� mmÞ �6 �3m2h h
�2ð1þ mmÞ 4 ð7þ 2m2Þh h
�2ð5� 4mmÞ 3 12m2ð1� eÞh 2ð1þ 2eÞ
�2ð1� 2mmÞ �1 ð7� 4m2Þ þ ð7þ 2m2Þ2f 1þ 2f

2664
3775

C1

D1

A2

B2

8>><>>:
9>>=>>; ¼

1

1

2

1

8>><>>:
9>>=>>; ðA:4Þ

where f ¼ G2=an, h ¼ Gm=G2 and e ¼ G2=ag.
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