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A new manifold-based reduced order model for nonlinear problems in multiscale modeling 
of heterogeneous hyperelastic materials is presented. The model relies on a global 
geometric framework for nonlinear dimensionality reduction (Isomap), and the macroscopic 
loading parameters are linked to the reduced space using a Neural Network. The proposed 
model provides both homogenization and localization of the multiscale solution in the 
context of computational homogenization. To construct the manifold, we perform a 
number of large three-dimensional simulations of a statistically representative unit cell 
using a parallel finite strain finite element solver. The manifold-based reduced order 
model is verified using common principles from the machine-learning community. Both 
homogenization and localization of the multiscale solution are demonstrated on a large 
three-dimensional example and the local microscopic fields as well as the homogenized 
macroscopic potential are obtained with acceptable engineering accuracy.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

There are abundant applications in engineering where heterogeneous materials composed of different hyperelastic phases 
experience nonlinear deformations that lead to very large strains. Some practical examples in this category are reinforced 
rubbers [1,2], soft biological materials [3,4], and solid rocket propellants [5,6], just to name a few. Predicting the mechanical 
response of such materials from the knowledge of their microstructure and behavior of individual constituents has been a 
long standing endeavor. In this regard, multiscale methods play an essential role [7,8]. In particular, computational homoge-
nization (CH) is a popular method for bridging scales [9–16]. Two reviews providing more details on CH methods have been 
published in [10,17].

For nonlinear heterogeneous materials, CH requires solution of two nested nonlinear boundary value problems (BVP). In 
short, the macroscopic BVP provides boundary conditions for the microscale (localization), and the microscopic BVP yields 
the average flux (homogenization, i.e. the macroscopic stress tensor at a macroscale material point) and the macroscopic 
(homogenized) consistent tangent. Although the homogenization and localization processes are concatenated for the fully 
coupled CH implementation, these processes have distinctly different complexities when used in the context of model 
reduction, where the full solution over the microstructure is often omitted.

CH is a very powerful technique and provides detailed solutions of both macro- and micro-domains (i.e. both ho-
mogenization and localization). However, it is also computationally intensive. Typically, the numerical solution is sought 
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by employing the finite element method at both scales (i.e. FE2 implementation) [16,18,19]. To lower this computational 
expense, the research community has focused on model reduction as it can significantly reduce time and data storage re-
quirements [20–24]. One particularly popular model reduction method is based on proper orthogonal decomposition (POD) 
[20,21,25]. For example, both homogenization and localization of hyperelastic composites using POD have been performed 
in 2D by Yvonnet and He [20]. Although very popular, POD is better suited for linear or weakly nonlinear processes (or-
dinary or partial differential equations) as it relies on a linear combination of few basis vectors [26,27]. Moreover, POD 
models drift from the FE2 solution, since the method is directly coupled with the macroscale in terms of the reduced basis. 
Other popular methods are based on digital database and/or discrete material maps to construct the overall homogenized 
macro-potentials or to directly homogenize the stress tensor [28–30]. In this category, Temizer and Zhodi [30] and Tem-
izer and Wriggers [29] have introduced a concept of discrete material maps based on virtual material experiments. Here, 
a range of tri-axial stretches and rotations is applied to create a material homogenization map of the second Piola stress 
tensor. However, this method can only recover the homogenized response for any new material point. Also, Neural Net-
work (NN) techniques have been employed to obtain approximate constitutive behavior, see Ghaboussi et al. [31], Unger 
and Konke [32] and Le et al. [33]. Unfortunately, using the NN in high dimensions is impractical [34]. Model calibration is 
another popular method. In work of Andrade and Tu [35], some key material parameters of a phenomenological plasticity 
model at the macroscale are calibrated on the fly from microscale computations. Limited mostly to small strain analysis, 
the Transformation Field Analysis (TFA) and its nonuniform extension (NTFA) have been popular as well [36–38]. Other 
attempts include proper generalized decomposition [22] and techniques based on the phase-space simplicial interpolation 
[39]. Recently, a novel Gaussian process emulator of parametrized partial differential equations for single scale analysis has 
been developed by Xing et al. [40]. In this work, the Isomap and kernel Isomap are used to embed the vectorized spatial 
and temporal outputs in a low dimensional (feature) space. Unfortunately, most of the works described above are in 2D or 
limited 3D setting (i.e. small RUC), cannot perform localization of the multiscale response, and/or are limited to small strain 
analysis.

In this work, we propose a novel multiscale model reduction technique in the context of CH based on nonlinear manifolds 
learning and computational geometry [41–44]. The proposed technique can perform both homogenization and localization 
of the material response in 3D finite strains setting with a realistic Representative Unit Cell (RUC). The size of the RUC is es-
tablished based on statistical analysis of the morphology [45,46]. Next, we use principles from machine-learning [41–44] to 
construct a digital database of well resolved microscale simulations and their corresponding macroscale loading parameters. 
The digital database is built from parallel simulations using the in-house PGFem3D solver [13,16,47]. Thus, by employing 
modern high performance computing (HPC) capabilities, the whole database is generated seamlessly. The proposed reduced 
order model incorporates a complete loading envelope in terms of the principal stretches and the orthogonal principal di-
rections. A uniform discretization of the rotation loading parameters is obtained by incorporating the HEALPix grid [48]. 
Since the hyperelastic materials are highly nonlinear, we employ a nonlinear manifold learning technique instead of tra-
ditional Principal component analysis (PCA) or Multidimensional Scaling (MDS) [49]. Recently, several nonlinear dimension 
reduction techniques have been proposed. Among these, local techniques (i.e. Locally linear embedding (LLE) [44], Laplacian 
Eigenmaps [43]) preserve only local geometry and can fail to capture the global pattern, especially when the manifold con-
tains noisy data [49,50]. Moreover, some of the global techniques (i.e. Kernel PCA [51], diffusion maps [52]) are sensitive 
to the selection of kernels. On the other hand, global technique like Isomap approximately preserves relevant geometrical 
scales [49]. Therefore, we use Isomap [41] to construct the reduced space, which approximately preserves the microscopic 
information. Isomap is a global technique for nonlinear manifold reduction that unfolds the solution manifold to a reduced 
space. Therefore, neighboring data points on the high-dimensional manifold M (where proximity is described by a geodesic 
distance) are also neighboring data points in the reduced space A (where proximity is described by a Euclidean distance). 
Note that the Isomap technique has been used for a nonlinear dimension reduction of a data-driven stochastic input model 
[24] and to efficiently construct a Gaussian process emulator of parametrized partial differential equations [34,40]. Due to 
the highly nonlinear nature of the manifold and curse of dimensionality, we establish the map between the space of macro-
scopic loading parameters and the reduced space through NN [53–58]. Using the digital database and the manifold-based 
nonlinear reduced order model (MNROM), we perform both homogenization and localization of the material response for 
new macroscale loading conditions without any additional large-scale HPC simulations.

This paper is organized as follows. In Section 2, we briefly discuss the theory of computational homogenization for 
heterogeneous materials. Section 3 is dedicated to the development of the MNROM. In Section 4, we verify the MNROM 
by using concepts from the machine-learning community and present a numerical example of both homogenization and 
localization of the multiscale response of a RUC with 95 stiff inclusions. Finally, in Section 5 we draw some conclusions and 
discuss the issues and scope for further improvement.

2. Multiscale Modeling of Heterogeneous materials

In this section, we briefly summarize the theory of computational homogenization. More details on this theory can be 
found in [9–11,16,18].
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Fig. 1. Schematic of macroscale and microscale domains in theory of computational homogenization.

2.1. Macroscale problem

Consider a body �0 ⊂ R
3 consisting of material points X ∈ �0 as shown in Fig. 1. Let the boundaries ∂�u

0 and ∂�t
0

represent the boundary of applied displacement u and tractions t , respectively. The boundary ∂�0 is decomposed such that 
∂�0 = ∂�u

0 ∪ ∂�t
0 with ∂�u

0 ∩ ∂�t
0 = ∅. Next, the deformation 0χ and the deformation gradient 0 F in the macroscale are 

defined as

0χ(X) = X + 0u(X) ∀X ∈ �0,

0 F (X) = ∇ X
0χ = 1 + ∇ X

0u ∀X ∈ �0, (1)

where 1 is the second-order identity tensor, and 0u(X) is the macroscale displacement. Neglecting inertial forces, the 
macroscale boundary value problem is given by

∇ X · 0 P + 0b = 0 in �0,

0 P · 0 N = t on ∂�t
0,

0u = u on ∂�u
0, (2)

where 0 P = ∂0 W /∂0 F is the macroscopic first Piola–Kirchhoff stress tensor, 0 W is the hyperelastic macroscopic strain en-
ergy density function, 0b is the macroscale body force, and 0 N is the unit normal to the surface ∂�t

0. Application of the stan-

dard variational procedures leads to the weak form: Find 0u ∈ V�0

{
0u : �0 →R

3| det (0 F ) > 0 ∀X in �0 and 0u|∂�u
0
= u

}
such that

R0u :=
∫
�0

0 P : (∇ Xδ 0u)dV −
∫

∂�0
t

t · δ 0u dA −
∫
�0

0b · δ 0u dV = 0, (3)

holds for variations δ 0u(X) ∈ V�0 {δ 0u : �0 → R
3, δ 0u|∂�u

0
= 0}. As evident from Equations (2) and (3), we have to know 

the macroscale strain energy potential 0 W , which is determined by solving the microscale problem, in order to solve the 
macroscale problem.

2.2. Microscale problem

A microstructure �0 ⊂ R
3 consisting of microscale points Y ∈ �0 as shown in Fig. 1 is locally attached to each 

macroscale point X ∈ �0. The microscale deformation χ and the deformation gradient F are assumed to be functions 
of both macro and micro variables as

χ(X, Y ) = 0 F (X)Y + 1u(Y ) ∀Y ∈ �0,

F (X, Y ) = 0 F (X) + ∇Y
1u(Y ) ∀Y ∈ �0, (4)

where 1u(Y ) is the microscale displacement fluctuation. The microscale equilibrium boundary value problem, neglecting 
body forces and without prescribed tractions, is given by

∇Y · 1 P = 0 in �0,

χ = 0χ on ∂�0, (5)

where 1 P = ∂1 W /∂ F is the microscopic first Piola–Kirchhoff stress tensor. The microscale free energy density function, 
1 W , describes material behavior of interest and is given. The weak form of Equation (5) is derived from the micro-to-macro 
transition with a particular set of physically applicable and mathematically admissible boundary conditions.
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Fig. 2. Concept of the manifold-based nonlinear reduced order model. (For interpretation of the references to color in this figure, the reader is referred to 
the web version of this article.)

2.3. Micro-to-macro transition

In computational homogenization, the behavior of a material point at the macroscale is linked to the microscale through 
the Hill–Mandell stationarity condition [9]:

inf
0u

0W (0u) = inf
0u

inf
1u

1

|�0|
∫
�0

1W (0 F + ∇Y
1u)d�. (6)

Expanding the variation of Equation (6) with respect to 1u, we get the weak form of Equation (5). Find 1u ∈ V�0 {1u : �0 →
R

3| det (F ) > 0 ∀Y in �0 and 1u|∂�0 is periodic} such that

R1u :=
∫
�0

1 P : (∇Y δ1u)d� = 0, (7)

is stationary with variation δ1u(Y ) ∈ V�0 {δ1u : �0 → R
3, δ1u|∂�0 is periodic}. As typical in the computational homogeniza-

tion, we use the periodic boundary conditions for the cell fluctuations, 1u (see Geers et al. [10]).

3. Nonlinear reduced order model

In this section, the macro and microscale coupling is presented in a novel way from nonlinear manifold point of view. 
Here, a nonlinear manifold is constructed out of the microscale simulations without any assumptions regarding its topology. 
This novel modeling concept described as a manifold-based nonlinear reduced order model (MNROM) is illustrated in Fig. 2. 
The MNROM is constructed from a digital database of N detailed microscale simulations (denoted as Z) and the set of 
their associated macroscale loading parameters (denoted as T). An entry in the database is identified by the pair (ηi, ξ i ) 
for i = 1, · · · , N , where ηi denotes the ith macroscale loading case and ξ i denotes data from the ith microscale simulation. 
When considering hyperelastic response, the database stores the nine components of F (see Equation (4)) for Ne finite 
elements of the microscale discretization. Thus, each entry (ηi, ξ i ) in the database contains D = 9 × Ne numbers, and the 
total size of the digital database is N × D .

Using the digital database, we build a high-dimensional manifold M ⊂ R
D (gray region in Fig. 2) containing the set 

Z = {ξ1, · · · , ξ N} associated with its corresponding set of macroscale loading conditions T = {η1, · · · , ηN} ⊂ R
d̃ , where d̃ is 

the number of the physical macroscale loading/controlling parameters. The microscale simulation points, ξ i , are given by the 
ordered set of the deformation gradients in each element, i.e. ξ i = {F 1, · · · , F Ne} ∈ M. Moreover, all other microscale fields 
(e.g. stress, strain) are derived from F . For nearly incompressible materials the MNROM framework will remain similar. 
Generally, a mixed finite element method is used to handle the nearly incompressible material response [59,60]. In that 
case pressure/volume variables have to be included in ξ i .

In this work, we use a limited number (N) of parallel simulations using the PGFem3D solver [13,16,19,47] to construct 
the manifold M. The proximity of the points on the manifold are described by the distance metric D (in terms of L2 norm), 
suggesting that the topological space (M, D) is a metric space, which is bounded, dense, complete and compact [61]. In the 
limit, N → ∞, the generated manifold M is smooth and without holes, since the parametric space T is without singularity 
and the manifold is generated through a continuum process.
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After constructing the high-dimensional manifold, we look for a low-dimensional Euclidean space A ⊂ R
d (orange region 

in Fig. 2). This space of lower dimension contains the set of points, A = {ζ 1, · · · , ζ N}, generated from the limited set of 
simulations Z, which are associated with the essential macroscale influence parameters (ηi ∈ T). In this work, we determine 
the intrinsic dimension, d, of the manifold M, and construct the map f : M �→ A. The Isomap [41] is utilized to construct 
f N (see Fig. 2), the discrete version of f , using graph techniques and geodesics, thereby preserving the global structure of 
M in A. Thus, near and far points on M (by geodesic distance) are also near and far on A (by Euclidean distance).

After establishing all spaces and maps, we would like to perform both homogenization and localization of the microscale 
response for new macroscale loading conditions, denoted as a macroscale query point ηq /∈ T. Moreover, we would like 
to accomplish this without any additional large-scale HPC simulations. To achieve this goal, we propose to unravel an 
underlying space of low dimensionality. To close the MNROM, we need to link the low-dimensional parameters to the 
physical macroscale loading conditions through the map P. Note that this connection between the low-dimensional space 
and the physical macroscale parameters is not always straightforward. Here we use the NN [53,56]. Finally, we obtain the 
microscale solution, ξq , using the reconstruction map f †

N . In what follows, we summarize briefly the mathematical theories 
and principles needed to construct a reliable MNROM (see Fig. 2).

3.1. Description of map f N :M �→A

As mentioned in the previous section, we establish the map f N using Isomap [24,41], which generalizes MDS to nonlinear 
manifolds by replacing the Euclidean distance with approximate geodesic distances on the manifold. In this section, we 
provide basic mathematical structure of Isomap for completeness of the presentation. The manifold is represented by the 
graph, G , constructed from the points, ξ i , on the manifold M using the k-rule, where k nearest neighbors are connected 
through the graph edges. One of the major components of Isomap is computation of approximate geodesic distances in 
terms of all-pair shortest paths, and we use Dijikstra algorithm [62]. The approximate geodesic distances computed over 
the graph G obey the following theorem: Let M be a compact manifold, embedded in RD , isometrically equivalent to a 
convex domain A ⊂R

d and let some parameters ω1, ω2, μ be given in (0, 1). Next, let another parameter ε > 0 be chosen 
such that ε < s0 and ε ≤ (2/π)r0

√
24ω1, where s0 and r0 are the minimum branch separation and the minimum radius of 

curvature of the manifold M, respectively. A finite sample set {ξ i} is chosen randomly from the Poisson distribution over the 
points on M with the density function α, which has the bounded ratio, A = αmax/αmin , where αmin = (k + 1)/(Vd(ε/2)d/2)

and αmin > 4 log(8V /μVd(ω2ε/32π)d))/Vd(ω2ε/16π)d . Here, V is the volume of M and Vd is the volume of the unit ball 
in Rd . Now, by providing the conditions, e−(k+1)/4 ≤ μVd(ε/4)d/4V and (e/4)(k+1)/2 ≤ μVd(ε/8)d/16AV , and neglecting 
the boundary effects, we can assert that with the probability at least 1 − μ the following inequalities

(1 − ω1)D M(ξ i, ξ j) ≤ DG(ξ i, ξ j) ≤ (1 + ω2)D M(ξ i, ξ j), (8)

hold on M for all ξ i, ξ j , where D M(ξ i, ξ j) = infγ {length(γ ) : γ : [0, 1] �→ M and γ (0) = ξ i, γ (1) = ξ j} is the exact 
geodesic computed on the Riemannian manifold M. Here, DG (ξ i, ξ j) is the approximate geodesic computed from the graph 
G [63].

Equation (8) guarantees the asymptotic convergence of the computed approximate geodesics in limiting conditions. 
Isomap involves the computation of an affinity matrix, Dij = D2

G(ξ i, ξ j), from the data set Z. Once this is done, the matrix 
D is transformed to the double-centered matrix D̃ , which reads

D̃i j = −1

2

(
Dij − 1

N
Di − 1

N
D j + 1

N2

∑
k

Dk

)
, (9)

where Di is the ith row sum of the affinity matrix D (Di = ∑
j Di j). Then, the embedding is constructed by ζ i

k = √
σk vk

i , 
where σk is the kth eigenvalue and vk is the corresponding eigenvector of D̃ . Here, ζ i

k is the kth component of ζ i out of d
components, and vk

i is the ith component of vk out of N components.
Truncation in the decaying spectrum is done by applying the Beardwood–Halton–Hammersley (BHH) theorem [64]. Let 

M be a smooth compact d-dimensional manifold embedded in [0, 1]D ⊂ R
D through the diffeomorphism f −1 : Rd �→ M

and assume 2 ≤ d ≤ D and 0 < ϒ < d. Now suppose that Z is the set of independent and identically distributed random 
vectors which lie on M having uniform density � with respect to a Lebesgue measure μM on M. Next, assume that the 
edge length DG (ξ i, ξ j) of the undirected graph, G , converging to ‖ f (ξ i) − f (ξ j)‖L2 as N → ∞. Then, the length functional 
LMϒ (Z) of the geodesic minimal spanning tree (GMST) of graph G satisfies

lim
N−→∞ LMϒ (Z)/N(d′−ϒ)/d′ =

⎧⎨⎩
∞ if d′ < d

βdC if d′ = d

0 if d′ > d,

(10)

where βd is a constant that is independent of the probability distribution of Z, and C is defined on M as

C =
∫

�((d−ϒ)/d)(ξ)g−ϒ/d( f −1(ξ))μM(dξ). (11)
M
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Here, g =
√

det[ J T
f J f] with J f being the Jacobian of f , and ξ is a generic vector on M. Moreover, the mean 

(E[LMϒ (Z)]/N(d′−ϒ)/d′
) converges to the same limit.

Now the length functional LMϒ provides a means of estimating the intrinsic dimension of the manifold. Defining lN =
log(LMϒ ) gives the following approximation

lN = a log(N) + b + εN , (12)

where a = d−ϒ
d , b = log(βdC), and εN is the residual error that approaches zero with increasing N . The intrinsic dimen-

sionality d can be estimated by finding the length functional for different number of samples and subsequently finding the 
best fit for (a, b). Once d is computed, embedding can be constructed by taking first d eigenvalues and eigenvectors [64]. It 
can be shown that convergence takes place asymptotically for an isometric map. To finalize the description of Isomap, we 
provide simple implementation procedure in Algorithm 1.

Algorithm 1 Isomap.

1: Construct neighborhood graph, G: Compute L2 distance between all pairs (ξ i , ξ j ). Apply k-rule to select the k-neighbors of all ξ i . Every ξ i will have k-edges with 
Euclidean distance as the edge weight.

2: Compute all-pair shortest paths in G: Use Floyd/Dijikstra algorithm [62,65] to compute all-pair shortest paths and store the squared value of each shortest path in 
D matrix. Compute double centered matrix ̃D from D given by Equation (9).

3: Determine the intrinsic dimension: Use BHH theorem and follow Equations (10)–(12) to determine the intrinsic dimension of manifold d.
4: Construct the reduced-dimensional space: Apply classical MDS technique on ̃D. Compute d largest eigenvalues, σk , and corresponding eigenvectors, vk of ̃D. The 

reduced dimensional space is obtained as ζ i
k = √

σk vk
i .

3.2. Description of inverse Map f †
N :A �→M

Although, the Isometric map can be constructed explicitly [42], in our work, the map f N is without an explicit form 
and does not have any explicit inverse. In order to predict the micro-structural response from the reduced dimensional 
parameters, we numerically construct an approximation to the inverse map through regression [66]. First, we describe the 
basic mathematical property of inverse map and then we discuss several inverse map candidates that were used in Section 4
(Numerical Examples). Consider a simulation point ξ i ∈M and its corresponding point in the reduced space ζ i ∈A, where 
ζ i = f (ξ i). Next, we assume that the discrete map f N converges to the limiting map, i.e. f N(ξ i) = f (ξ i) for i = 1, . . . , N . 
Thus, the approximate inverse, f †

N , is constructed from a finite set of points such that ∀ζ ∈ f (M) the inverse map f †
N

converges to the exact inverse f −1 at the limit (limN→∞ f †
N(ζ ) = f −1(ζ )). The approximate inverse map for a point of 

interest ζ q (query point) is denoted as ξq = f †
N(ζ q) (see Fig. 2) and is constructed in the sense of non-parametric regression 

[67].
One of the basic approaches for creating this reconstruction map over the manifold M is to use the conditional proba-

bility density P i(ξ i |ζ q):

ξq =
N∑

i=1

ξ i P i(ξ i |ζ q). (13)

Many models emanate from Equation (13) since it provides generic description [67]. One simple approach of finding inverse 
is by finding the set of k-nearest neighbors (points) Hq

ζ = {ζ q,1, . . . , ζ q,k} of ζ q and the corresponding set of simulation 
points Hq

ξ = f −1
N (H

q
ζ ) = {ξq,1, . . . , ξq,k} on the manifold M. Using the fact that A is isometrically embedded in M, the 

point ξq ∈M is obtained by (see Ref. [24])

ξq =
∑k

i=1 ξq,i(1/lq,i)∑k
i=1(1/lq,i)

, (14)

where lq,i = ‖ζ q − ζ q,i‖L2 . Note that Equation (14) is equivalent to Equation (13) with P i(ξ i |ζ q) = 1/lq,i/ 
∑k

i=1(1/lq,i) and 
sum is truncated within k-nearest points. This method is commonly known as local linear interpolation. Another simple, but 
often used interpolation method, is nearest neighbor averaging. For this method, P i(ξ i |ζ q) = 1/k with summation truncation 
up to k-nearest points. In the Nadaraya–Watson approach [68], regression is the probability estimation of the data as follows

ξq =
N∑

i=1

ξ iK

(
ζ i − ζ q

h(N)

)
/

N∑
i=1

K

(
ζ i − ζ q

h(N)

)
, (15)

where K(., .) is the kernel density and h(N) is the scale associated with the distribution of data. The factor K 
(

ζ i−ζ q

h(N)

)
/∑N

i=1 K 
(

ζ i−ζ q
)

can be interpreted as the conditional probability density P i(ξ i |ζ q). Unfortunately, the Nadaraya–Watson 
h(N)
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Fig. 3. Statistical analysis of the RUC. (a) Isotropic second-order particle-to-particle probability function. (b) Directional covariance of the second-order 
particle-to-particle probability.

type regression is highly sensitive to kernel selection. Also most of the generic kernels are highly scale (hN ) dependent. 
Moreover, this technique suffers when neighborhood of the query point is very sparse.

The reproducing kernel map construction (see [69]) is in general very robust and can be done using the Radial Basis 
Function (RBF)

ξ
q
j =

N∑
i=1

θ i
jK(ζ i, ζ q). (16)

Here, ξq
j is the jth component of the solution vector (ξq) and the reproducing kernel, K(ζ i, ζ q) = �(‖ζ i − ζ q‖), is a RBF. 

The coefficients θ i
j are determined using the training data set (ζ i, ξ i) as follows⎡⎢⎢⎣

θ1
1 · · · θ1

D

...
. . .

...

θ N
1 · · · θ N

D

⎤⎥⎥⎦ =
⎡⎢⎣
K(ζ 1, ζ 1) · · · K(ζ 1, ζ N)

...
. . .

...

K(ζ N , ζ 1) · · · K(ζ N , ζ N)

⎤⎥⎦
−1 ⎡⎢⎢⎣

ξ1
1 · · · ξ1

D

...
. . .

...

ξ N
1 · · · ξ N

D

⎤⎥⎥⎦ . (17)

The robustness and the stability of this method depend on the selection of the kernel function [70]. In this work, we have 
used the bi-harmonic function (�(‖ζ i − ζ q‖) = ‖ζ i − ζ q‖) for the inverse map.

Finally, we note that nonuniqueness of the inverse map can be mitigated by the Bayesian framework [71]. However, this 
will lead to an expensive process especially for very high dimensional data.

3.3. Description of map P : T �→A

Finally, the last map that needs to be described in this technique (see Fig. 2) is the relationship between the macroscale 
loading parameter space T and the low-dimensional isometric space A. Note that the connection between the reduced 
space, A, and the space of physical macroscale parameters, T, is not straightforward for nonlinear problems. In this work, 
the map between the reduced space, A, and the macroscale loading parameter space, T, is established through the use 
of NN [53] by minimizing the mean-square error between the reduced space, A, and the approximate output of the NN 
denoted here as A.

4. Numerical example

In this work, we are interested in the behavior of randomly configured (statistically isotropic) particulate materials. Com-
putational homogenization introduced in Section 2 relies on the concept of scale separation and existence of a representative 
microscopic cell. In order to select the size of the representative microscopic cell, we use a statistical approach [45,46]. In 
this approach, we generate three different cell sizes, 8R , 10R and 16R , where R is the radius of the inclusion. Here, the 
inclusions are monodisperse hard spheres with radius R = 0.5 μm. The cells are generated using the packing algorithm 
Rocpack [72].

Fig. 3 shows the isotropic second order probability function, Spp (i.e. particle–particle probability function), and its di-
rectional covariance. As typical, larger cells preserve more structure and are more representative. From this statistical study, 
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Fig. 4. RUC with side length of lRUC = 10R = 5 μm. The cell contains 95 hard spherical particles with 1 μm diameter.

Table 1
Mooney–Rivlin material properties.

Material E [MPa] ν κ [MPa] G [MPa] μ01 [MPa] μ10 [MPa]
Particle 5e3 0.25 3.33e3 2e3 5e2 5e2
Matrix 50 0.35 55.56 18.52 4.63 4.63

we have constructed a RUC with a side length of lRUC = 10R = 5 μm containing 95 particles, with the covariance error 
below 5%. More details on construction of a RUC can be found in [45,46]. Fig. 4 shows the geometry of the cell used in this 
work. After a convergence study, the RUC is discretized with 96,252 nodes and 486,051 elements, which results in 250,035 
nonlinear degrees of freedom to solve the micro-problem (see Equation (7)).

With the RUC established, appropriate constitutive models at the microscale are selected. We use an isotropic hyperelastic 
strain-energy density function similar to the Mooney–Rivlin hyperelastic model and employ the volumetric and deviatoric 
split, 1 W (C) = 1 WC(Ĉ) + 1 W J( J ), with

1WC(Ĉ) = μ10
[
tr(Ĉ) − 3

] + μ01

2

[
(trĈ)2 − Ĉ : Ĉ − 6

]
,

1W J( J ) = κ

2
[exp( J − 1) − ln( J ) − 1] . (18)

In Equation (18), J = det (F ) is the Jacobian of the deformation, Ĉ = J−2/3C is the deviatoric right Cauchy–Green defor-
mation tensor, μ10 and μ01 are the shear moduli, and κ is the bulk modulus. The associated material properties of the 
microscale constituents are provided in Table 1.

4.1. Macroscale loading parameters T and construction of reduced space A

The microstructure is loaded, as in strain driven CH, by the macroscopic deformation gradient, 0 F (X). Using the polar 
decomposition, 0 F = 0 R0U , we obtain

0U = 0λ1(
0e1 ⊗ 0e1) + 0λ2(

0e2 ⊗ 0e2) + 0λ3(
0e3 ⊗ 0e3), (19)

where 0λi ∈ (0, ∞] are components of the principal stretch and 0ei are the orthogonal principal directions generated by 
the axis-angle representation. Recognizing that the microscopic response is invariant to the macroscopic rotation, 0 R , we 
proceed forward with 0U being the key loading parameter.

In order to parameterize the principal directions associated with the principal stretches, we exploit the symmetry of 
the tensor product. The axis 0e1 is constructed from the position vectors of points on the unit hemisphere (X3 ≥ 0 in 
Fig. 5), which are characterized by the angles ϕ1 ∈ [0, 2π ], ϕ2 ∈ [0, π2 ]. We use the HEALPix grid [48] to obtain a uniform 
distribution of points on the hemisphere. For the rotation about the axis 0e1 (see Fig. 5), we parametrize the angle, ϕ3

in [0, π2 ). Thus, we use the set T = {0λ1, 0λ2, 0λ3, ϕ1, ϕ2, ϕ3} to represent the space of 0U , and each loading condition 
ηi ∈ T is described by six generators (see Section 3). In this work, the digital database is divided into four separate loading 
segments (referred to as Modes 1–4) and is constructed as described in Table 2.

Bifurcation is a common phenomenon in nonlinear continuum mechanics and appears even in seemingly simple prob-
lems involving fairly standard constitutive models [60,73]. We remark that capturing limit and bifurcation points requires a 
special numerical treatment [74]. Thus, multiple MNROMs would have to be constructed and analyzed to study the bifur-
cated solutions. We do not perform such analysis in this work. However, when working with random materials with many 
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Fig. 5. Schematic of the rotation parameters.

Table 2
Description of the macroscale loading modes.

Loading case Description No. simulations

Mode 1 0λ1 ≥ 0, 0λ2 ≥ 0, 0λ3 ≥ 0 4032
Mode 2 0λ1 ≤ 0, 0λ2 ≥ 0, 0λ3 ≥ 0 4032
Mode 3 0λ1 ≤ 0, 0λ2 ≤ 0, 0λ3 ≥ 0 4032
Mode 4 0λ1 ≤ 0, 0λ2 ≤ 0, 0λ3 ≤ 0 4032

inclusions, the microstructure introduces geometrical (morphological) imperfections that guide the solution path. Moreover, 
we use displacement driven CH where the macro-deformation is uniquely prescribed.

After a discretization study, we have approximated principal stretches with a 4 × 3 × 3 uniform grid over 10% stretch 
interval. This leads to large strain conditions. Moreover, we have used 112 distinct rotations to generate the bases, 
[0e1 0e2 0e3]. In this work, we simply use a uniform discretization of the input parameters. We start with an initial guess 
of zero displacement for each mode, and then simulations proceed by traversing from one loading condition to another. 
Note that this discretization leads to 4032 solutions of the microscale boundary value problem, Equation (7), for each mode 
(N = 4 × 4032). Although this is a moderately large number of simulations, all simulations are executed in parallel using 
the parallel PGFem3D solver [13,16,47]. Thus, the whole database can be generated quickly given current HPC capabilities. 
In our work, we have not encountered numerical difficulties in solving the nonlinear BVP (Eq. (7)). When such numerical 
difficulties occur, the manifold would experience coverage deficiency that would have to be mitigated by conducting extra 
numerical simulations in regions of convergence impediment. Note that even this seemingly large number of simulations 
still leads to a very sparse manifold M considering the ambient high-dimensionality (D = 9 × Ne), which is commonly 
referred to as the curse of dimensionality.

As anticipated, multiple loading conditions can have the similar BVP solution, which leads to non-uniqueness of the de-
formation gradient in the manifold construction. For example, pure volumetric deformations are rotation invariant. Although, 
from Isomap point of view redundant data points are ineffectual, we retain all nonunique solutions for the enrichment of 
the model.

After constructing the digital database, Isomap gives a reduced dimensionality of d = 6 for each loading mode, down 
from the complete solution manifold with the dimension of D = 4,374,459. The residual correlation coefficient between 
the Euclidean and the approximate geodesic distances of the complete solution manifold are below 0.1 for all modes (see 
Fig. 6). Moreover, near perfect exponential convergence is obtained. Note that Modes 2 and 3 are more nonlinear and have 
initially higher residual variance. The effect of this nonlinearity will be discussed in Section 4.5.

4.2. Verification of inverse map f †
N

In order to understand the errors associated with methods used for constructing the approximate inverse map between 
the complete and reduced spaces, f †

N , we exploit the isometric nature of Isomap, which guarantees preservation of the 
neighborhood structure. To quantify the error, we use the common ‘leave-one-out’ procedure from the machine learning 
community [69]. This procedure consists of removing a single point from the manifold construction, interpolating this 
removed point from the reduced manifold, and comparing the interpolated point to the known one. We have applied this 
procedure to 10% of the total 4,032 points (selected randomly) for each loading mode.

The error associated with removing one of these random points from the manifold is quantified by considering the local 
(localization) error (Er ) computed at micro-points Y (i.e. each finite element in the RUC discretization). This error measure 
is defined as
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Fig. 6. Isomap dimensionality.

Fig. 7. Distribution of the volume averaged error (homogenization) given by Equation (21) for randomly selected 10% of points from database (one-out 
cases). (a) Particle. (b) Matrix.

Er = ‖F ROM
r − F FEM

r ‖F
‖F FEM

r ‖F
× 100 [%], (20)

where F ROM
r and F FEM

r are the deformation gradients computed from the regression model as described in Section 3.2
and the Finite Element Method (FEM) simulation, respectively. Here, we use the Frobenius norm (‖ • ‖F ). The subscript 
r represents a material phase (particle or matrix). In order to quantify the cumulative error for a single simulation point 
removed from the manifold, the following volume averaged (homogenization) error, 0Er , reads

0Er =
1

�0

∫
�r

Erd�

‖0 F r‖F , (21)

where 0 F r = 1

�0

∫
�r

F d�.

Upon experimenting with several regression schemes (Equations (13)–(15)), we have used the RBF model given in Equa-
tion (16). Note that simple local linear interpolation, Eq. (15), was not accurate for many points on the manifold because 
of the neighborhood sparsity. While implementing the reproducing kernel map given by Equation (16), we solve Eq. (17) to 
determine θ i

j coefficients for all dimensions (D) involving all 4032 training data-points for each mode.
Figs. 7(a) and 7(b) show the cumulative error (homogenization) of the leave-one-out cases for the particles and matrix, 

respectively. Error characteristics of the inverse map are shown in Table 3. Note that the largest error over all one-out points 
occurs for Mode 3 (circular markers in Fig. 7(a) and 7(b)). Therefore, further localization error analysis is conducted only for 
Mode 3.

We plot the distributions of the element-wise (localization) error, Equation (20), in Figs. 8(a) and 8(b) for the matrix and 
particles, respectively. To simplify the interpretation of the results, we plot the mean and standard deviation of the localiza-



S. Bhattacharjee, K. Matouš / Journal of Computational Physics 313 (2016) 635–653 645
Fig. 8. Distribution of the local error (localization) given by Equation (20) for randomly selected 10% of points from Mode 3 (one-out cases). (a) Mean error 
of the deformation gradient field. (b) Standard deviation of the deformation gradient field.

Table 3
Quality of the regression model for construction of the inverse map, f †

N , for all modes computed from Equation (21).

Loading cases Min. [%] Max. [%] Mean [%] Median [%]
Mode 1 Particle 1.8410e−07 0.3161 0.0314 0.0028

Matrix 4.6437e−07 0.9589 0.1586 0.0314

Mode 2 Particle 2.6032e−06 0.5846 0.0424 0.0226
Matrix 4.8607e−06 1.1823 0.2560 0.2395

Mode 3 Particle 1.6000e−03 0.6870 0.0530 0.0381
Matrix 2.7100e−02 1.2367 0.4002 0.3827

Mode 4 Particle 3.0786e−04 0.3472 0.0386 0.0181
Matrix 5.7000e−03 1.2755 0.2309 0.1553

Fig. 9. Distribution of ‖F‖F from FEM and MNROM. (a) Over matrix. (b) Over particle.

tion error, Er , computed over the finite element field (i.e. deformation gradient) given in Equation (20) from leave-one-out 
points. As can be seen, the maximum localization error occurs in the compliant matrix and is more uniformly distributed. 
Moreover, all errors (both localization and homogenization) are below 1.5%, which demonstrates good construction of our 
inverse map.

Finally, to understand the local distribution of the deformation gradient magnitude, we plot ‖F ‖F in Figs. 9(a) and 9(b). 
This distribution is generated for data point, ξ i , with mean(Er) = 1.2367% error from Mode 3. Note that these distributions 
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Table 4
Neural Network regression performance.

Loading case Regression coefficient Performance Target range

Mode 1 0.99879 5.3934 [−150 150]
Mode 2 0.99894 9.3900 [−220 220]
Mode 3 0.99940 5.3042 [−220 220]
Mode 4 0.99914 3.8544 [−150 150]

Fig. 10. Distribution of Neural Network output error compared to reduced space over entire dataset.

obtained through the regression model (see Section 3.2) match the simulation data extremely well. This indicates that 
accurate microscale fields are obtained from the reduced manifold using our approximate inverse map, f †

N .

4.3. Verification of map P

To complete the MNROM framework, a map also needs to be established between the reduced space A and the space 
of macroscopic loading parameters T. This map is denoted as P (see Fig. 2). Since the process of generating data is highly 
nonlinear, and the neighborhood structure is destroyed due to the curse of dimensionality (recall that D = 9 ×Ne =O(106)), 
we have constructed the map using NN. As discussed in Section 4.1, we are retaining all solutions which leads to higher 
predictive capability of the NN model. Multilayer feed-forward networks are very efficient at establishing a large class 
of measurable maps [55]. Since NN is not an explicit map, the performance of the model depends on many parameters. 
The number of hidden layers and the number of nodes are important issues for better generalization of the model. The 
architecture of NN used in this work is two hidden layers with 70 nodes per layer for Modes 1, 2 and 4. Mode 3 contains 
75 nodes per layer. This selection is guided by the fact that in general a two-layer NN is sufficient to capture nonlinear 
features [56].

In this work, the NN Toolbox in MATLAB is utilized [53]. The target-function/error is computed by a mean-square error 
(MSE). We have used common regularization techniques to optimize the regression model [53]. Furthermore, we have 
used the Bayesian model for multilayer feed-forward networks [53,57] to train the data. The quality of the regression 
is summarized in Table 4 for all loading modes. Note that the linear regression coefficient is close to one for all cases 
indicating a good fit. The performance of a NN should be judged relative to the range of the target space, and the MSE 
performance is on the order O(10−4) in the range [−1, 1].

To investigate further the quality of this map, the error between A and A, which is the output of NN, is illustrated for 
each of the loading modes in Fig. 10. The geometric interpretation of this error is simply the Euclidean distance between 
points in A and the corresponding points in A. Fig. 10 also shows that the average shift of the MNROM solution from the 
corresponding FEM along the manifold M is around 5 units (around 7 units in Mode 2), and 4.57% of points are more than 
10 units in terms of geodesic distance. Moreover, the spread of the data is large as indicated in Table 4 (note the range of 
the six-dimensional space A (Target Range)), and this difference is accumulated over D = 4,374,459 components. Therefore, 
the map established by means of NN provides a useful transformation of the macroscale physical parameters to the reduced 
space, and it will not deteriorate the physics unless the process is highly sensitive to the macroscale loading parameters. 
We will comment on the accuracy and applicability of NN further in the next section.
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Fig. 11. Distribution of the volume averaged error (homogenization) given by Equation (21) of the 100 randomly selected query points in each mode. 
(a) Particle. (b) Matrix.

4.4. Verification of complete MNROM framework

After creating the digital database and establishing maps between the high-dimensional space of microscale data, the re-
duced space, and the macroscale loading parameters, the MNROM framework (see Fig. 2) can be used to compute macroscale 
(homogenization) as well as microscale (localization) fields for a given macroscale input that is not present in the digital 
database. The input query is denoted as ηq , which corresponds to a point in T (the macroscale loading parameters). This 
query point is mapped to the reduced space A using the map P derived from the NN. Finally, the microscale data is ob-
tained using the approximate inverse, f †

N . We exercise this entire framework by computing the microscale response, ξq , of 
100 random query points, ηq , for each mode taken within the range of the T space. A total of 400 random query points are 
generated (i.e. 100 in each mode) from a uniform distribution over the macroscopic loading parameter space T. Recall that 
ξq is an ordered list of the microscale deformation gradient, F , for each finite element in the discretized microstructure 
(RUC). The error of the interpolated microscale field is evaluated by comparison with simulation data using Equations (21)
and (20), respectively.

The homogenization error is shown in Figs. 11(a) and 11(b) for particle and matrix respectively. Fig. 11 shows that 
the homogenization error in F m is higher (Fig. 11(b)), but only less than 13% of query points have a volume averaged 
error above 5% considering all modes. This is strong performance considering that no FEM analysis was performed, and 
the deformation gradient field (represented by Ne = 486,051 finite elements) is approximated using MNROM. On the other 
hand, some of the query points (less then 1.25%) have a homogenization error above 10%. These are usually query points 
close to the loading envelope or in a region where the manifold data density is substantially low.

To understand these errors, note that Isomap is not based on exact geodesics. Therefore, the reduced space A does not 
unfold the manifold M perfectly. This indicates that some degree of noise is involved in the data associated with A. Since 
the accuracy of the computed geodesics directly depends on the density of data, the degree of noise indicates the amount 
of data sparsity. Insufficient data density also leads to inadequate NN learning [54,58] and deterioration of P map. Future 
enhancements to the MNROM (e.g. pattern/physics based discretization) are needed to reduce this error. Nevertheless, these 
first results indicate the strong potential of this novel manifold-based reduced order method.

Minimum, maximum, mean and median of the volume averaged error over all query points for all modes are listed in 
Table 5. Note that the data reconstruction process is well preserved using MNROM with the mean error less than 3.5%
(median error less than 2%) for all cases. Also, we note that among all modes, the homogenization error from 100 query 
points is higher for Mode 3. Therefore, we analyze the Mode 3 error in more depth.

The mean and standard deviation of the localization error defined in Equation (20) computed over the finite element 
field (i.e. deformation gradient) for 100 random query points from Mode 3 are shown in Figs. 12(a) and 12(b). Minimum, 
maximum, mean and median of the mean(Em) error evaluated over the deformation gradient field for the population of 100 
random query points from Mode 3 are listed in Table 6. Similar to the homogenization process (see Fig. 11), the localization 
error is of the same order. Moreover, since 0 F is equal to 0U in our analysis, we can also get an estimate on the quality of 
the microscopic strain field from Fig. 12.

4.5. Homogenization of material response

To understand further the quality of MNROM solution, we are interested in predicting the homogenized strain energy 
density function (see Equation (6)). Fig. 13 shows the deviatoric (Fig. 13(a)) and volumetric (Fig. 13(b)) parts of the strain 
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Table 5
Quality of the MNROM for all modes computed from Equation (21) for 100 query points in each mode.

Loading cases Min. [%] Max. [%] Mean [%] Median [%]
Mode 1 Particle 0.0464 4.1540 0.2860 0.2469

Matrix 0.2413 11.5384 2.2622 1.8902

Mode 2 Particle 0.0275 0.7621 0.1737 0.1235
Matrix 0.3989 9.6881 2.5506 1.8707

Mode 3 Particle 0.0310 0.9997 0.2308 0.1274
Matrix 0.4140 11.8873 3.3761 1.9683

Mode 4 Particle 0.0905 2.4268 0.3194 0.2869
Matrix 0.6626 10.2583 2.2163 1.7815

Fig. 12. Distribution of the local error (localization) given by Equation (20) for the 100 randomly selected query points from Mode 3. (a) Mean error and 
(b) standard deviation of the finite element field for 100 query points.

Table 6
Localization error characteristics of MNROM for mean(Em) error from 
Equation (20) (see also Fig. 12(a)) of the deformation gradient field 
for population of 100 random query points from Mode 3.

Min. Max. Mean Median

0.4519 12.5747 3.6266 2.1200

energy density function. The volumetric potential, 0 W J ( J ), shows remarkable correlation between detailed parallel simula-
tions using PGFem3D and MNROM (see Fig. 13(b)). A moderate error from MNROM is noticeable, especially for large volume 
changes ( J < 0.8 and J > 1.2). The deviatoric potential, 0W C (Ĉ), comparison is more difficult to interpret since it depends 
on a second-order tensor. Therefore, we plot 0 W C (Ĉ) as a function of ‖Ĉ‖ in Fig. 13(b). Furthermore, we carry out an error 
estimate for the homogenized potential energy. For that purpose, we define an error measure as

E0 W =
∣∣0W ROM − 0W FEM

∣∣
0W FEM

× 100 [%]. (22)

As observed in Fig. 13, the total potential energy, 0 W , ranges from 0.05 MPa to 3 MPa. The median error (E0 W ) is 
10%, and 75% of the cases are below 20% error as computed from Equation (22). Moreover, points with high error (> 20%) 
are concentrated in low to moderate potential energy regions. From Fig. 13 it can be seen that the volumetric energy is 
higher compared to the deviatoric one for large strains. Considering our mode construction (recall Table 2), we see that 
the principal stretches are either all positive or all negative in Modes 1 and 4, respectively. Therefore, the portions of high 
strain and potential energy are associated with Modes 1 and 4 (see Fig. 13(b)). Moreover, the points with increased errors 
are close to the loading envelope of Modes 1 and 4. Points with low to moderate potential energy and low volumetric 
deformation are mostly in Modes 2 and 3 (see Table 2), where the signs of the principal stretches are mixed. The data 
pattern for Modes 2 and 3 is quite complex, and data is sparse compared to Modes 1 and 4 (see target range in Table 4). 
Moreover, the degree of nonlinearity of Modes 2 and 3 is higher (see decay of residual variance in Fig. 6). Overall, the 
results suggest an acceptable agreement between detailed FEM simulations and MNROM. Once more, future enhancements 
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Fig. 13. Macroscale strain energy density function, MNROM versus FEM. (a) The deviatoric potential, 0 W C (Ĉ). (b) The volumetric potential, 0 W J ( J ).

Fig. 14. Least-square fit of the macroscale strain energy density function, MNROM versus FEM. (a) The deviatoric potential, 0 W C (Ĉ). (b) The volumetric 
potential, 0 W J ( J ).

Table 7
Homogenized material properties.

Source κ [MPa] μ10 [MPa] μ01 [MPa]
MNROM 105 13.45 13.45
FEM 94 12.40 12.40

to the MNROM including pattern/physics based discretization and enhancement or replacement of NN map with machine 
learning algorithms are needed to reduce this error. Nonetheless, Fig. 13 shows that the MNROM discovers with reasonable 
accuracy the homogenized constitutive laws for a large number of query points. Finally, we note that the functional form 
of these macroscale potentials is not assumed a priori and is discovered from our data without any additional large parallel 
simulations.

Since the spread in the data complicates the analysis (especially for the deviatoric portion of the potential function), we 
use model calibration to construct the homogenized potentials with volumetric and deviatoric split as 0 W (C) = 0 W C (Ĉ) +
0 W J ( J ). Although the functional form of the macro-potential can be obtained from results in Fig. 13, we use expressions 
of the micro-potential functions in Equation (18) for simplicity. Fig. 14 depicts model calibration using the volumetric 
(Fig. 14(b)) and deviatoric (Fig. 14(a)) functions (see Equation (18)) for both the FEM and MNROM data from Fig. 13. Both 
the FEM and MNROM parameterizations show excellent agreement for both the volumetric and the deviatoric potentials. 
Finally, the homogenized material constants for both FEM and MNROM models are listed in Table 7.

We also investigate the macroscopic first Piola stress tensor, 0 P , and compare it to the FEM solution. Since 0 F is the 
energy conjugate to 0 P , in Fig. 15(a), we plot the Frobenius norm of 0 P with corresponding Frobenius norm of 0 F for all 
four modes. We can see that the points corresponding to ‖0 P‖ computed by MNROM are clustered around the points which 
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Fig. 15. Macroscale first Piola stress tensor, 0 P , MNROM versus FEM. (a) Frobenius norm of 0 P against Frobenius norm of 0 F . (b) Distribution of the 
homogenization error given by Eq. (23).

are calculated by the FEM. However, it is not easy to interpret a second-order tensor from its norm alone. Therefore, we 
compute the error as given in Equation (23) to understand accuracy of the method. The error plot is shown in Fig. 15(b), 
where 99.5% of the query points have less than E0 P = 5% error, and 67.25% of all query points have less than 1% error for 
all modes.

E0 P = ‖0 P ROM − 0 P FEM‖
‖0 P FEM‖ × 100 [%]. (23)

Although some query points show moderate error for the energy density function (see Fig. 13) and stress (see Fig. 15(a)) 
as compared to FEM, we note that this is only for a small portion of the query points. Moreover, the pattern/physics based 
discretization technique will help to reduce such errors as mentioned before. In terms of coupled multiscale analysis, these 
errors will not have any effect when MNROM is used as an accelerator in two-scale (structure) calculations. Moreover, one 
can use the calibrated multiscale potentials (see Fig. 14) at the macroscale.

4.6. Localization of material response

In the previous section, we have investigated homogenization properties of MNROM. Now, we are interested in the local-
ization accuracy of MNROM and its ability to predict the local (element-wise) engineering fields derived from F . Therefore, 
we introduce the Almansi strain, e, defined as

e = 1

2
(1 − F −1 F −T ). (24)

To quantify the strain error between the FEM and MNROM solutions at each local point Y in the microstructure (i.e. each 
finite element in RUC), we introduce the effective strain error:

Ee = |‖eROM‖F − ‖eFEM‖F |
‖eFEM‖F × 100 [%]. (25)

In order to understand representative loading conditions, we investigate a query point from Mode 3 with the homoge-
nization error of 0Ep = 0.3316%, and 0Em = 4.9335% as computed from Equation (21). Looking at Fig. 11 (also see Table 5) 
and quantifying the percentage, the solution quality of 87.75% of the query points is better than this selected point while 
considering all modes. Therefore, this selection is representative of a large range of different loading conditions (i.e. not 
present in the original dataset).

To get a clear understanding about both the magnitude of field and distributions of error with respect to the local defor-
mation extent within each finite element, we plot two joint probability distributions. Fig. 16(a) shows the joint probability 
distribution of Em in Equation (20) and ‖F FEM‖F , and Fig. 16(b) displays the joint probability distribution of Ee in Equa-
tion (25) and ‖eFEM‖F . Here we view ‖e‖F like the microscopic effective Almansi strain. Since particles behave as rigid-like, 
deformation in particles is negligible, and we focus on the matrix. The joint probability distribution is constructed from a 
cloud of points representing individual finite elements within the matrix phase (285,380 elements in the matrix).

Fig. 16(a) shows that most finite elements in the matrix carry a mean localization error of 5.3786% for this loading case 
(compare also to Fig. 12), and that the deformation is concentrated between ‖F FEM‖F = 1.58 and ‖F FEM‖F = 1.75 (note 
that ‖1‖F = √

3 = 1.732). Moreover, Fig. 16(a) shows that the error Em is concentrated between ∼4–7% and decays quickly. 
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Fig. 16. Joint probability distribution (computed in discrete element-wise sense) of the local fields (in matrix phase). (a) Em and ‖F FEM‖F . (b) Ee and 
‖eFEM‖F .

Fig. 17. Visualization of the microscopic effective Almansi strain (‖e‖F ) for ηq = {0λ1 = 0.9762, 0λ2 = 0.9181, 0λ3 = 1.0274, ϕ1 = 4.03 [rad], ϕ2 =
0.0322 [rad], ϕ3 = 1.3527 [rad]} (note, particles are rigid-like and hence are removed for the visualization purpose). (a) FEM simulation. (b) MNROM 
analysis.

Fig. 16(b) reveals that the mean microscopic effective Almansi strain error calculated at every finite element in the matrix 
is 13.6321%. Note that the regions of high strains are concentrated between errors of 5–15%. Moreover, 50% of the finite 
elements have errors below 10% (median error is 9.9678%), and 78% of finite elements in the matrix have errors below 20%. 
Finally, we can see that the largest errors are at small to moderate strains. This is not surprising since the Almansi strain is 
derived from F (see Equation (24)), and any small noise near the unloaded state (F = 1) is contributing to this relative error 
measure. These results show good localization characteristics of the MNROM for both F as well as engineering measures, 
such as the microscopic effective Almansi strain (defined as ‖e‖F in this work).

Fig. 17 compares the microscopic effective Almansi strain within the matrix for both the FEM (left) and MNROM (right) 
analysis. As can be seen, the MNROM captures well highly localized strain regions (see top cell surface and cut vertical 
surface) as well as the overall strain distribution (see the rest of the cell). Once more, we remark that no additional HPC 
simulations were performed for the case computed from the MNROM.

5. Conclusion

We have proposed here a novel manifold-based reduced order model for multiscale modeling of nonlinear hyperelastic 
materials in finite strain setting. The reduced order model is built on top of Isomap, which provides dimensionality re-
duction from the high-dimensional data stemming from large parallel computational homogenization simulations. The map 
between the set of macroscopic loading parameters and the reduced space is accomplished by the Neural Network. Once 
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constructed, the manifold-based reduced order model provides both homogenization and localization of the multiscale so-
lution for complex three-dimensional material domains. Thus, solution of the large microscale boundary value problem to 
arbitrary multiscale loading conditions is approximated quickly without the need for additional large parallel finite element 
simulations.

In order to build the manifold, we employ the large parallel three-dimensional finite strains solver, PGFem3D , and per-
form several parallel simulations using a statistically representative unit cell. This statistically representative unit cell is 
generated by a packing algorithm. The multiscale loading conditions are simulated in terms of the macroscopic principal 
stretches as well as the orthogonal principal directions. Therefore, arbitrary multiscale loading conditions can be applied. 
In order to obtain a uniform discretization for rotational parameters, we employ the HEALPix grid. The manifold-based 
reduced order model is verified step by step using traditional machine-learning procedures. Next, we perform homogeniza-
tion and localization of the multiscale solution for data points not in the digital database. Rigorous assessment of both 
homogenization and localization errors is performed. We show that the manifold-based reduced order model discovers the 
homogenized material response as well as provides microscopic fields of interest. In this work, we select the deformation 
gradient as the building block of the manifold, since the other physical fields (i.e. Almansi strain, Piola–Kirchhoff stress) can 
be easily derived.

The proposed manifold-based reduced order model can be used for material classification and lends itself to predictive 
scientific studies as well as Virtual Materials Testing. It can also be used to accelerate fully coupled multiscale computational 
homogenization simulations (i.e. FE2). Future studies on pattern/physics based discretization are needed to improve this 
reduced order model. Moreover, the manifold-based reduced order model for problems with both geometric and material 
nonlinearities (e.g. plasticity, damage) is a natural next step.
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