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We present a novel image-based multiscale multigrid solver that can efficiently address 
the computational complexity associated with highly heterogeneous systems. This solver is 
developed based on an image-based, multiresolution model that enables reliable data flow 
between corresponding computational grids and provides large data compression. A set of 
inter-grid operators is constructed based on the microstructural data which remedies the 
issue of missing coarse grid information. Moreover, we develop an image-based multiscale 
preconditioner from the multiscale coarse images which does not traverse through any 
intermediate grid levels and thus leads to a faster solution process. Finally, an image-based 
reduced order model is designed by prolongating the coarse-scale solution to approximate 
the fine-scale one with improved accuracy. The numerical robustness and efficiency of this 
image-based computational framework is demonstrated on a two-dimensional example 
with high degrees of data heterogeneity and geometrical complexity.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

During the past decades, the development of high-performance computers [1,2] has enabled detailed numerical sim-
ulations in numerous scientific and engineering fields [3–5] with unprecedented resolution. However, direct numerical 
modeling (DNM) still requires large computing resources and novel mathematical approaches are needed to make a leap to 
next generation exascale platforms [6]. As one of the growing fields targeting this issue, the multiscale method has steadily 
gained popularity among other schemes [7–9]. Mutiscale methods have been utilized in a variety of simulations, such as 
fluid dynamics [10,11], material science [12,13], biological studies [14,15], chemical reactions [16,17], and others [18,19].

Multiscale modeling balances between capturing detailed features and reducing the underlying computational complexity 
caused by the large range of spatial scales [7,20]. Similar challenges exist in computer graphics during rendering of complex 
geometries while maintaining the real-time rendering rate [21,22]. A typical example is the image-rendering technique that 
generates progressively coarser objects of the fine image, which are called the levels of detail (LODs) [23]. The fundamental 
concept of LOD is to create a series of representations (i.e., a hierarchy of image details) with less detailed description 
for small, distant, or unimportant features. This type of technique successfully accommodates complex geometries while 
maintaining the real-time rendering rate [22,24]. Recently, an image-based mutiscale modeling technique was developed, 
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which not only retains the visual effect, but also preserves microstructural characteristics, such as the first- and second-order 
probability functions [25].

Computational modeling relies on the conservation laws of mass, momentum, and energy. These balance laws are 
described mathematically by partial differential equations (PDE). Numerically solving a PDE involves numerical discretiza-
tion [26] which often results in a system of algebraic equations. To solve the resulting system of equations, one can use 
either a direct method (e.g., Gaussian elimination [27], LU factorization [27]) or an iterative method (e.g., Jacobi [28], Gauss-
Seidel [28], successive over-relaxation (SOR) [29], conjugate gradient (CG) [30], generalized minimal residual (GMRES) [31], 
multigrid [32,33]).

Among the iterative solvers, the multigrid has high algorithmic efficiency and offers the possibility of solving problems 
with N unknowns using O(N) number of operations and storage [32–36]. The multigrid method was initially proposed 
in the 1960s and developed extensively in the 1970s [37–39]. Originally devised for elliptic boundary value problems, the 
multigrid method has become more versatile during the past few decades for handling problems with increased complex-
ity. These problems include but are not limited to: solving other types of linear and nonlinear PDEs [40–46], eigenvalue 
problems [47–49], optimization problems [50,51], multilevel graph algorithms [52,53], optimal control and design [54,55]. 
Robust multigrid algorithms that exhibit outstanding convergence rate have been developed, which include the black-box 
method [56–59], the smoothed aggregation method [60–62], the auxiliary space method [63], etc.

Despite the significant improvements, the performance of multigrid methods remains highly problem-dependent [32]. 
For heterogeneous media where material properties, like elastic modulus, thermal conductivity, or hydraulic conductivity 
are fluctuating, the multigrid performance becomes fragile. To resolve this problem, work has been done to design a hi-
erarchical basis [64–67]. With this approach, the multigrid convergence rate normally does not depend on the coefficient 
variations. However, the support of the modified basis function is prohibitively high. Another approach is to develop a 
matrix dependent mapping strategy, where the inter-grid operators are computed based on the pattern of the coefficient 
matrix. Improved performance for this type of algorithms has been shown in [56,58,68–72]. However, the performance is 
strongly correlated with the magnitude of coefficient contrast. Moreover, prolongation operators constructed on simple ge-
ometries [58,68] are not often robust enough for complex realistic systems [25,73]. A detailed review about this topic can 
be found in [74].

In addition to an iterative solver, the multigrid method is also recognized as an efficient preconditioner [75–78]. The 
multigrid preconditioner [79] has better scaling property with problem size in comparison to direct methods (e.g., incom-
plete LU [80] and incomplete Cholesky [81]). The multigrid preconditioned system leads to a more favorably clustered 
spectrum than other iterative methods (e.g., Jacobi [28] and SOR [29]), which greatly accelerates the Krylov subspace 
solvers [75,79]. Recent work has shown its outstanding performance for problems such as the visco-plastic Stokes prob-
lem [82], the Helmholtz equation [83], the bidomain equation [84], and others [85,86]. Meanwhile, the parallelization of the 
multigrid preconditioners for various high performance computational platforms is also gaining popularity [87,88]. In spite 
of this, a pure multigrid preconditioner often incurs high setup and storage costs which inhibits its wide usage [79]. This 
motivates the development of a variant, based on the multiscale preconditioning paradigm.

The multigrid method gives rise to auxiliary algebraic equations with reduced number of degrees of freedom (DOFs), 
which can be easily linked to the reduced order model (ROM). The overall goal of ROM is to reduce the computational cost 
of a high fidelity model and accommodate time-critical applications [89]. Advances have been made in ROM over the past 
decades and various approaches, such as the principal component analysis (PCA) [90,91], the diffusion maps [92,93], and 
the manifold-based methods [94,95], have been developed and successfully applied in various engineering and scientific 
fields. Using the multigrid method as a ROM is not new. Specifically, the auxiliary algebraic equations are often utilized for 
upscaling [96,97] and data homogenization [98]. However, the opposite process, i.e., to prolongate a high fidelity solution 
on the finest level using a smaller system that includes reduced data, is yet to be investigated.

In this paper, we present a novel multiscale multigrid solver, preconditioner and ROM based on a multiresolution image-
driven model developed in our previous work [25]. First, we develop an image-based multiscale multigrid solver for systems 
of equations associated with highly heterogeneous coefficients. This solver innovatively makes use of the image-based mul-
tiscale scheme (i.e., LODs) [25], which removes the simplistic assumptions often made when formulating the inter-grid 
operators [56,57]. Second, we develop an image-based multiscale preconditioner which utilizes the geometrical coarse scale 
problem. This results in a much simpler formulation, saves the computational time, and reduces data storage on the inter-
mediate levels. Third, we develop an image-based reduced order model (IROM), where we obtain a fine-scale approximation 
by upscaling the solution on the coarse level. This greatly reduces the operation counts and memory requirements. To 
demonstrate our approach, we create a multilevel image series of a 2D heterogeneous domain from real material data (i.e., 
discrete material micrographs) [25,73], and solve the corresponding 2D elliptic problem on the finest level. The performance 
of our image-based multiscale multigrid solver is close to the theoretical optimum and is robust at the high coefficient 
contrast. The image-based multiscale preconditioner greatly reduces the condition number, thus significantly accelerates the 
CG convergence. The IROM greatly reduces the number of DOFs and captures the solution characteristics at the same time.

The rest of this paper is organized as follows. In Section 2, we describe the image-based multiscale model. In Section 3, 
we derive the image-based multiscale multigrid solver. In Section 4, we discuss the image-based multiscale preconditioner. 
In Section 5, we describe the IROM. In Section 6, we present numerical results. Finally, we draw conclusions in Section 7.
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2. Image-based multiscale model

To develop the efficient multiscale multigrid solver, we use an image-based (i.e., data-driven) paradigm. In particular, 
we utilize the sharp volumetric billboard (SVB) model originally proposed by Yushu et al., [25]. The SVB data compression 
method is built from experimental microstructures. It exhibits superior statistical and numerical characteristics, and is well 
tailored to guide the multigrid data flow.

In this study, a two-dimensional (2D) problem is considered to establish the theoretical background. Fig. 1 shows a series 
of SVB-LODs, or just simply LODs, created by sequentially applying two filters: i) the down-sampling filter Fd and ii) the 
sharpening filter Fs . A series of SVB-LODs is produced by repeating this procedure until the coarsest LOD, V L , is obtained. 
Mathematically, we denote the lth LOD image by a two-dimensional container, V l , which stores greyscale values associated 
with the digital image. We denote (·)l , l ∈ {0, 1, ..., L}, as an identifier for LOD, where L represents the coarsest LOD. Note L
is a user defined parameter and does not necessarily lead to a single element LOD case. To index the greyscale values, we 
use spatial indexes i and j which satisfy i, j ∈ [1, Hl], where Hl is the size of the image in terms of the pixel number along 
one side. In our case, the image sizes along two directions are chosen to be equal.

The down-sampling filter (Fd) is a linear filter commonly used for image compression [25,99,100]. The sharpening filter 
(Fs) is developed in [25] to reconstruct the original phase contrast. In short, this filter creates the lth SVB-LOD microstruc-
tures by approximately solving

Minimize:
∑
ρ

∣∣∣P l (ρ) − P 0 (ρ)

∣∣∣ ,
Subject to:

∣∣∣V l
i j − V̂ l

i j

∣∣∣ ≤ d, ∀i, j ∈ [1, Hl],
(1)

where P l is the greyscale probability mass function (PMF) of V l , V̂ l is the intermediate image after down-sampling and 
before sharpening, d > 0 is a prescribed maximum range of the greyscale value interchange for every pixel (in this work, 
we use d = 1), and ρ ∈ [0, 255] is the greyscale value that is related to the material density. A novel numerical algorithm is 
described in [25] to solve Eq. (1) by matching the greyscale value PMF through a fast sweeping strategy with local volume 
preservation. Using the SVB method, a series of compressed images (SVB-LODs) are created from the original data (i.e., the 
experimental micrographs) with a minimal loss of the microstructural information. After establishing the SVB series, the 
Otsu’s method [101] is utilized to binarize the greyscale images, thereby separating the phases. More details on SVB-LOD 
construction can be found in [25].

In this work, we created the SVB-LODs from experimental data of Ni/Al high energy ball milled composites [25,73]. 
The SVB images employed in this work are the 0th – 3rd LODs. A series of SVB microstructures is shown in Fig. 2. The 
associated parameters are listed in Table 1. Note that these microstructures are from a real physical system, meaning the 
original irregular and tortuous morphology is unaltered. This results in an increased amount of phase boundaries with 
a sharp change in the coefficient contrast. This also implies significantly increased numerical difficulty for convergence, 
compared to geometries employed in [98,102,103].

2.1. SVB mapping to grids

The SVB hierarchy provides geometrical and physical/material information in all intermediate levels, which are usually 
missed in multigrid methods for random microstructures that have been developed so far [57,77]. The correspondence of 
one image and one grid is shown in Fig. 3. One binarized image of the lth SVB-LOD is shown in Fig. 3(a). This binarized lth 
SVB-LOD image contains binary values ρ̄ ∈ {0, 1}. Here, ρ̄ = 0 indicates the black color and ρ̄ = 1 indicates the white color. 
As described earlier in this section, the image size is Hl × Hl in terms of pixel number. Each pixel represents a squared 
material element, as depicted in Fig. 3(b). It is then natural to differentiate the two material domains on the lth LOD by

�l
1=

{
(i, j)|V l

i j = 0, i, j ∈ [1, Hl]
}

,

�l
2=

{
(i, j)|V l

i j = 1, i, j ∈ [1, Hl]
}

,
(2)

where the black domain is denoted by �l
1 and the white domain is denoted by �l

2, respectively.
One pixel inside of the image corresponds to one element in the numerical analysis. Accordingly, the material coefficients 

(e.g., thermal conductivity) vary based on which phase the element lies in. Thus, a discrete coefficient field is obtained for 
each member of the SVB-LODs. We denote this discrete material coefficient of the lth SVB-LOD by κ l . The coefficient inside 
the element (i, j) of the lth SVB-LOD image is therefore denoted by κ l

i, j (see Fig. 3(c)), where

κ l
i, j =

{
κ1, if (i, j) ∈ �l

1,

κ2, if (i, j) ∈ �l .
(3)
2
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Fig. 1. Schematic of creating SVB-LODs using the approach presented in [25].

Fig. 2. The SVB microstructures of a Ni/Al high energy ball milled composite from different LODs. The Al phase is shown in black. The Ni phase is shown in 
white. (a) – (d) show 0th to 3rd LOD microstructures, respectively.

Table 1
Parameters of the 0th – 3rd SVB-LOD microstructures and the corresponding grids.

LOD 
l

Physical size 
[μm2]

Number of elements 
Hl × Hl

Grid spacing 
�hl [nm]

Compression 
ratio

0 7.68 × 7.68 512 × 512 15 –
1 7.68 × 7.68 256 × 256 30 4
2 7.68 × 7.68 128 × 128 60 16
3 7.68 × 7.68 64 × 64 120 64

Fig. 3. Mapping of one binary SVB image to a structured grid. (a) The lth binary SVB-LOD image, V l . (b) The corresponding lth level structured Hl × Hl

grid. (c) Part of the grid with a discrete material coefficient, κ l
i, j .

Note that for the sake of making the notation system clean, we simply employ the same index for the element and the 
node. Particularly, the element (i, j) and the node that is located at the top right corner of this element share the same 
index (see Fig. 3(c)). In this way, the index is dependent on the type of variable, i.e., a cell variable or a nodal variable. 
This indexing rule also contains information about the relative distance among different types of variables. By making the 
image sizes as Hl−1 = 2Hl , the series of images can be mapped to a hierarchy of structured grids, which can then be easily 
employed in a multigrid solver.

It is straightforward to map the SVB images to a series of systems of algebraic equations if we use numerical discretiza-
tions implied at each image level independently. In fact, solutions from these images closely reflect and converge to the 
solution on the finest level (i.e., the 0th LOD), as shown in [25]. We denote the equations obtained from the SVB images as
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AlU l = Ql, l ∈ {0,1, ..., L}, (4)

where Al ∈ RMl×Ml
is a typical coefficient matrix, U l ∈ RMl

is the solution vector, and Ql ∈ RMl
is the forcing term. We 

will utilize this multiscale model to our advantage when developing the image-based multiscale multigrid solver, precondi-
tioner, and the ROM.

3. Image-based multiscale multigrid solver

In this study, we choose to solve an elliptic problem [57,58]. For this purpose, we consider the following boundary value 
problem

∇ · (κ(x)∇u(x)) =Q (x) in �,

u(x) =ū(x) on ∂�,
(5)

where � is composed of two distinct phases, � = �1 ∪ �2, �1 ∩ �2 = ∅ (see Fig. 3). The κ(x) is a piecewise scalar field:

κ(x) =
{
κ1, if x ∈ �1,

κ2, if x ∈ �2.
(6)

Using the standard Galerkin finite element formulation [26], the above boundary value problem can be expressed as a 
system of linear equations

Au = Q , A ∈RM×M , u ∈RM , Q ∈RM , (7)

where A is a symmetric positive definite sparse matrix, u is the solution vector, and Q is the forcing term. In this case, M
denotes the number of DOFs or, equivalently, the number of nodes.

In order to solve this problem, we link the multigrid method with our image-based multiscale model. Specifically, we 
utilize the multiscale images to provide reliable microstructural information on the coarser levels during the restriction 
and prolongation processes. As a result, the multigrid method takes advantage of the coarse level information from LODs. 
Meanwhile, the multiscale images get connected through multigrid components. A schematic of this strategy is shown in 
Fig. 4.

To demonstrate this point and motivate our image-based multiscale multigrid algorithm, we first highlight the key com-
ponents of a multigrid algorithm in Section 3.1 and then discuss the novel image-based inter-grid operator in Section 3.2.

3.1. Multigrid principles

The multigrid method is generally referred to as the type of numerical algorithm that solves a system of algebraic 
equations utilizing a hierarchy of grids [32,34,104]. In the multigrid setting, Eq. (7) becomes

Alul = Q l, (8)

on the lth grid, where Al ∈ RMl×Ml
, ul ∈ RMl

, Q l ∈ RMl
and l ∈ {0, 1, ..., L}. Here, the algebraic coarsening of a typical 

algebraic multigrid method is utilized to compute the system of equations on coarser levels (i.e., 1 ≤ l ≤ L). Thus, the coarse 
coefficient matrices are computed algebraically following the Galerkin condition [98,104]

Al+1 = Rl+1
l Al P l

l+1, (9)

where Rl+1
l ∈RMl+1×Ml

and P l
l+1 ∈RMl×Ml+1

are the inter-grid operators. The operators relate individual grids as:

Rl+1
l = Restriction operator, grid l 	→ grid l + 1,

P l
l+1 = Prolongation operator, grid l + 1 	→ grid l.

As is often the case, Al = (Al)ᵀ, ∀l ∈ {0, 1, ..., L}, which requires

P l
l+1 = (Rl+1

l )ᵀ. (10)

Note that in this work, we focus on the algebraic multigrid. The geometric multigrid is traditionally avoided while solving 
Eq. (5) with fluctuating coefficients due to the complexity in approximating the smooth component of the solution using 
subsequent coarser grids [57,71]. In our case, even with the coarse level SVB approximations (i.e., sequence of LODs) [25], 
the geometrical multigrid is still not preferable. This is because the construction of the geometric multigrid solver for 
problems with complex microstructures (see Fig. 2) is computationally more intensive than solving the original problem. 
Specifically, the admissible Rl+1 and P l need to satisfy
l l+1
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Fig. 4. A schematic of the image-based multiscale multigrid solver. (a) Grid levels and a corresponding multigrid cycle. (b) Image levels from the SVB model 
(see Section 2 and Fig. 2).

Al+1 − Rl+1
l Al P l

l+1 = 0, ∀l ∈ {0, ..., L − 1}, (11)

which results in 
∑L

l=1 Ml
(
Ml + 1

)
/2 non-linear equations to be iteratively solved, considering the symmetry of Al (see 

Eq. (4)) and Eq. (10). This implies increased complexity compared to solving Ml=0 unknowns from the original linear prob-
lem (i.e., Eq. (7)).

In this work, we employ the V-cycle multigrid (see Fig. 4(a)). The key steps of a multigrid V-cycle are described in 
Algorithm 1. The user defined parameters are the number of smoothing iterations (ν), the multigrid depth (L), and the 
smoothing algorithm (S l and F l).

Algorithm 1 V-cycle multigrid: ul ←MG(ul, Al, Q l, L, ν).
1: if the coarsest grid is reached, (l = L) then

2: Direct solve, ul ←
(

Al
)−1

Q l

3: else
4: Apply smoothing ν times, ul ← S l ul + F l Q l

5: Apply restriction, Q l+1 ← Rl+1
l ( Q l − Al ul)

6: Initialize, el+1 ← 0
7: Update, el+1 ← MG(el+1, Al+1, Q l+1, L, ν)

8: Apply prolongation, el ← P l
l+1el+1

9: Apply correction, ul ← ul + el

10: Apply smoothing ν times, ul ← S l ul + F l Q l

3.2. Image-based inter-grid operator

To prevent the multigrid solver from severe stagnation caused by the oscillatory coefficients in Eq. (6), we have de-
signed a novel image-based inter-grid operator. This operator employs the multiscale information flow from SVB (see Figs. 2
and 4), resulting in a more accurate mapping of variables among grids. This inter-grid operator is built through a two-stage 
approach: i) the approximation stage and ii) the refinement stage. Accordingly, prolongation of the error between two grids 
(see Algorithm 1 Line 8) is decomposed into:

Approximation ẽl ←Pael+1, (12a)

Refinement el ←Pr ẽl
. (12b)

Here, el+1 is the known coarse grid error, el is the fine grid error to be obtained through prolongation, and ẽl is an 
approximate error that is close to el . In order to compute ẽl , a linear operator containing weights from SVB multiscale images 
(Pa ∈ RMl×Ml+1

) is constructed. Next, the refinement operator Pr ∈ RMl×Ml
is created to refine ẽl . Thus, the prolongation 

operator satisfies:

P l
l+1 = PrPa. (13)

Since the explicit expressions for Pa and Pr are not intuitive, we describe both operators by showing the calculation of 
each component.

During the approximation stage (see Eq. (12a)), ẽl is computed through the multiscale image (see Figs. 2 and 3). To 
compute the weights in Pa , four computational strategies are considered depending on the location of the fine node relative 
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Fig. 5. The image-based inter-grid operator scheme. The solid lines ( ) denote the coarse grid. The dotted lines ( ) denote the fine grid. The circle 
(●) marks the nodal value to be prolongated, whose indexes are denoted using (·, ·). The square (■) marks the nodal value known from the coarse grid, 
whose indexes are denoted using [·, ·]. The κ l

i, j is the element-wise material property acquired from the lth SVB-LOD microstructure (see Eq. (3)).

to the coarse grid. The location types are (a) coarse grid nodes, (b) center of the horizontal coarse grid lines, (c) center of 
the vertical coarse grid lines, and (d) center of the coarse element. Each type corresponds to a subplot in Fig. 5 and is 
represented by a 2 × 2 fine grid window centered by the nodal value to be obtained (node (i, j)).

When the fine grid node coincides with the coarse grid node (see Fig. 5(a)), we get

ẽl
i, j = el+1

i/2, j/2. (14)

Note that indexes above follow Fig. 3(b) and denote an identical spacial location in both the lth grid and the (l + 1)th grid. 
When the fine node is located at the center of the horizontal coarse grid line (see Fig. 5(b)), we write

ẽl
i, j = W l

i, je
l+1
(i−1)/2, j/2 + El

i, je
l+1
(i+1)/2, j/2, (15)

where W l
i, j and El

i, j are weights calculated from

W l
i, j = κ l

i−1, j + κ l
i−1, j−1

dl
i, j

, El
i, j = κ l

i, j + κ l
i, j−1

dl
i, j

. (16)

Here we define dl
i, j = κ l

i−1, j + κ l
i, j + κ l

i−1, j−1 + κ l
i, j−1, W l

i, j and El
i, j represent the weight from the west and the east (i.e., 

compass based nomenclature) of the node (i, j), respectively. Note that material coefficients κ l
i j are obtained directly from 

the lth SVB-LOD microstructure (see Eq. (3)). Similarly, for the case shown in Fig. 5(c), we have

ẽl
i, j = Nl

i, je
l+1
i/2,( j+1)/2 + Sl

i, je
l+1
i/2,( j−1)/2, (17)

where

Nl
i, j = κ l

i−1, j + κ l
i, j

di, j
, Sl

i, j = κ l
i−1, j−1 + κ l

i, j−1

di, j
. (18)

When the fine grid node is located at the center of the coarse grid element (see Fig. 5(d)), we get

ẽl
i, j = NW l

i, je
l+1
(i−1)/2,( j+1)/2 + N El

i, je
l+1
(i+1)/2,( j+1)/2

+SW l
i, je

l+1
(i−1)/2,( j−1)/2 + S El

i, je
l+1
(i+1)/2,( j−1)/2,

(19)

and the weights are
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NW l
i, j = 1

2
(Nl

i, j W
l
i, j+1 + W l

i, j N
l
i−1, j), N El

i, j = 1

2
(El

i, j N
l
i+1, j + Nl

i, j El
i, j+1),

SW l
i, j = 1

2
(W l

i, j Sl
i−1, j + Sl

i, j W
l
i, j−1), S El

i, j = 1

2
(Sl

i, j El
i, j−1 + El

i, j Sl
i+1, j).

(20)

Note again that in the approximation stage, the material coefficients κ l
i, j (e.g., thermal conductivities) are obtained directly 

from the SVB-LOD images (see Fig. 2 and Eq. (3)). Thus, the approximation stage has the geometric character of the error 
transfer. This is different from the black-box prolongation and restriction operators [56–59,98] which do not have access to 
the individual microstructural levels (see Figs. 2 and 3).

With known ẽl from the first stage (i.e., approximation), we can express el with respect to its neighboring approximate 
error components by utilizing the residual equation (see Eq. (12b)). We name this process as the refinement stage, which is 
mathematically expressed as

el
α = − 1

Al
αα

∑
β∈[1,α)∪(α,Ml]

Al
αβ ẽl

β, ∀α ∈ [1, Ml], (21)

where Al
αβ is computed recursively from Eq. (9) starting form A0, α and β ∈ [1, Ml] are the row and column indexes, 

respectively. Note that the subscript α ←→ (i, j) depends on the numbering of the nodes. The above equation couples each 
nodal error component with their neighboring approximate error components, as a result of the finite element discretization. 
Thus, the refinement stage has the algebraic character of the error transfer. Moreover, Eq. (21) weakly preserves the flux 
continuity as shown in [98]. We call this a refinement stage because it is a close approximation of

Ml∑
β=1

Al
αβel

β = 0, ∀α ∈ [1, Ml]. (22)

Equation (22) would yield an ideal prolongation and the residual would approach zero. Substituting Eqs. (14), (15), (17)
and (19) into Eq. (21) results in the formulation of the novel image-based prolongation operator, P l

l+1 = PrPa . Knowing 
the prolongation operator, the restriction operator can be acquired by simply taking the transpose (see Eq. (10)). With this 
new image-based inter-grid operator, we obtain the image-based multiscale multigrid solver.

Our formulation remedies the matrix-dependent approaches [56–58,98] by eliminating the simplistic assumption that 
error components are equal along the coarse grid lines. At the same time, the geometrical (i.e., image-based) information 
is utilized to provide a more realistic and physically meaningful approximation for the system of equations between grids 
as will be shown in Section 6.1. In addition, this formulation preserves the continuity of the flux (e.g., the heat flux) and 
satisfies Eq. (5) on the fine grid. In order to keep the discussion concise, the proof of the flux continuity is included in 
Appendix A.

3.3. Convergence rate estimates

The asymptotic convergence rate of the V-cycle multigrid (Algorithm 1) can be estimated as follows


 = − log10

(
λmax

(
Ml

))
, (23)

where 
 represents the lower estimate of the convergence rate in terms of digits per iteration, Ml ∈ RMl×Ml
denotes the 

iteration operator of the multigrid algorithm (see Appendix B), the λmax(·) denotes the spectral radius [105,106], and

λmax

(
Ml

)
= max{|λ| : λ is the eigenvalue of Ml}. (24)

It can be shown that Eq. (23) is a lower bound of the actual convergence rate, i.e.,


 ≤ −log10

( ||εl
n+1||

||εl
n||

)
, (25)

where || · || denotes the L2-norm and εl
n denotes the error vector after the nth iteration. The proof of Eq. (25) is included in 

Appendix B.

4. Image-based multiscale preconditioner

The general idea of a preconditioning procedure for iterative solvers is to modify the system of algebraic equations 
(Eq. (7)) such that it is well conditioned. Different from other classical multigrid preconditioners, in our work, we prolongate 
the coarse problem directly from SVB images (see Fig. 2) to formulate a preconditioner for the fine grid problem. This 
image-based multiscale preconditioner has the following definition
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Fig. 6. A schematic of the multiscale preconditioners. (a) A typical multigrid preconditioner and associated algebraic coefficient matrices. (b) The image-
based multiscale preconditioner and associated geometric coefficient matrices. The solid arrow (→) denotes the process of using finite element method on 
a certain SVB-LOD microstructure to obtain a geometric system (i.e., Eqs. (4) and (27)). The dashed arrow (���) denotes the process of algebraic coarsening 
following Eq. (9).

M−1
S (L) =

(
L−1∏
l=0

P l
l+1

)(
AL

)−1
(

L−1∏
l=0

R L−l
L−l−1

)
+

(
diag(A0)

)−1
, (26)

where L > 1, M−1
S (L) ∈RM0×M0

is the preconditioner on the finest (0th) level, P l
l+1 and Rl+1

l are the image-based inter-grid 
operators (see Section 3.2). The matrix AL (see Eq. (4)) is the traditional positive definite matrix obtained from the finite 
element method

AL =
∫
�

Bᵀκ LB d�, (27)

where κ L is from the Lth SVB-LOD microstructure (Section 2 and Eq. (3)) and B is the spatial gradient matrix (i.e., the 

derivatives of shape functions). Here, we compute 
(
AL

)−1
using a direct LDLᵀ solver [107]. Different iterative techniques 

are also possible.
There are several remarks about this formulation. First, this preconditioner is written as a summation of the coarse 

and the fine level parts. The former is the approximate inverse obtained from the prolongation of the coarsest level. The 
latter is the inverse of the finest diagonal matrix, which is utilized as a regularization term in order to retain the positive-
definiteness of the preconditioner. Second, it should be noted that AL ( �= AL ) arises from the numerical discretization and 
integration utilizing the Lth level image (Eqs. (4) and (27)), not from the algebraic computations following Eq. (9). These 
characteristics imply that instead of traversing through all coefficient matrices on all intermediate levels, only the diagonal 
of the finest coefficient matrix and the coarsest coefficient matrix will be utilized to compute the preconditioner. This fea-
ture is demonstrated in Fig. 6, where intermediate levels are bypassed for the novel image-based multiscale preconditioner 
(Fig. 6(b)), while classical multigrid preconditioners need to iterate through every intermediate levels (Fig. 6(a)). This direct 
LOD access leads to the computational speedup as shown in Section 6.3.

5. Image-based reduced order model

Early work using Eq. (4) has shown that SVB microstructures preserve statistical and physical solution characteristics 
with high data compression [25]. Moreover, with the new image-based inter-grid operators (Section 3.2), we are able to 
guide the mapping of variables between grids with increased accuracy. As a result, we can develop the IROM that utilizes 
the coarse grid solution to extrapolate the solution on the fine grid. A schematic of this IROM is shown in Fig. 7.

This process can be mathematically described as

uS(L) =
(

L−1∏
l=0

P l
l+1

)
U L, (28)

where L ≥ 1, uS (L) ∈RM0
represents the approximate solution on the finest (0th) level, P l

l+1 is the image-based prolonga-

tion operator (see Section 3.2), and U L is the coarse level solution from Eq. (4). In this work, we compute U L from Eq. (4)
by

U L =
(
AL

)−1
QL . (29)

Here, QL is the forcing vector obtained from the finite element method,
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Fig. 7. A schematic of the IROM. The solid arrow (→) denotes the process of using the finite element method on a certain SVB-LOD microstructure to obtain 
a geometric system (i.e., Eq. (4)).

QL =
∫
�

N Q d�, (30)

where N is the matrix of shape functions and Q is the source term from Eq. (5). Again, we utilize a direct LDLᵀ solver [107]
to invert AL in Eq. (29), but different (i.e., iterative) solution methods can be utilized.

Using Eq. (28), the original fine problem is transferred to a coarse one that has reduced number of elements (see 
Table 1). In this way, the computation cost is significantly reduced. Moreover, with the new image-based inter-grid operator, 
microstructural information is conveyed through the mapping of variables between grids. Therefore, missing information 
during data compression provided by the reduced system, Eq. (29), is largely recovered through the prolongation of the 
coarse solution field. A solution field obtained on a coarser level can therefore gain improved accuracy through our novel 
prolongation based IROM.

6. Numerical example

In this section, we present numerical results of the image-based multiscale multigrid solver, preconditioner, and IROM 
described in Sections 3 to 5, respectively. As an illustration, we solve Eq. (5) in a heterogeneous domain � (see Fig. 2). We 
choose Q (x) = 1.0 in � and ū(x) = 0 on ∂�. All fields are unitless for simplicity. The coefficient κ1 = 1.0, and κ2 ranges 
between 1 and 10000 to examine sufficient variability in the coefficient contrast. The goal is to solve Eq. (7) using the finest 
finite element discretization, i.e., A0u0 = Q 0 (Eq. (8)) or equivalently A0U0 = Q0 (Eq. (4)). Traditional bi-linear quadrilat-
eral finite elements are utilized [26]. All of our implementations have been done utilizing the C++ package Eigen [107]. The 
1st-3rd SVB-LOD images (see Fig. 2) are employed as auxiliary LODs. We consider the solution to be converged if

||rn||
||r0|| < 10−6, (31)

where r0 is the initial residual vector, rn is the residual vector after the nth iteration, and the || · || denotes the Euclidean 
norm.

In order to evaluate the efficiency of our algorithms, we show the speedup for the image-based multiscale multigrid 
solver (Section 6.2) as well as the image-based multiscale preconditioner (Section 6.3). The speedup is computed as

Speedup = tref

t
, (32)

where tref denotes the computer time spent by the reference algorithm and the t denotes the computer time spent by 
novel algorithms. The reference algorithm is chosen among the most fundamental algorithms for easy comparison. We use 
speedup instead of the actual computer time in order to limit effects of the software implementation and the hardware 
architecture. In this paper, we show the average speedup of 10 runs. The maximum coefficient of variation is 3.46%.

6.1. Numerical characteristics of the image-based inter-grid operator

In this section, we show the numerical properties of the image-based inter-grid operator (see Section 3.2) and compare 
them to the properties of the inter-grid operator employed in the black-box multigrid method [56–59,98]. The black-box 
multigrid employs matrix-dependent inter-grid operators that are computed from the finest coefficient matrix. This method 
has been considered the state-of-art for the targeted problem. We denote our image-based multiscale multigrid method by 
MG S (L). Similarly, the black-box multigrid is denoted by MGBox(L). We show the matrix properties of the 0th – 3rd grid 
(i.e., 0 ≤ l ≤ 3) for both methods. The properties are shown with κ2/κ1 = 10000.

In Table 2, we list the numerical properties of P l−1
l and Al with 0 ≤ l ≤ 3 for both MG S (L) and MGBox(L) methods. To 

assess the quality of the coarse coefficient matrices, we utilize both the spectral norm, || · ||2, and the distance correlation 
coefficient, dCor(·, ·), which is a measure of dependence between two random objects/matrices of arbitrary, not necessarily 
equal, dimension. It can be seen that the ||P l−1||2 values from MG S (L) and MGBox(L) are significantly different from 
l
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Table 2
The numerical properties of P l−1

l and Al . The results are shown for both MG S (L) and MGBox(L) methods. 
The || · ||2 denotes the spectral norm of a matrix [108]. The dCor(·, ·) denotes the distance correlation coefficient 
between two matrices [109,110]. Here, the ||Al||2 and ||A0||2 are shown for comparison.

l ||Al ||2 MG S (L) MGBox(L)

||P l−1
l ||2 ||Al||2 dCor(Al , A0) ||P l−1

l ||2 ||Al||2 dCor(Al , A0)

0 3.944 × 104 – 3.944 × 104 1.0 – 3.944 × 104 1.0
1 3.853 × 104 3.870 3.937 × 104 0.992 2.999 3.856 × 104 0.989
2 3.761 × 104 4.366 3.826 × 104 0.967 2.878 3.940 × 104 0.960
3 3.397 × 104 6.970 3.693 × 104 0.860 18.754 3.349 × 104 0.823

Table 3
The memory use in terms of number of nonzeros (i.e., nnz(·)) in matrices P l−1

l and Al . 
The results are shown for both MG S (L) and MGBox(L) methods. Here, the nnz

(
A0

)
is shown as a reference.

l MG S (L) MGBox(L)

nnz(P l−1
l ) nnz(Al) nnz(P l−1

l ) nnz(Al)

0 – 2.346 × 106 – 2.346 × 106

1 1.104 × 106 1.611 × 106 5.914 × 105 5.914 × 105

2 6.538 × 105 1.258 × 106 1.482 × 105 1.482 × 105

3 3.034 × 105 7.084 × 105 3.725 × 104 3.725 × 104

each other for all l values. This is because of the difference in our image-based approach (see Section 3.2) compared 
to the matrix-dependent approach (see [56–59,98]). Table 2 shows that ||Al||2 values for MG S (L) are closer to ||A0||2
compared to MGBox(L). Similarly, the dCor(Al , A0) values for MG S (L) are closer to 1.0 compared to MGBox(L) for all 
grid levels. This indicates that the coarse systems from MG S(L) (i.e., Al , l ∈ {1, 2, 3}) are statistically/numerically similar or 
closer to the original system (i.e., A0) than those produced by MGBox(L). Thus, MG S (L) preserves the original property 
of the original system better than MGBox(L) (see Table 2). Moreover, one can see that ||Al||2 from MG S(L) converges to 
||A0||2 monotonically as do the matrices of the level-wise problems (i.e., Al from Eq. (4)). However, MGBox(L) results in 
nonmonotonic characteristics in terms of the spectral norm, which are less physical due to its heuristic construction.

In Table 3, we compare the memory usage for MG S(L) and MGBox(L) methods. Specifically, the nonzeros of the matri-
ces P l−1

l and Al , 0 ≤ l ≤ 3 are listed. The nnz(A0) is shown as a reference. Table 3 shows that the image-based inter-grid 
operator of MG S (L) is generally more dense than the inter-grid operator of MGBox(L). This is because the image-based 
approach does not assume the correlation of the error components nor lumps the coefficient matrix (see Eq. (21)). As a 
result, the Al of MG S (L) is more dense than that of MGBox(L) for all l values (see Eq. (9)).

6.2. Image-based multiscale multigrid solver

In this section, we show the performance of the image-based multiscale multigrid solver described in Section 3. As a 
comparison, we also show the performance of the black-box multigrid method [56–59,98]. For all the schemes, we employ 
the Gauss Seidel method as a smoother. We choose ν = 5 to ensure sufficient smoothing while preventing the smoothing 
procedure from dominating the computation. For simplicity, we start multigrid iterations with the zero initial solution 
vector. Here, we denote the bilinear multigrid by MGB(L). As a demonstration, we show the performance of all multigrid 
methods for L ∈ {1, 2, 3}, respectively. For each case, we show the performance with κ2/κ1 ∈ {10, 100, 1000, 10000}.

Fig. 8 shows the lower bound of the convergence rate, 
, with the varying coefficient contrast for MG S(1), MGBox(1), 
and MGB(1), respectively. We show that MG S (1) has the largest 
 (i.e., the best estimated convergence rate) for all 
coefficient contrasts among all solvers. Moreover, the convergence rate estimate of MG S(1) does not significantly decrease 
with the coefficient contrast, especially when κ2/κ1 ≥ 100. As a comparison, MGBox(1) exhibits smaller convergence rate 
than MG S(1) for all heterogeneous coefficients (κ2/κ1 �= 1). As expected, the MGB(1) has the lowest convergence rate 
estimate, which significantly decreases with the increased coefficient contrast and leads to a high degree of stagnation. 
Therefore, in what follows we will compare only MG S(L) and MGBox(L) and omit the performance of MGB(L).

Fig. 9 shows the relative residual of the one auxiliary grid solvers MG S(1) and MGBox(1) with varying coefficient 
contrast as a function of the iteration number. The result with constant coefficients (κ2/κ1 = 1) is shown in gray color 
to demonstrate the optimal convergence rate [32,111] for this case. It is indicated in Fig. 9(a) that MG S (1) converges 
to the solution within 5 iterations despite drastic change of κ2/κ1. The convergence rate of MG S (1) decreases slightly 
with the increase of κ2/κ1. However, this phenomenon is not significant, especially in the case when κ2/κ1 ≥ 100 (see 
Fig. 8 also). This shows the robustness of MG S(1) to resolve problems with highly fluctuating coefficients. Moreover, the 
convergence rate is close to the constant coefficient case (i.e., κ2/κ1 = 1). Therefore, MG S(1) is very close to the theoretical 
optimum. The performance of MGBox(1) is shown in Fig. 9(b). It can be seen that MGBox(1) converges to the solution 
within 9 iterations for all κ2/κ1. However, comparing MG S (1) and MGBox(1), one can see the slower convergence rate of 
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Fig. 8. The lower bound of the convergence rate, 
, as a function of the coefficient contrast. The result is shown for the MGS (1), MGBox(1), and MGB (1), 
respectively.

Fig. 9. The relative residual as a function of the iteration number with varying κ2/κ1. (a) The one auxiliary grid MG S (1) solver. (b) The one auxiliary grid 
MGBox(1) solver.

Fig. 10. The performance of MG S (L), L ∈ {1, 2, 3} with the varying coefficient contrast. (a) Iteration number required to solve the problem. (b) Speedup of 
the MG S (L) and MGBox(L).

MGBox(1) for all κ2/κ1 values (see Fig. 8 also). Moreover, MGBox(1) is more sensitive to the increased coefficient contrast, 
i.e., the convergence rate decreases with the increase of the coefficient contrast.

The number of iterations required to converge to the solution utilizing MG S (L), L ∈ {1, 2, 3}, is shown in Fig. 10(a) in 
terms of the coefficient contrast. The performance of MGBox(L) is shown in gray color as a reference. It can be concluded 
that the image-based multiscale multigrid solver generally performs better than the black-box multigrid solver regardless of 
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Table 4
The performance of MG S (L) and MGBox(L), L ∈ {1, 2, 3}, with the varying coefficient 
contrast. The iteration number required to solve the problem and the speedup are 
shown for both methods.

L κ2/κ1 MG S MGBox

Iteration Speedup Iteration Speedup

1 101 4 0.765 5 0.822
102 5 2.404 8 2.014
103 5 20.802 9 15.994
104 5 204.477 9 158.844

2 101 5 0.768 6 0.895
102 13 1.413 20 1.052
103 103 1.584 184 1.060
104 871 1.606 1817 1.080

3 101 6 0.851 6 –
102 15 1.390 22 –
103 112 1.583 193 –
104 952 1.607 1915 –

the multigrid depth. It is shown that MG S (1) has the optimal performance among all the depths (i.e., L = 1, 2, and 3). The 
iteration number is nearly constant with increased κ2/κ1. The MG S(2) and MG S (3) require increased number of iterations, 
and the iteration number increases sublinearly with the coefficient contrast (i.e., the slopes are 0.76 and 0.75, respectively). 
However, MG S (3) requires similar number of iterations to MG S (2), in spite of the increased number of auxiliary grids. 
The number of iterations for both methods is also listed in Table 4. One can see that MG S (L) needs significantly fewer 
number of iterations than MGBox(L) at high coefficient contrasts. Moreover, this advantage becomes more pronounced 
with increased number auxiliary grids (L). For instance, MG S (3) needs 963 fewer iterations than MGBox(3) in the case of 
κ2/κ1 = 10000. This is the result of the image-based properties of the inter-grid operators as demonstrated in Section 6.1
(see Table 2).

The speedup of image-based multiscale multigrid solver is shown in Fig. 10(b) and Table 4. The performance of 
MGBox(L), L ∈ {1, 2}, is shown in gray color as a reference. Here, we measure the speedup using Eq. (32), where the 
computer time of MGBox(3) is taken as the reference. As noted earlier, we use the speedup instead of the actual computer 
time to limit the software and hardware ambiguities. It can be concluded that MG S(L) generally gains larger speedup 
than MGBox(L) at each L. Specifically, MG S (1) gains the most speedup, which grows rapidly with the κ2/κ1 increase. The 
speedup of MG S (2) and MG S (3) is smaller and reaches 1.61, which is still significant numerical acceleration. It can also 
be observed that at the low coefficient contrast, e.g., κ2/κ1 = 10, MG S (L), L ∈ {1, 2, 3} consume longer computer time than 
MGBox(3) (i.e., Speedup < 1). This is because formulating the inter-grid operators for the image-based multiscale multi-
grid solver (see Section 3.2) has increased complexity than that of MGBox(3), which becomes an important factor at low 
κ2/κ1.

6.3. Image-based multiscale preconditioner

To examine the performance of the image-based multiscale preconditioner, we present the number of iterations needed 
for preconditioned conjugate gradient method. Specifically, we show the iteration number using preconditioners with the 
coarse component from different levels, i.e., M−1

S (L), L ∈ {1, 2, 3} (see Fig. 6(b)). As an illustration, the results are also 
shown for varying coefficient contrasts, i.e., κ2/κ1 ∈ {10, 100, 1000, 10000}. The same set of problems are solved using 
the incomplete Cholesky preconditioner (IC), the Jacobi preconditioner (JA), and the black-box multigrid preconditioner 
(MGBox(L), see Fig. 6(a)) as a comparison. The performance of conjugate gradient method with no preconditioning (CG) is 
shown as a reference. The performance is evaluated by the number of iterations, as well as the speedup (see Eq. (32)). Here, 
the computer time of CG is chosen as the reference (tref = tCG). Again, the speedup is chosen over the actual computer time 
to limit the bias from the software implementation and the hardware architecture.

The eigenvalue distributions are shown in Fig. 11. The horizontal axis shows the eigenvalue indexes and the vertical axis 
shows the eigenvalues. The corresponding maximum and minimum eigenvalues are also included in Fig. 11. The eigenvalue 
distribution of A0 is shown in Fig. 11(a). The eigenvalues range between 8.8 × 10−3 and 3.9 × 104 (see Fig. 11(a)), which 
is caused by the significant variance of material coefficients. The eigenvalues with JA are plotted in Fig. 11(b). The large 
eigenvalues are efficiently removed, however, all eigenvalues still scatter in a large range (8.7 × 10−6 − 1.5). The eigen-
values with IC are plotted in Fig. 11(c), which are better distributed than JA and range between 1.2 × 10−4 and 1.6 (see 
Fig. 11).

The eigenvalues of the system with M−1
S (1) preconditioning are shown in Fig. 11(d). It is observed that almost all eigen-

values are clustered around 1 and a few eigenvalues are scattered between 0.84 and 1.0, which indicates a well-conditioned 
system. The eigenvalue distributions with M−1

S (2) and M−1
S (3) preconditioning are shown in Figs. 11(e) and 11(f). The eigen-

values range between 0.19 and 1.0 for L = 2, 3. The matrix eigenvalues with MGBox(L) preconditioning are similar to those 
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Fig. 11. The eigenvalue distribution of the coefficient matrices. The coefficient contrast is κ2/κ1 = 10000. All eigenvalues are displayed in a descending 
order. (a) No preconditioning. (b) Jacobi preconditioning. (c) IC preconditioning. (d) M−1

S (1) preconditioning. (e) M−1
S (2) preconditioning. (f) M−1

S (3) pre-
conditioning.

of M−1
S (L) and are not displayed. The eigenvalues range between 0.98 and 1.0 with L = 1 and between 2.3 × 10−2 and 

1.0 for L = 2, 3. It can be concluded that both M−1
S (L) and MGBox(L) preconditioners have close performance in reducing 

the range of eigenvalues at a certain L, while MGBox(L) is slightly better in redistributing the eigenvalues. However, both 
M−1

S (L) and MGBox(L) preconditioners have greatly reduced the range of eigenvalues compared to IC and JA.
The condition number of the coefficient matrix is shown in Fig. 12 as a function of varying coefficient contrast. It 

can be seen from Fig. 12(a) that the condition number remains almost constant with M−1
S (1) preconditioning despite the 

increase of κ2/κ1. The M−1
S (2) and M−1

S (3) have close performance, while both experience an increase of the condition 
number with the κ2/κ1 increase. Similar phenomenon can be observed for the MG Box(L) preconditioners. The IC results in 
a better-conditioned system than JA in general (see Fig. 12(b)). However, both IC and JA only slightly decrease the condition 
number of the original system, while both M−1

S (L) and MGBox(L) preconditioners have reduced the original condition 
number by orders of magnitude (see Fig. 12(a)). The actual condition numbers of all cases are listed in Table 5.

The performance of preconditioned conjugate gradient method for varying coefficient contrast using M−1
S (L), MGBox(L)

preconditioner (L ∈ {1, 2, 3}), IC, and JA preconditioners is shown in Fig. 13. Specifically, Fig. 13(a) displays that M−1
S (1)

converges to the solution within 6 iterations despite large κ2/κ1 value. The M−1
S (2) and M−1

S (3) are more fragile than 
M−1

S (1) and need increased number of iterations with increased κ2/κ1. However, both preconditioners can readily reduce 
the number of CG iterations by more than 2 orders of magnitude. The MGBox(L) preconditioner requires slightly fewer 
number of iterations than M−1

S (L) for all L values (see Fig. 13(a) and Table 5). Both IC and JA require significantly more 
iterations than M−1

S (L) at all coefficient contrasts (see Fig. 13(b)). This observation is also consistent with the result of the 
condition number shown in Fig. 12(b) and Table 5.

The speedup of the preconditioned CG methods is shown in Fig. 14. It can be concluded that the M−1
S (L), with L ∈

{1, 2, 3} generally gains larger speedup than IC and JA. The speedup of M−1(1) is the most prominent and increases from 
S
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Fig. 12. The condition number of the coefficient matrix before and after preconditioning with varying coefficient contrasts. (a) The M−1
S (L) and MGBox(L)

preconditioners with L ∈ {1, 2, 3}. (b) The IC, JA preconditioners and CG. The condition numbers are also listed in Table 5.

Fig. 13. The number of iterations required to converge to the solution using different preconditioners. The results are shown for a varying coefficient 
contrast. (a) The M−1

S (L) and MGBox(L) preconditioners with L ∈ {1, 2, 3}. (b) The IC, JA preconditioners and CG. The number of iterations are also listed 
in Table 5.

Fig. 14. The speedup of different preconditioners with respect to a varying coefficient contrast. (a) The M−1
S (L) and MGBox(L) preconditioners with 

L ∈ {1, 2, 3}. (b) The IC, and JA preconditioners. The speedup is also listed in Table 5.
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Table 5
The performance of M−1

S (L) and MGBox(L) preconditioner, L ∈ {1, 2, 3}, with the varying coeffi-
cient contrasts. The condition number of the coefficient matrix after preconditioning, the iteration 
number required to solve the problem using preconditioned conjugate gradient method, and the 
speedup are listed for both methods.

L κ2/κ1 M−1
S (L) MGBox(L)

Condition 
number

Iteration Speedup Condition 
number

Iteration Speedup

1 101 1.034 5 26.401 1.016 4 26.907
102 1.106 6 54.856 1.041 5 54.564
103 1.174 6 149.518 1.051 5 125.963
104 1.193 6 395.193 1.053 5 329.764

2 101 1.073 5 38.108 1.051 4 31.781
102 1.332 9 60.519 1.270 7 51.548
103 4.586 19 78.369 2.943 15 62.061
104 39.554 44 92.958 23.347 35 80.141

3 101 1.125 5 40.297 1.098 4 31.077
102 1.618 10 50.908 1.500 8 44.407
103 7.379 26 52.645 5.953 21 49.482
104 52.638 76 52.305 43.382 60 48.406

26.40 to 395.19 with the increase of the coefficient contrast (see also Table 5). The M−1
S (2) and M−1

S (3) have the most 
speedup when κ2/κ1 < 100, while this advantage is taken over by M−1

S (1) when κ2/κ1 ≥ 100. This is because at moderate 

contrast computing 
(
A1

)−1
for M−1

S (1) dominates the computation, while computing 
(
A2

)−1
for M−1

S (2) and 
(
A3

)−1
for 

M−1
S (3) are less demanding. However, at the high contrast, the iteration process dominates for M−1

S (2) and M−1
S (3) while 

it remains constant for M−1
S (1). The MGBox(L) preconditioners gain less speedup than M−1

S (L) for all L. This is because the 
MGBox(L) preconditioners include smoothing steps on all the intermediate levels (see Fig. 6(a)), which make them more 
expensive than M−1

S (L). In addition, the IC exhibits less speedup than M−1
S (L) and MGBox(L) preconditioners, which ranges 

between 10.16 and 14.56. The JA is the slowest and its speedup ranges between 1.52 and 2.50. Again, all the speedup data 
are listed in Table 5 for easy reference.

6.4. Image-based reduced order model

To examine the performance of the IROM, we show the upscaled solution u S (L), where L ∈ {1, 2, 3}. The coefficient 
contrast is kept constant, κ2/κ1 = 10000. The solution fields from the IROM are computed following the descriptions in Sec-
tion 5. As a comparison, we also display the solution on the finest grid (u0 = U0), which is computed by solving Eq. (4)
using a direct LDLᵀ solver [107].

The solution field on the finest grid (u0 = U0) is shown in Fig. 15(a). The solution fields from the IROM (uS(L)) are 
shown in Figs. 15(b) to 15(d), respectively. It can be seen that all of the u S(L), with L ∈ {1, 2, 3} are very close to u0. Fig. 16
shows a detailed comparison among the solution fields from IROM (u S (L)) and the fine grid solution (u0). In particular, 
Figs. 16(a) and 16(b) display the uS(L), L ∈ {1, 2, 3} along the centered horizontal line (y = 3.84 μm) and the centered 
vertical line (x = 3.84 μm), respectively. The u0 is shown in both Figs. 16(a) and 16(b) as a reference. It can be seen that 
all of the uS(L), with L ∈ {1, 2, 3} are generally in good agreement with u0. There is increased error in regions where the 
solution becomes highly oscillatory.

To quantitatively compare the solution fields, we compute the L2-norm of the error

||ε||2 =
√√√√∫

�

(
u0(x) − ũ(x)

)2 d�∫
�

(
u0(x)

)2 d�
× 100%, (33)

where u0(x) is the scalar solution field interpolated from u0 using the finite element shape functions, ũ(x) denotes the 
scalar solution field interpolated either from the IROM (i.e., uS (L) in Eq. (28)) or the SVB images (i.e., U L in Eq. (4)). 
Fig. 17 shows the L2-norm error as a function of the reduced level (i.e., L). As can be seen from Fig. 17, the U L generally 
preserves the solution characteristics well despite the large data compression. Typically, U3 introduces only 9.01% error 
after reducing the number of DOFs 64 times (see Table 1). However the IROM, uS(L) (from Eq. (28)) yields less error than 
U L (from Eq. (4)) with the same compression ratio. As shown in Fig. 17, the uS (1) only introduces 0.16% error and uS(3)

controls the error within 6.72%. This implies that the IROM restore detailed solution characteristics that are filtered during 
direct data compression. For example, in the case of L = 2, the solution uS(2) improves the solution U2 by 5.26%. Note 
that uS (L) can serve as an initial guess to accelerate the multigrid or any other iterative solvers.
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Fig. 15. The extrapolated solution uS (L) with the coefficient contrast κ2/κ1 = 10000. (a) The solution on the 0th SVB-LOD image. The solution field from 
IROM, (b) uS (1), (c) uS (2), (d) uS (3). (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

Fig. 16. The comparison between the fine grid solution and solutions from the IROM. The coefficient contrast is κ2/κ1 = 10000. (a) x = 3.84 μm. (b) 
y = 3.84 μm.

7. Conclusion

In this work, we propose a novel image-based multiscale multigrid solver, preconditioner, and the reduced order model. 
An image-based inter-grid operator is developed via incorporating the microstructural information from the multiresolution 
scheme (i.e., data driven SVB model). A two-stage approach is established for computing the inter-grid operator, which pre-
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Fig. 17. The L2-norm error of the coarse image solutions and the IROM.

serves the flux along the grid lines. This multigrid solver is robust for extreme coefficient contrasts and exhibits near-optimal 
convergence rate.

A new image-based multiscale preconditioner is developed utilizing the coarse SVB image and the image-based inter-grid 
operator. Thus, relaxations on the intermediate grids are omitted, resulting in a simpler formulation and a lighter compu-
tational demand per iteration. This preconditioner shows high efficiency for ill-conditioned systems, and exhibits greatly 
improved performance compared to traditional preconditioners such as the Jacobi and/or the Incomplete Cholesky.

The IROM reduces the number of DOFs by converting the fine level problem to a coarse grid one. It is demonstrated 
that the IROM reduces the error from the geometrical coarse solutions and restores detailed solution characteristics that are 
filtered due to the direct data compression.

This work opens a new possibility for solving a system of linear equations associated with data heterogeneity, which is a 
fundamental problem in a large array of engineering and science disciplines. Moreover, the multiscale image-based approach 
is applicable to other fields such as uncertainty quantification, data compression, and adaptive multiscale modeling. The 
development of the 3D image-based multiscale approach with a larger system size and its parallelization are both important 
future directions.
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Appendix A. The flux conservation by the prolongation operator

In Section 3.2, an approximate error, ẽl , on the fine grid is obtained from the microstructural information from the SVB 
multiscale image (see Eq. (12a)). In this section, we prove that Eqs. (14) to (20) preserves the continuity of the flux in a 
weak (integral) form.

The continuity of normal (x-direction) flux along the central vertical interface (see Fig. 18(a)) yields

lim
x→x−

i

y j+1∫
y j−1

−κ l(x)
∂ ẽl

(x)

∂x
dy = lim

x→x+
i

y j+1∫
y j−1

−κ l(x)
∂ ẽl

(x)

∂x
dy, (34)

where the left and right integrals are approximated by

lim
x→x−

i

y j+1∫
y j−1

−κ l(x)
∂ ẽl

(x)

∂x
dy ≈ −(κ l

i−1, j−1 + κ l
i−1, j)

∂ ẽl
(x)

∂x

∣∣∣∣∣
xi−1/2,y j

�hl,

lim
x→x+

i

y j+1∫
y

−κ l(x)
∂ ẽl

(x)

∂x
dy ≈ −(κ l

i, j−1 + κ l
i, j)

∂ ẽl
(x)

∂x

∣∣∣∣∣
xi+1/2,y j

�hl.

(35)
j−1
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Fig. 18. The schematic of computing ẽl for the image-based inter-grid operator. (a) The flux is continuous across the vertical interface shown in gray color. 
The ▲ marks the virtual nodes at the center of fine grid lines (see Eqs. (35) and (36)). (b) The flux is continuous across the horizontal interface shown in 
gray color. (c) The flux is preserved inside of the coarse cell.

Here, �hl is the grid spacing along both x and y directions and the half indexes (i.e., xi+1/2 and xi−1/2) identify the virtual 
points located at the center of the fine grid lines (see Fig. 18). The derivative in Eq. (35) is evaluated using the forward 
Euler approximation,

∂ ẽl
(x)

∂x

∣∣∣∣∣
xi ,y j

≈ ẽl
i+1/2, j − ẽl

i−1/2, j

�hl
. (36)

Substituting Eqs. (35) and (36) into Eq. (34) yields

ẽl
i, j = (κ l

i−1, j−1 + κ l
i−1, j)ẽl

i−1, j + (κ l
i, j−1 + κ l

i, j)ẽl
i+1, j

κ l
i−1, j−1 + κ l

i−1, j + κ l
i, j−1 + κ l

i, j

, (37)

where ẽl
i−1, j = el+1

(i−1)/2, j/2 and ẽl
i+1, j = el+1

(i+1)/2, j/2, which are computed from the coarse grid value (see Eq. (14)), and the 

coefficients of ẽl
i−1, j and ẽl

i+1, j are identical to that in Eq. (15). To this end, Eq. (37) is equivalent to Eq. (15), which preserves 
continuity of the flux across the vertical interface in Fig. 18(a). Similarly, we can prove that Eq. (17) satisfies

lim
y→y−

j

xi+1∫
xi−1

−κ l(x)
∂ ẽl

(x)

∂ y
dx = lim

y→y+
j

xi+1∫
xi−1

−κ l(x)
∂ ẽl

(x)

∂ y
dx, (38)

which is the continuity condition for y-directional normal flux (see Fig. 18(b)).
For the fine grid nodes located at the center of the coarse cell, we require the preservation of the flux inside of a coarse 

cell (see Fig. 18(c)). This condition can be mathematically described in a weak form∫
�l+1

e

∇ · (κ l(x)∇ ẽl
(x)) d� = 0, (39)

where the integral is evaluated locally in a coarse cell, �l+1
e , centered by a node (i, j). After applying the Divergence 

theorem, we have∮
∂�l+1

e

κ l(x)∇ ẽl
(x) · n d∂� = 0, (40)

where n is the normal vector. Equation (40) is equivalent to

lim
x→x−

i+1

y j+1∫
y j−1

κ l(x)
∂ ẽl

(x)

∂x
dy − lim

x→x+
i−1

y j+1∫
y j−1

κ l(x)
∂ ẽl

(x)

∂x
dy+

lim
y→y−

j+1

xi+1∫
x

κ l(x)
∂ ẽl

(x)

∂ y
dx − lim

y→y+
j−1

xi+1∫
x

κ l(x)
∂ ẽl

(x)

∂ y
dy = 0.

(41)
i−1 i−1
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Here, we approximate the line integral and the derivatives are from Eqs. (35) and (36), respectively. After substituting and 
rearranging, we get

ẽl
i, j = κ l

i, j + κ l
i, j−1

2dl
i, j

ẽl
i+1, j + κ l

i−1, j + κ l
i, j

2dl
i, j

ẽl
i, j+1

+ κ l
i−1, j + κ l

i−1, j−1

2dl
i, j

ẽl
i−1, j + κ l

i−1, j−1 + κ l
i, j−1

2dl
i, j

ẽl
i, j−1,

(42)

where

ẽl
i+1, j = Nl

i+1, je
l+1
(i+1)/2,( j+1)/2 + Sl

i+1, je
l+1
(i+1)/2,( j−1)/2,

ẽl
i−1, j = Nl

i−1, je
l+1
(i−1)/2,( j+1)/2 + Sl

i−1, je
l+1
(i−1)/2,( j−1)/2,

ẽl
i, j+1 = W l

i, j+1el+1
(i−1)/2,( j+1)/2 + El

i, j+1el+1
(i+1)/2,( j+1)/2,

ẽl
i, j−1 = W l

i, j−1el+1
(i−1)/2,( j−1)/2 + El

i, j−1el+1
(i+1)/2,( j−1)/2.

(43)

The error terms in Eq. (43) are obtained from Eqs. (15) and (17), respectively. After substituting Eq. (43) into Eq. (42) and 
rearranging, Eq. (42) is identical to Eq. (19), which implies conservation of the flux in a coarse element.

Appendix B. Convergence rate estimates

In this section, we show that Eq. (23) is the lower bound of the actual convergence rate [32,104]. To do this, we sum-
marize one iteration of the V-cycle multigrid (see Algorithm 1) as

ul
n+1 =Mlul

n +Gl Q l, (44)

where the subscript denotes the iteration number, Ml and Gl ∈ RMl×Ml
are iteration operators according to the multigrid 

algorithm (see Algorithm 1). Typically, in a two-grid setting, the definitions of Ml and Gl are

Ml = S l
(

I l − P l
l+1

(
Al+1

)−1
Rl+1

l Al
)

S l,

Gl = S l
(

I l − P l
l+1

(
Al+1

)−1
Rl+1

l Al
)

F l + S l P l
l+1

(
Al+1

)−1
Rl+1

l + F l,

(45)

where I l ∈RMl×Ml
is the identity matrix, S l and F l ∈ RMl×Ml

are the smoothers from the smoothing algorithm (see Algo-
rithm 1). Typically, the Gauss-Seidel method yields

S l =
(

−
(

diag
(

Al
)

+ tril
(

Al
))−1

triu
(

Al
))ν

,

F l =
(

ν−1∑
n=0

(
−

(
diag

(
Al

)
+ tril

(
Al

))−1
triu

(
Al

))n
)(

diag
(

Al
)

+ tril
(

Al
))−1

,

(46)

where diag(·), tril(·), and triu(·) denote the diagonal, upper triangular, and lower triangular part of the matrix, respectively.
As a stationary iterative method, the exact solution is unchanged by the iteration

ul = Mlul +Gl Q l, (47)

where ul is the exact solution (see Eq. (8)). Subtracting Eq. (44) from Eq. (47) yields

εl
n+1 = Mlεl

n, (48)

where εl
n and εl

n+1 are the error vectors after the nth and the (n + 1)th iterations, respectively. Taking the L2-norm on both 
sides of Eq. (48) gives

||εl
n+1|| = ||Mlεl

n|| ≤ λmax

(
Ml

)
||εl

n||, (49)

where λmax(·) denotes the spectrum radius [105,106]. Equation (49) is equivalent to

λmax

(
Ml

)
≥ ||εl

n+1||
l

. (50)
||εn||
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Therefore, we have


 = −log10

(
λmax

(
Ml

))
≤ −log10

( ||εl
n+1||

||εl
n||

)
, (51)

which sets the lower bound of the convergence rate in terms of digits per iteration.
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