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Since the beginning of the industrial age, material performance and design have been 
in the midst of innovation of many disruptive technologies. Today’s electronics, space, 
medical, transportation, and other industries are enriched by development, design and 
deployment of composite, heterogeneous and multifunctional materials. As a result, 
materials innovation is now considerably outpaced by other aspects from component 
design to product cycle. In this article, we review predictive nonlinear theories for 
multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale 
modeling in space and to computational homogenization in addressing challenging 
materials science questions. Moreover, we discuss a state-of-the-art platform in predictive 
image-based, multiscale modeling with co-designed simulations and experiments that 
executes on the world’s largest supercomputers. Such a modeling framework consists 
of experimental tools, computational methods, and digital data strategies. Once fully 
completed, this collaborative and interdisciplinary framework can be the basis of Virtual 
Materials Testing standards and aids in the development of new material formulations. 
Moreover, it will decrease the time to market of innovative products.

© 2016 Elsevier Inc. All rights reserved.

1. Need for predictive multiscale computational science and engineering in materials design

Over the past decade, an abundance of new processing conditions from the material science community has ushered 
development of materials with unique properties. Similarly, design of machine parts pushes material science towards dis-
coveries of materials that are lighter, stronger, thermally and electromagnetically shielded, multifunctional, etc., and the 
processing conditions that will create them. This constant push and pull between materials science, physics/mechanics, and 
materials design creates the need for predictive modeling tools that accurately describe the physical phenomena at each 
length and time scale with the resolution required in product design and safety assessment (see Fig. 1(a)).

For a long time, development of new materials has been guided by experience and empirical correlations between 
processing conditions and desired performance [1]. Recently, this ad hoc approach is being challenged by the Integrated 
Computational Materials Engineering (ICME) paradigm [2–5]. ICME combines both bottom–up and top–down modeling and 
simulation strategies and aims to reduce the time to market of innovative products. It is concerned with multiple spatial 
and temporal scales of structural hierarchy typical of materials with microstructure. Moreover, it synthesizes information 
and data from both experiments and simulations across time scales and/or length scales. A report by the National Research 
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Fig. 1. (a) Hierarchy of material scales from Nano- to Macroscale for Ni/Al composite produced by high energy ball milling at the Center for Shock Wave-
processing of Advanced Reactive Materials (C-SWARM) at the University of Notre Dame. (b) Microstructure-Statistics-Property Relations.

Council of the National Academies [3] describes ICME as a transformational discipline for improved competitiveness and 
national security. It also views it as a grand challenge: “The grand challenge for the field of materials science and engineering 
is to build an ICME capability for all classes and applications of materials.”

To address this grand challenge, no single discipline can be called upon exclusively, and knowledge from several branches 
of science and engineering is needed. In particular, collaborations across mechanics, physics, chemistry, materials science, 
applied mathematics, data science, and scientific computing are required. Experimental investigations should keep in mind 
computational needs and vise versa. Abstraction of mathematical tools (i.e. mathematical complexity) should be accessible 
for easier engineering applicability. Scientific computing should produce libraries that are easy to use and open doors 
to wider utilization of high performance computing. This is not a trivial task and constitutes the real challenge for the 
traditional materials science discipline. Thus, a cultural change in the engineering and science fields is needed, and education 
of a new workforce with diverse skills is paramount for future success.

Methods and tools that form the basis of ICME are essentially those that constitute and expand the elements of “Materials 
Innovation Infrastructure” (MII) in the Materials Genome Initiative [6]:

• Experimental Tools
– Testing and full-field in situ measurements with co-designed simulations
– Materials characterization and microstructure representation
– Unit manufacturing processes – casting, cutting, surface treatment, machining, etc.
– Sensors and control systems

• Computational Tools
– Single scale – ab initio, molecular/atomistics and continuum – models
– Hierarchical, concurrent multiscale models and model reduction
– Verification, validation and uncertainty quantification
– High performance computing and software engineering

• Digital Data – whether derived from computations or experiments
– Data science and material informatics
– Machine learning and computational statistics
– Decision-based system design and optimization
– Material databases

These integrated computational, experimental, and data informatics tools should span the entire materials landscape, 
improve predictive capabilities, and execute on the next-generation of supercomputers. Such an infrastructure will enable 
rapid and holistic engineering design that seamlessly integrates into existing product design frameworks.

This review article highlights related progress in the field and discusses several issues on a critical path in formulating 
ICME using an image-based (data-driven) multiscale modeling framework with co-designed simulations and experiments. 
Such a framework will ultimately yield Microstructure-Statistics-Property Relations (MSPR) of highly complex nonlinear 
materials (see Fig. 1(b)) and will lead to Virtual Materials Testing standards.

This article is organized as follows. Section 2 reviews some of the single scale models for nonlinear heterogeneous ma-
terials. Section 3 discusses multiscale modeling approaches. A particular multiscale technique, the computational theory 
of homogenization, is featured in Section 4. Section 5 is devoted to an image-based (data-driven) modeling concept. High 
performance computing (HPC) and parallel implementation of computational homogenization is described in Section 6. Sec-
tion 7 presents model reduction, machine learning and data mining strategies for nonlinear multiscale methods. Verification, 
validation and uncertainty quantification in multiscale computational science and engineering are discussed in Section 8. 
Finally, conclusions and ongoing and expected trends and challenges are delineated in Section 9.
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2. Single scale models for nonlinear heterogeneous materials

Most of the progress in the past century builds on a variety of models that have been developed addressing partic-
ular physics of phenomenological descriptions at a particular scale. Any multi-scale method aims to establish a bridge 
between such single scale models. Single scale models may address the atomistic scale (or below), some microstructural 
scale, a global continuum scale or some intermediate scale. In this section, an overview is provided of the most elementary 
classes of single scale models, spanning a large range of the nonlinear mechanical behavior of materials. Note that each 
of the classes below is characterized by many underlying models, which may differ through the governing equations or 
approximations made to capture the physics at that scale. Characteristic time and length scales have been marked in each 
class.

2.1. Density functional theory

Density Functional Theory (DFT) is utilized for modeling material behavior at the smallest (subatomic) scales, and relies 
on the quantum-mechanical analysis of the electronic structure of many-body systems. DFT models typically span the small-
est length scales (<10−9 m) and smallest time scales (10−15–10−9 s). In this theory, the resulting properties are described 
on the basis of functionals of the electron density. DFT has evolved into a very popular ab initio method within the com-
putational chemistry, condensed-matter physics, and computational physics communities. It is used to model various types 
of molecular interactions and to unravel the complex physical behavior at an atomistic scale. It supports the analysis of 
materials synthesis, processing, phase transformations, and electro-magnetical behavior. The literature on DFT within differ-
ent scientific communities has become impressively large. Therefore, only a few relevant references are given here [7–12]. 
In the context of computational materials science, the method is particularly used to construct or assess the properties of 
(empirical) atomic potentials as used in molecular dynamics approaches (i.e. at a larger scale) [13–17].

2.2. Molecular dynamics and atomistic models

At the scale of atoms, molecular dynamics (MD) analyses provide direct insights into the complex mechanisms underlying 
the nonlinear behavior of materials at the level of single phases and interfaces. MD and atomistic models typically span the 
atomistic scale (10−9 m) up to single microns (10−6 m). Time scales are still very short (10−12–10−6 s), constituting one of 
the limitations of these methods. This method relies on the solution of the Newton’s equations of motion for all atoms in 
order to extract path-dependent processes of materials. The method hinges on the underlying atomic potentials, which are 
used to approximate the atomic interactions [18]. A large number of potentials nowadays exist for many atomic systems, 
ranging from simple pair potentials to complex many-body potentials. Classical pair potentials are based on nearest neighbor 
interactions (Lennard-Jones; Morse; Torrens) [19,20]. Tight-binding is a well-known example of a many-body description, 
whereby different levels of approximation can be made (second moment, fourth moment, sixth moment, etc.). The accuracy 
of bond order directly depends on the accuracy of the tight-binding approximation. A third category combines properties of 
pair potentials and tight-bonding, which is also recognized as hybrid schemes. The generalized pseudo-potential theory, the 
effective medium theory and the embedded atom method (EAM) fall into this category. The differences between the various 
existing potentials relate to their ability or accuracy to capture certain physical phenomena (e.g. ferromagnetic–paramagnetic 
transitions, phase transformations, energy barriers, stability, fracture, etc.). Within this context, it is worth pointing out 
that increasingly complex models, entailing significant computational costs, do not necessarily guarantee more physically 
meaningful results. This is typically the case for complex MD models, where the predictive value of any result strongly 
depends on the physical properties of the potential assumed, which may be incomplete in many cases.

The application of MD methods to nonlinear mechanics of materials relates to dislocations [21], microcracks and frac-
ture [22,23], thin films [24], surfaces, interfaces [25], etc. (see [26] for a more extensive overview). For analyzing complex 
microstructures, the method is rather limited in terms of the size of the domain that can be resolved. The number of atoms 
that can be incorporated is still limited and does not allow spanning large length scales involving billions of atoms on a 
regular basis. One of the largest MD simulations are those by researchers from the Lawrence Livermore National Labora-
tory (LLNL). In their work, a cubic piece of solid copper with an edge length of 1.56 μm was simulated using 320 billion 
atoms [27]. A second limitation in MD simulations relates to the time scales that can be covered, which are usually very 
short.

2.3. Statistical models

The Monte Carlo (MC) method was introduced in statistical thermodynamics in the 1950s [28]. It is now a well-know 
method using extensive statistical sampling to construct approximate solutions for a variety of physical/mathematical prob-
lems. Statistical models and MC methods can in principal be used at a wider range of length and time scales, depending 
on the physical phenomena that are treated in a statistical manner. Examples exist at atomistic length and time scales, as 
well as microstructural scales. The MC method establishes a probabilistic equivalent for a particular physical problem, for 
which the governing equations with their stochastics are transformed into integral expressions. The problem is solved by in-
tegrating these expressions using a random sampling method, which is computationally demanding. As a result, correlation 
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functions, state equation values, kinetics, etc. can be extracted. The existing MC methods differ through their algorithmic 
differences in the solution and sampling strategies. For the mechanical behavior of materials, most relevant are the analyses 
on fracture, interfaces, diffusional processes, phase transformations, etc. [26,29].

2.4. Continuum models

Many of the small scale models highlighted above (addressing single phases or interfaces) were typically used to acquire 
a mechanistic understanding of the different physical processes underlying the nonlinear mechanical response of materials. 
At the scales of complete microstructures and above (where multiple phases and interfaces co-exist), continuum models 
are typically used to assess material properties. Continuum models are typically used at length scales where the continuum 
approximation holds. This may be at the level of individual phases within a microstructure (generally larger than 10−5 m) 
or macroscopic engineering scales (from 10−2 m up to 10+2 m). The time scales in most continuum models are usually 
larger as well (>10−6 s), even though impact and wave dynamics in materials may entail even smaller scales. For sim-
plified microstructures, nonlinear micromechanics exploits continuum mechanics [30] at the level of the microstructural 
heterogeneities, allowing to extract macroscopic constitutive equations. This field of “continuum micromechanics” was orig-
inally established by Hill [31]. An extensive overview since then is given in [32]. Micromechanical approaches often result 
in closed-form analytical equations (to be solved either analytically or numerically), which clearly distinguishes them from 
numerical approaches where the constitutive response is computed through equilibrium simulations of the heterogeneous 
microstructure.

For more complex morphologies, numerical solutions of the governing equilibrium equations in a Representative Volume 
Element (RVE) are more attractive [33,34]. The Representative Unit Cell (RUC) is used in the statistical mechanics commu-
nity as well, for which the morphology approximation error is better quantified (i.e. statistically representative cell) using 
statistical descriptors [35–38] (see Section 5 for definitions of RVE and RUC and how they differ). The solution domain is 
generally approximated by a unit cell for periodic materials and RVEs/RUCs for statistically heterogeneous media. Proper 
boundary conditions need to be defined (usually representing an average strain or stress state) and a numerical solution 
method has to be adopted. Many of the RVEs/RUCs problems are solved using the Finite Element (FE) method, which is 
based on the discretization of the weak form of the governing equations. For periodic microstructural RVEs/RUCs, a spec-
tral solver based on the Fast Fourier Transform (FTT) [39,40] is nowadays increasingly popular. The main advantage of the 
latter is the high computational efficiency, which makes it popular for three-dimensional (3D) problems with many degrees-
of-freedom. Unfortunately, the discrete fast Fourier transform is not easily parallelizable [41]. As presented in a paper by 
Pekurovsky, P3DFFT overcomes a well-known scalability bottleneck of three-dimensional (3D) FFT implementations by using 
two-dimensional domain decomposition. However, it still achieves only 45% weak scaling efficiency. Loss of efficiency is 
attributed to the difficulty of maintaining scalable bisection bandwidth [42].

2.5. Hybrid and quasi-continuum methods

Many models at particular length scales are only partially continuum based, and discrete characteristics are naturally 
integrated. Hybrid and quasi-continuum models constitute a particular class in which multiple length (and time scales) are 
interconnected in different parts of a single domain. Therefore, they naturally span a larger range of length scales (from 
10−9 m up to 10−2 m), but the time scale range remains limited by those used at the highest spatial resolution (e.g. the 
atomistic region). This is for instance the case for discrete dislocation plasticity models. In other cases, complete discrete 
models are used as well, like microstructural lattice models or particle based models [43]. In linking length scales within 
a single domain, use is also made of the quasi-continuum method [44,45], which recovers the discrete resolution at the 
smallest scale and resembles a finite element interpolation/integration at the coarse scale.

3. Multiscale methods for nonlinear heterogeneous materials

Modeling materials using a multiscale approach is a steadily growing field, with many past, ongoing and future devel-
opments. In this section, a compact overview is given, whereby some of the methods/approaches will be detailed in the 
following sections. Emphasis is put on the nonlinear response of heterogeneous materials.

The broad range of existing multiscale methods can be classified in various ways. Three typical methodological categories 
can be identified, differing in the manner in which the fine heterogeneous scale is incorporated [46–49]. In the first category, 
high resolution is applied to a small part of the domain, in which particular fine scale details of the morphology need to 
be resolved (e.g. dislocations, cracks, etc.). The second category relies on a macroscopic description that has to be resolved 
from an underlying fine scale problem (which is then probed where and when necessary). The third category is in fact 
a mixture of the two previous cases, where parts of the domain are fully resolved at the fine scale, and other parts are 
probed at the fine scale only through the effective macroscopic response. Finally, one should also note the methods relying 
on self-similarity across the scales [46]. A brief classification is provided here, which is however not unique. More details 
can be found in the literature, e.g. [48,49]. If the methods are classified on the basis of the underlying problem formulation, 
the following classes can be discerned:
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• Concurrent methods: Methods in which both scales are simultaneously addressed (as apparent from the problem formu-
lation). Different length and time scales can be adopted (in a single domain) and different parts of the domain can be 
solved with different methodologies. In the literature, the term “concurrent” mostly refers to solution methods where 
different scales/methodologies are used in different subvolumes of the global domain [48].

• Hierarchical methods: Methods, in which the scales are linked hierarchically, i.e. different scales are resolved and coupled 
in the same part of a domain. The link between both scales is typically made via averaging theorems or sometimes on 
the basis of parameter identification only. See Section 4 for an example of this category.

• Hybrid methods: Methods revealing properties of different classes, e.g. multi-grid methods [50], quasi-continuum meth-
ods [45], wavelet-based methods, generalized finite element method [51].

If the methods are classified on the basis of the underlying algorithmic perspective (related to the actual solution proce-
dure), the following classes can be discerned:

• Parallel methods: Methods in which both scales are solved in parallel (i.e. monolithically).
• Serial or sequential methods: Methods in which a serial algorithm is used to couple and solve both scales. The link 

between both scales is generally made through data passing. However, each of the scales is solved separately. Serial 
methods are typically hierarchical as well.

• Coupled or decoupled methods: Methods in which the solution procedure at both scales is either coupled or decoupled. 
Coupled schemes use on-line algorithms to resolve and couple both scales, i.e. both scales are computed during the 
solution of the macroscopic boundary value problem. Decoupled schemes rely on off-line computations for one of the 
scales, i.e. the mechanical response at this scale has been precomputed and stored for given deformation paths.

This review article will give special emphasis to a computational homogenization method, which is a hierarchical method, 
using an iterative (i.e. nested) coupled algorithm to connect both scales. The serial character of the method results from the 
data passing, which is based on the integration over small length scales. Variational methods form a special class of hi-
erarchical multiscale methods [52,53], where the weak form of the governing equations is split into their fine and coarse 
scale contributions. Note again, that different communities make use of a different terminology in addressing multi-scale 
methods. These methods are given attention in physics journals, mechanics journals, mathematics journals, etc. For ex-
ample, the Heterogeneous Multiscale Method (HMM, [46,54]) is well-known in computational mathematics, whereas it is 
methodologically close to the computational homogenization method used in computational mechanics.

3.1. From micromechanics to multi-scale mechanics

Multi-scale mechanics aims to identify and quantify relationships bridging various length scales in heterogeneous ma-
terials. The ultimate goal is to extract (emergent) effective/macroscopic properties at the scales of application. Adequately 
resolving physical, topological and statistical details of the underlying microstructure is thereby essential. Two key meth-
ods in scale bridging are “Homogenization” in the mechanics community, and “Coarse Graining” in the physics community 
[55,56]. The “homogenization” method was originally coined by Ivo Babuška [57]. Homogenization essentially relies on av-
eraging theorems. Coarse graining, on the other hand, relies on statistical mechanics/thermodynamics and aims to unravel 
emergent phenomena across the scales. Among these, the GENERIC framework [58–62] is one of the promising methods.

Homogenization methods are rooted in the micromechanics of heterogeneous materials. Early developments were made 
in the 19th century, e.g. the rule of mixtures (Voigt, 1887), the Sachs model [63], Reuss estimate (1929), Taylor model 
[64]. Composite materials are tailor-made multi-phase and heterogeneous materials, calling for homogenization methods in 
their design. This motivated the work of Eshelby [65], from which alternative continuum mechanics frameworks originated 
(Eshelbian mechanics; materials forces). In this early period, continuum mechanics [30] was used at the level of the het-
erogeneities, from which the effective macroscopic constitutive equations had to be determined. This constituted the field 
of “continuum micromechanics” [31], a large discipline with many contributions throughout the literature [32]. The three 
decades between 1950 and 1980 were marked with major progress in the homogenization of heterogeneous elastic solids, 
e.g. defects in elastic solids and anisotropic crystals by Kröner (e.g. [66]), the variational bounds of Hashin and Shtrikman 
for multiphase elastic materials (e.g. [67]), reinforced composites by Hill (e.g. [33]), the mean field homogenization scheme 
of Mori and Tanaka (e.g. [68]), interfaces by Babuška (e.g. [69]), self-consistent estimates of elastic properties for composites 
by Willis (e.g. [70]), etc. Extensions to nonlinear material behavior date from the early sixties and seventies (e.g. [31,71,
72]), whereas most contributions were published in the 1980s and 1990s. Typical nonlinear phenomena studied include: 
plasticity and visco-plasticity, nonlinear elasticity and visco-elasticity, creep, etc. Well-known contributions were made by 
Nemat-Nasser (e.g. [73,74]), Ponte Castañeda (e.g. [75]), Suquet (e.g. [76,77]), Willis (e.g. [78]), Zaoui (e.g. [79]) and others. 
Evolving heterogeneities, e.g. voids in a ductile metallic matrix, were studied in the later 1970s, from which the Gurson 
model [80] originated. This was the start of many papers focusing on the plasticity of porous materials. The key objec-
tive was still to derive macroscopic constitutive equations that incorporate the role of the micro-scale nonlinearities. This 
research philosophy has been applied to study grain effects (grain–grain interaction, grain size, grain orientation/texture), 
inclusions/particles distributed in a hard or soft matrix with various interfaces, voids (nucleation, growth and coalescence), 
micro-cracks, fiber-matrix systems, etc.
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The neighboring field of mathematical homogenization has played a big role in extending micromechanics to engi-
neering applications of homogenization. Mathematical homogenization inspired engineers with good knowledge in applied 
mathematics to proactively apply homogenization methods to engineering problems. Historically speaking, mathematical 
homogenization inspired the engineering developments of the theory and applications, and also provided rigor to its foun-
dations. The papers of J.B. Keller [81,82], J.-L. Lions and co-workers [83,84] and Sanchez-Palencia [85] were key in this 
regard. The homogenization method is now an established discipline for the analysis of heterogeneous materials. The steady 
evolution of advanced computational solution methods and the increase of computational power makes homogenization a 
strongly developed computational discipline in multi-scale mechanics.

3.2. Nonlinear heterogeneous materials & scale separation

All engineering and physical materials are intrinsically heterogeneous at some scale (metals, polymers, composites, 
ceramics, biomaterials, etc.). At small scales, the behavior is generally nonlinear. Mechanisms contributing to these non-
linearities are: plastic deformation, initiating and propagating cracks, dislocation mechanics and defects, phase changes, 
creep and stress relaxation, microstructure evolution, etc. [32,86–88]. Damage and fracture, governing the ultimate behavior 
of any materials, are typically dominated by the heterogeneous nature of the underlying microstructure. Damage spans all 
length scales, and is therefore one of the most difficult subjects in multi-scale mechanics. Phenomenological models exist, 
but real understanding is gained from analyses at heterogeneous microstructural scales, including the sub-micron scale and 
smaller.

Multi-scale mechanics originated from the analysis of the macroscopic behavior of heterogeneous elastic materials. Ho-
mogenization methods seek the effective response of finite statistically homogeneous materials. Materials are investigated 
using characteristic volumes, either periodic unit cells or RVEs/RUCs (see Section 5) [33–38]. Homogenization typically relies 
on a principle of separation of scales. A typical formulation thereof states that the scale of the microstructural fluctuations, 
�μ , must be smaller than the scale of the RVEs/RUCs, �m , which again is much smaller than the macroscopic field fluctua-
tions, �M ,

�μ < �m � �M . (1)

Since its early development for elastic materials, many powerful homogenization methods have been developed for 
nonlinear materials, including higher-order and even nonlocal approaches, see e.g. couple stress theory [89], Cosserat media 
[90], nonlocal continua [34] or higher-order elastic materials [91–93]. Physically nonlinear random microstructures have 
been addressed as well [76,94,95], involving the Taylor–Bishop–Hill estimates, several (generalized) self-consistent schemes 
and asymptotic methods [96]. Incorporating both physical and geometrical nonlinearities is more challenging [97–99]. The 
literature on the subject extends to homogenization of nonlinear composites [100], homogenization of magneto-rheological 
elastomers at finite strains [101], and mathematical or asymptotic homogenization for nonlinear material behavior [99,
102–104].

One of the powerful methods developed in the past decades is the Computational Homogenization (CH) of complex multi-
phase solids [105,106]. This method provides a nested solution of the two boundary value problems (BVPs) defined on each 
of the scales. The method is computationally demanding, but quantitatively reliable and complete, as well as easily paral-
lelizable [107,108]. The first-order technique (relying on a standard solid) is well-established and frequently used both in 
academia and industry [108–120]. This paper will therefore present a more extensive summary of this particular method in 
what follows.

4. Theory of computational homogenization

Consider a problem involving two spatial scales: macroscopic and microscopic. The coarse macroscopic scale can be 
a structure, a component, or a device subjected to certain loads and constraints. At a fine (microscopic) scale, various 
micro-constituents are distinguished, typically presenting distinct material properties or flaws and voids (see Fig. 2). This 
setting can be straightforwardly extended to multiple scales, however, here we will restrict ourselves to two scales only.

Computational homogenization, as well as most homogenization methods, critically relies on the principle of separation of 
scales as mentioned in Section 3. Following this definition, the absolute size of the macrostructure is, as such, irrelevant for 
scale separation, but the scale of the variation of the relevant macroscopic field is crucial. In many practical problems, the 
separation of scales defined by Eq. (1) is well satisfied. At the same time, it becomes violated in other examples, i.e. when 
either a micro-structural length scale tends to be large (e.g. large microstructural features, the presence of long-range corre-
lations or percolation phenomena) or when the macro-fluctuation scale tends to be small (e.g. localization of deformation, 
high gradients, high frequency waves).

4.1. Macroscale problem

Let the problem at the macroscopic scale be described by a field aM(xM, t), where xM denotes the position vector at 
the macroscopic scale, typically in the reference material configuration; t denotes time, which can be the physical time 
or a process parameter; the subscript “M” denotes quantities at the macroscale, while “m” will denote quantities at the 
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Fig. 2. Length scales relevant for the separation of scales principle.

microscale. The field aM can be a scalar, vector or tensor quantity: examples include temperature, electric or magnetic 
scalar potentials, or the position vector in the current configuration (related to the displacement field). The gradient of 
the considered field is denoted by FM = ∇MaM and represents the temperature gradient, electric or magnetic field, and 
deformation gradient tensor, respectively, for the examples given above.

As typical in a continuum mechanics setting, the problem statement is described by a balance equation, which can be of 
elliptic, parabolic or hyperbolic type, with appropriate initial and boundary conditions

∇M ·SM = 0, (2)

∇M ·SM = αMȧM, (3)

∇M ·SM = αMäM, (4)

where the superimposed dot denotes the material time derivative, αM is a material constant, e.g. the heat capacity or mass 
density. In the above equations, SM is a constitutive quantity dual to the gradient field FM. Examples of dual constitutive 
fields are the heat flux, electric or magnetic displacement (induction) vectors and the stress tensor. In addition, the dual 
constitutive field typically satisfies the Cauchy like relations, i.e. on a surface with outward normal nM, it holds that sM =
SM · nM, giving e.g. the surface heat flux, surface electric or magnetic induction and stress traction vector.

In order to close the above problem, constitutive relations between the constitutive field and the (history of the) gradient 
field are required, which are written in a general form as:

SM(t) = SM {FM(τ ), τ ∈ [0, t]} . (5)

In addition, for the numerical solution of a non-linear macroscopic problem using iterative, implicit methods (e.g. Newton–
Raphson scheme), a constitutive tangent CM, emerging from the linearized form of the constitutive relation, is required

δSM = CM : δFM. (6)

The main idea in computational homogenization is to obtain the constitutive closure relations for the macroscopic prob-
lem in a numerical form through the consistent construction and solution of a microstructural problem. The macroscopic 
and microscopic problems are thus solved in a nested manner. The computational homogenization procedure allows to di-
rectly incorporate all relevant microstructural features and processes without the need for a priori assumptions on their 
effect on the macroscopic behavior. Therefore, computational homogenization removes the need for a priori mathematical 
formulation of the macroscopic constitutive equations and the related evolution equations, as well as parameter identifi-
cation (calibration) at the macroscopic scale. Rather than identifying overall material parameters of complex multi-phase 
microstructures, computational homogenization relies on the knowledge (and models) of the behavior at the level of single 
phases and constituents. This may be well established for many materials, but still remains a challenge if a high level of ac-
curacy or predictability is required. In the following, the microstructural boundary value problem will be formulated based 
on a consistent set of scale transition relations.

4.2. Microscale problem and scale transition relations

The microstructure for the problem at hand is described by the RVE/RUC concepts. The RVE/RUC should incorporate 
statistically representative details of the material morphology, but also include all the length scales relevant for the physical 
processes under consideration, e.g. to allow the development of percolation paths. The selection and construction of a RUC 
(i.e. statistically defined cell) is discussed in more detail in Section 5.

The primary field at the microscale is denoted by am(xm, t) with the gradient field Fm(xm, t) = ∇mam. In accordance 
with the scale separation principle (1), the RVE/RUC is infinitesimally small compared to the variations of the macroscopic 
fields. This implies that any temporal changes in the macroscopic fields are instantaneously accommodated at the scale of 
the RVE/RUC. Therefore, the RVE/RUC can be described by the stationary balance equation

∇m ·Sm = 0 in V m, (7)

where V m denotes the volume of RVE/RUC domain.
The constitutive behavior relevant for the problem of interest is assumed to be known for each microstructural con-

stituent ι, as well as the laws for their interaction, interface behavior, etc.
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S(ι)
m (t) = S(ι)

m

{
F (ι)

m (τ ), τ ∈ [0, t]; ξ
(ι)
m

}
, (8)

where ξ (ι)
m denotes a set of internal state variables, required to describe the relevant microstructural evolution processes. 

Note that (in CH) internal variables do not appear explicitly in the macroscopic constitutive relation Eq. (5), since all the 
relevant internal variables are contained within the microscale problem. As a side remark, it should be pointed out that 
identification and characterization of constitutive behavior at the fine scale is in general not a trivial problem and might 
require complicated in situ measurements.

To complete the microscale problem Eqs. (7)–(8), boundary conditions need to be specified. In the computational homog-
enization framework, boundary conditions for the microscale problem are formulated through scale transition relations that 
establish a relationship between the macro- and microscale problems. To this aim, the microscopic field am(xm, t) is written 
as a superposition of the macroscopic homogeneous part, given by the macroscopic gradient field FM(t) ≡ FM(xM, t) at the 
macroscopic point for which the microscopic problem is being constructed, and a micro-fluctuation field wm(xm, t), which 
represents the local variation of the microscale field due to the presence of the heterogeneous microstructure

�am(xm, t) = FM(t) · �xm + wm(xm, t), (9)

where xm is the position vector of the points within the RVE/RUC in the reference (material) configuration; � denotes the 
relative value of a field with respect to an arbitrary reference point. Computing the microscopic gradient field Fm from (9)
gives

Fm(xm, t) = ∇mam = FM(t) + ∇m wm(xm, t). (10)

Next, the first scale transition relation is postulated, requiring the RVE/RUC volume average of the microscopic gradient field 
to be equal to its macroscopic counterpart

FM(t) = 1

V m

∫

V m

Fm(xm, t)dV m. (11)

Upon substitution of (10) into (11), it is clear that the scale transition relation (10) is automatically satisfied if the volume 
averaged contribution of the gradient of the micro-fluctuation field vanishes

1

V m

∫

V m

∇m wmdV m = 1

V m

∫

Am

nm ⊗ wmdAm = 0, (12)

where the Gauss divergence theorem has been applied with Am being the RVE/RUC outer boundary and nm representing 
the outward normal vector. Condition (12) can be fulfilled a priori by prescribing appropriate boundary conditions on the 
micro-fluctuation field wm. The following options are typically used in the literature:

• fully prescribed essential boundary condition: prescribe wm = 0 for all points on the RVE/RUC boundary, i.e. not allow-
ing for any micro-fluctuations on the RVE/RUC boundary;

• periodic boundary conditions: for a RVE/RUC of an initially periodic shape, i.e. the normals are opposite on the ‘+’ and 
‘−’ sides of the RVE/RUC boundary, n+

m = −n−
m, require the periodicity of the micro-fluctuation field w+

m = w−
m;

• minimal essential boundary condition: impose the constraint Eq. (12) directly requiring the integral over the entire 
RVE/RUC boundary to vanish.

Note that the Voigt/Taylor averaging model requiring a uniform gradient field in all microstructural constituents is recovered 
if the micro-fluctuation field vanishes, wm = 0, in the entire RVE/RUC volume, which trivially satisfies Eq. (12). The periodic 
boundary conditions are frequently used in practice, since they have been shown to provide faster convergence towards 
the effective material properties upon increasing the size of the microstructural computational cell (i.e. including more 
microstructural features) [115,121–128]. The fully prescribed essential boundary conditions are also often used, mostly 
due to the simplicity of their implementation. Minimal kinematic boundary conditions have also been employed [127,128]. 
Finally, more advanced types of RVE/RUC boundary conditions have recently been developed for specific problems, e.g. strain 
localization [129,130].

With the boundary conditions established, the RVE/RUC boundary value problem can be readily solved using any available 
(numerical) technique, e.g. finite differences, finite elements, spectral methods, etc. Upon the solution of the microstructural 
problem, another scale transition relation is needed to upscale the microscopic constitutive response to the macroscale. 
In computational homogenization, the scale transition relation is usually established by requiring equality between the 
local macroscopic generalized power (per unit volume) and the volume averaged generalized power of the corresponding 
RVE/RUC,

SM : ḞM = 1

V m

∫
Sm : ḞmdV m. (13)
V m
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Fig. 3. Computational homogenization scheme.

In mechanics of materials, this relation is known under the name Hill–Mandel Lemma or macro-homogeneity condition (see 
Hill [33] and Suquet [109]). Using the fact that F is the gradient quantity, applying the chain rule and the Gauss theorem 
to (13), allows establishing the relation between the microscopic and macroscopic constitutive quantities

SM = 1

V m

∫

V m

SmdV m = 1

V m

∫

Am

sm ⊗ xmdAm, (14)

with sm = Sm · nm being the surface flux. The last expression in Eq. (14) shows that the macroscopic constitutive quantity 
can be efficiently computed from only the microscale RVE/RUC boundary fluxes.

Computing SM from the microscale RVE simulations at each time instance therefore provides the macroscopic consti-
tutive response, Eq. (5), in a numerical form. To obtain the constitutive tangent defined by Eq. (6), different techniques 
can be used, e.g. numerical differentiation. Although easy to execute, numerical differentiation is not efficient since it re-
quires additional RVE/RUC simulations, which are usually expensive. Alternatively, more efficient techniques are based on 
the Schur complement of the microscopic linearized system of equations (see [117,122] for more details on this procedure 
in combination with direct solvers). For parallel iterative solvers, procedures developed in [107,108] can be employed.

Finally it should be noted that in some problems, the constitutive dual quantity depends on both the gradient of the 
primary field and on the absolute value of the primary field itself. For example, many materials have temperature dependent 
material properties. In this case, an additional scale transition relation has to be formulated. For example, in [131,132] the 
thermal energy consistency condition was enforced by requiring the volume average of the RVE/RUC stored heat to be 
equal to the local macroscopic stored heat (per unit volume). After elaboration, this leads to an additional constraint to be 
imposed on the microscopic temperature field.

The computational homogenization framework is schematically illustrated in Fig. 3. The macroscopic problem is typically 
solved in a discretized form by any available numerical technique, e.g. finite differences, finite elements, spectral methods, 
etc. The macroscopic gradient FM is computed at every sampling or integration point of the macrostructure. Next, FM is 
used to formulate the boundary conditions imposed on the RVE/RUC assigned to this point. Upon solving the microscopic 
boundary value problem, the macroscopic dual constitutive quantity SM is obtained, thus providing the numerical constitu-
tive closure relationship at the macroscopic point. The local macroscopic constitutive tangent CM, which is needed for the 
implicit iterative solution of the macroscopic non-linear problem, is also derived from the microstructural analysis.

The implementation and application of the computational homogenization scheme as described above is straightforward 
and highly modular, i.e. different combinations of numerical techniques and software codes can be used. However, the 
computational costs, both CPU time as well as memory requirements are typically high. These can be substantially alleviated 
through a high performance parallel implementation and/or through the application of reduced order modeling concepts. 
These two aspects will be discussed subsequently in sections 6 and 7, respectively.

4.3. Transient effects

The computational homogenization scheme described above is applicable to stationary, as well as transient problems. 
In the latter case, however, only the transient problems satisfying the scale separation condition Eq. (1) can be considered 
directly, i.e. when the characteristic macroscopic wave-length is much larger compared to all the relevant microstructural 
length scales. In this case, it can be assumed that any temporal changes at the macroscale are instantaneously accom-
modated at the microscale. Thus, the microscale can be considered stationary, described by Eq. (7), with the boundary 
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conditions emanating from Eq. (11) as discussed above. The material constant related to the transient term, e.g. heat capac-
ity or mass density can be obtained by volume averaging of the corresponding microscopic quantity

αM = 1

V m

∫

V

αmdV m. (15)

In this form, computational homogenization has been successfully applied to heat conduction [131,132] and mechanical 
problems [102,133] for example.

For cases in which the macroscopic transient phenomena interact with the microscale transient response, e.g. high fre-
quency waves or wave dispersion, the full scale separation is not valid and basic computational homogenization as described 
above may not be applicable. In some particular cases, however, a relaxed separation of scales holds, such that the mi-
croscale transient response (e.g. micro-inertia) is localized only in some of the micro-constituents embedded in a matrix 
(host) material, for which the full separation of scales may apply. This is, for example, the case for so-called locally reso-
nant acoustic metamaterials, containing resonators (e.g. a mass on a spring) embedded in a stiff matrix material. This case 
has recently been treated by an extended version of the transient computational homogenization [134], where the effect 
of micro-inertia naturally emerges at the macroscopic scale through an enriched field, with an additional macroscopic bal-
ance equation [135]. Finally, we note that multiscale modeling of temporal scales is an active area of research for CH and 
concurrent multiscale methods alike.

4.4. Applications and extensions

The computational homogenization scheme as described above has initially been developed and applied for purely me-
chanical non-linear quasi-static problems [109–111,113–118,122,136,137]. Since then, the computational homogenization 
approach has been adapted to problems involving other fields, as well as coupled multi-physics problems, e.g. thermal 
[131,138], thermo-mechanical [132], electro–magneto-mechanical [139–143], diffusion [144], liquid-phase sintering [145], 
and problems involving chemical couplings [146]. A limited selection of problems to which computational homogenization 
has been applied includes: porous media [147–150], cellular materials [151,152], polycrystalline metals [153,154], technical 
textiles [155], granular materials [156], reinforced elastomers [99], trabecular bone [157], biological tissue [158] and Li-ion 
battery cells [159].

In addition, several modified and extended computational homogenization schemes have been developed to go beyond 
the limitations of the classical (also called first-order) framework. For example, second-order computational homogenization 
for mechanical problems couples standard (first-order) continuum microstructures to the higher-order gradient continuum 
at the macroscale [160–166]. This approach slightly relaxes the separation of scales and allows treatment of moderate 
localization of the macroscopic field and captures the influence of the absolute size of the microstructure into the ho-
mogenization scheme which is otherwise insensitive to it. A more advanced version of the higher-order computational 
homogenization, which relaxes the constraints on higher-order continuity requirements and boundary conditions is based 
on the computational continua approach [167,168].

Moving towards strong localization of macroscopic fields is a challenging topic in computational homogenization due to 
the lack of separation of scales [169–171]. One extension to remedy this problem that is gaining interest is the computa-
tional homogenization of interfacial volumes towards cohesive zones [120] for damage and fracture. Unlike the standard 
first-order technique, this scheme can properly handle localization at the macroscopic scale. For bulk homogenization, 
localization of macroscopic fields has recently been addressed in continuous–discontinuous homogenization–localization 
approaches. In this case, the microscale properties within the localization band are directly upscaled to the macroscale, the 
description of which is enriched by either a discrete band (weak discontinuity) [172,173] or a discontinuous jump (strong 
discontinuity) [174–177] representing the propagating fracture at the macroscale.

Another class of computational homogenization approaches involves dimensional reduction in addition to homogeniza-
tion. For example, computational homogenization applied to beams, plates, and shells considers microstructural models 
having the thickness corresponding to the physical thickness of the shell; in-plane homogenization is then performed, 
combined with through thickness integration [178–180]. Application of computational homogenization to heterogeneous 
interfaces and (adhesive) layers typically couples a (zero thickness) cohesive zone type description at the macroscale to an 
RVE/RUC at the microscale. This technique fully resolves the microstructure of the layer as well as damage within it [107,
108,120,181–184]. Finally, another interesting application of computational homogenization involves contact and friction 
problems allowing an efficient solution of these naturally multi-scale non-linear problems [185–187].

5. Image-based materials modeling

When modeling geometric and material nonlinearities in heterogeneous materials, analyzing realistic microstructures is 
critical for achieving predictive capabilities. Heterogeneous materials may contain a variety of heterogeneous phases (voids, 
inclusions, fibers, crystals, etc.) of varying composition, size and shape with complex spatial configuration. Statistically pre-
serving this morphology in a representative computational domain is important. The image-based (data-driven) modeling 
concept focuses on obtaining detailed three-dimensional data sets from state of the art imaging methods, e.g., micro- and 
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Fig. 4. Three-dimensional imaging techniques for heterogeneous materials. (a–c) Three-dimensional renderings of particulate composites using micro-CT: 
(a) solid rocket propellant (from Lee et al. [188]), (b) silica-reinforced rubber (from Computational Physics Group (CPG) at the University of Notre Dame), 
and (c) granular system of polydisperse ellipsoids/spheres (from Gillman et al. [189]) and associated multi-dimensional particle size and shape distribution. 
In the particle size distribution, the variables d and e are the representative sphere diameter and eccentricity, respectively. (d) Cross sectional image from 
FIB/SEM of binary metal composite (Nickel–Aluminum) synthesized through high energy ball milling. (e) Projection image of Ni–Al metal composite using 
nano-CT beamline at Argonne National Laboratory’s Advanced Photon Source. (f) The thickness distribution of the bicontinuous material is compared for 
(d) FIB/SEM and (e) nano-CT imaging/characterization methods. ((d), (e), and (f) from Shuck et al. [190]).

nano-computed tomography (CT) or scanning electron microscopy (SEM), and constructing optimal RUCs for further inves-
tigation of transport, mechanical, optical, electromagnetic and other properties. Moreover, image-based multiscale modeling 
with co-designed simulations and experiments within the integrated computational materials engineering framework is 
paving the way for predictive materials modeling to become reality (see Section 1).

Selection of the imaging method is often determined by the material composition, e.g. density, electromagnetic wave 
absorption/reflection properties, and length scale of heterogeneities. CT (both micro-CT and nano-CT [191]) is a particularly 
attractive imaging method, as it allows for three-dimensional representations to be obtained nondestructively. Nondestruc-
tive techniques also allow for in situ testing and enable micro/nano-scale validation (see Section 8). Some examples of 
complex material systems imaged with micro-CT and a dual focused ion beam and scanning electron microscope (FIB/SEM) 
are shown in Fig. 4. Commercial CT machines with X-ray tube sources can be used to characterize materials with moderate 
densities and volumes on the O(mm) containing O(105) geometric objects, and applications include solid rocket propel-
lants [192,193], glass beads [38,194], paper [195], and engineered cementitious composites [196]. For denser material such 
as metals, CT methods require high intensity electromagnetic radiation generated from synchrotron sources [190,197], and 
access to these facilities can be limited. Alternatively, serial sectioning techniques such as dual beam FIB/SEM systems are 
commonly used for 3D characterization of dense materials, but this technique is limited by its destructive nature and low 
analysis speed. Serial sectioning techniques have been used for imaging polycrystalline metals [198], metal alloys [199], high 
energy ball milled metal powders [190], and fuel cells [200]. Microstructural-crystallographic orientations are often stud-
ied by the Electron Backscatter Diffraction (EBSD) technique for crystalline or polycrystalline materials [201]. For biological 
systems, magnetic resonance imaging (MRI) and diagnostic sonography (ultrasonography) are popular in Patient-specific 
Modeling [202].

5.1. Statistically representative unit cells

Despite the ability of today’s imaging techniques to analyze large volumes of heterogeneous materials, the data sets 
are often too large to be completely resolved in practical numerical simulations of nonlinear material behavior. In order 
to perform efficient and accurate multiscale simulations, it is critical to develop a representative computational domain of 
the microstructure. As mentioned in Section 2, the terms RVE and RUC are two common terms designating computational 
domains that preserve important geometric features and also accurately capture the macro- and micro-scale fields. Hill 
[33] proposed a definition of an RVE to be a volume of material that is large enough to represent a whole ensemble of 
microstructures in an average sense and contains a sufficient number of heterogeneities to eliminate boundary effects (for 
boundary values that are macroscopically uniform). Drugan and Willis [34] introduced a variant RVE definition, where it is 
the smallest material volume element that accurately captures the mean constitutive response. Povirk [35] considered yet 
another variant with emphasis on preserving the statistical description of the microstructure. In [35], a RUC is denoted as an 
optimally sized domain that preserves the statistical description of the original microstructure. In all of these definitions, the 
RVE should be both statistically representative (i.e. preserves geometrical complexity of heterogeneous microstructure) and 
physically meaningful (i.e. accurately predicts effective material behavior). These two requirements are mutually inclusive, 
as determining the overall behavior requires accurate characterization of the morphology [203,204]. It is important to note 
that a perfect RVE (i.e. one that would fully satisfy a scale separation relation) is only realized in the infinite volume limit, 
but an optimally constructed RUC results in effective material predictions with statistically quantifiable errors [181]. Thus, 
we focus on RUC construction and use RUC nomenclature in what follows.
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Preserving first order measures such as the volume fraction and sizes of crystals, particles, and ligaments (see Figs. 4(c) 
and (f)) in a RUC is typical for many studies in multiscale modeling [205–209]. In these first order theories, the spatial 
distribution of micro-heterogeneities plays a secondary role in accurate modeling, and is often neglected. However, recon-
struction techniques that preserve higher order correlations result in optimally sized RUCs while reducing errors in estimates 
of overall macroscopic properties [2,181,203,204,210,211]. Note that importance of higher order statistical information de-
pends on the property of interest that is being investigated (e.g. Young’s modulus versus fracture toughness). The random 
complex nature of heterogeneous microstructures makes volume averaged statistical descriptors well suited for quantifying 
the spatial arrangement (distribution) of phases. Many statistical descriptors have been proposed to quantify the complex 
random morphologies in heterogeneous materials (see the book by Torquato [212] for example).

In order to construct an optimal RUC that preserves the statistical makeup of large composite microstructures, an 
optimization problem that minimizes differences of statistical descriptors between real and synthetic microstructures is 
typically formulated. In this regard, work utilizing two-point probability functions as well as other statistical descriptors 
(e.g. the lineal path function, the power spectral density, a stress interaction parameter) and their combination has been 
performed [35–38,211,213–220]. In many of these works, the pixel or voxel-based representation is popular for statisti-
cal characterization and synthetic structure generation. Although relatively simple, this representation distorts geometrical 
shapes, i.e. any object (a rhombus or an ellipsoid) can be approximated by a cluster of voxels, but the surface description 
is highly pixel or voxel dependent (regardless of the resolution). Thus, the voxel-based representation is inappropriate for 
surface driven phenomena, such as a particle decohesion, surface diffusion, and many others. Thus, algorithms that preserve 
the spatial distribution as well as the shape and size of heterogeneities in three-dimensions are preferred and yield RUCs 
for optimal simulation of many physical phenomena [38,189].

As noted above, a common measure utilized in generating RUCs is the n-point probability function. The n-point proba-
bility function is defined as the ensemble average (denoted by an overbar) of the indicator function, χq(�x1), for n points:

Sqs···t(�x1, �x2, · · · , �xn) = χq(�x1)χs(�x2) · · ·χt(�xn). (16)

Sqs···t(�x1, �x2, · · · , �xn) is the probability of observing phases q, s, · · · , t at points �x1, �x2, · · · , �xn , respectively. Analytical expres-
sions of the n-point probability functions are difficult to formulate for random materials. Therefore, Monte Carlo-based 
statistical sampling algorithms are frequently used. A spherical sampling template is employed in work by Coker and 
Torquato [221,222] and Lee et al. [38]. A more advanced adaptive sampling strategy has been presented in [203,204]. While 
these functions are powerful for quantifying the spatial configuration of the microstructure, they can also be utilized directly 
in micromechanics for both linear [188,189,203,212,223] and nonlinear [224,225] regimes.

Optimization problems are typically formed to reconstruct a RUC that reflects the statistical character of large volumes 
obtained through imaging techniques. An objective function, f , is formulated to quantify the differences in relevant statisti-
cal descriptors, Si , between the image-based data set (denoted by superscript p) and a RUC (denoted by superscript c), and 
is defined as

f ( �X ) =
Ns∑
i

βs
i Fi +

N p∑
i

β
p
i Pi, Fi = ∣∣S p

i − Sc
i

∣∣ . (17)

Here, �X is the set of physically admissible geometric parameters subject to minimization, and Pi are penalty functions 
to enforce geometric constraints, e.g. impenetrability of inclusions. Ns and Np are the number of statistics functions and 
number of penalty functions, respectively, and βs

i and β p
i are weights for each term in the objective function.

An example of a reconstruction procedure for particulate systems is presented here from [38], where n-point probability 
functions are considered. In [38], two separate objective functions are minimized independently. A first objective function 
for an N-phase material is defined as

F1(�cell) =
√√√√ N∑

q

(cp
q − cc

q)
2 =

√√√√ N∑
q

cp
q − Vqnq

�3
cell

2

, (18)

where cp
q and cc

q are the volume fractions for material phase q. Vq and nq are the volume and the number of heterogeneous 
phases (i.e. geometric entities: particles, fibers, voids, etc.) in the cell for phase q. The saturation point of the two-point 
probability function (rsat) provides an adequate initial guess, �stat = 2rsat, for the side length of the unit cell, �cell. Next, 
minimization of this function yields the geometrical size of the cell, �cell , that best preserves volume fractions (first-order 
statistics). A second objective function is introduced to determine the spatial distribution of the constituents. This function 
is defined as

F2(�xn) =
N∑
q

N∑
s

‖S p
qs − Sc

qs‖L2 , (19)

and represents the L2 error in the two-point statistics, Sqs . Here, �xn are the coordinates of the heterogeneities in the cell. 
A penalty function to enforce impenetrability of inclusions is also imposed [38].
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Fig. 5. RUC reconstruction example based on minimizing differences in one- and two-point probability functions for a granular pack of silica. (a) Particle 
size distribution from tomographic characterization (see inset image). (b) Pack and a reconstructed RUC. (c) Comparison of two-point probability functions 
between the pack (dashed lines) and 5 reconstructed RUCs (solid lines). Here solid lines represent the mean over the 5 realizations, and error bars indicate 
the standard deviation. Note that the tomographic data is called the “voxel pack”, and the cell generated based on the voxel data by replacing the inclusions 
with spheres is called the “pack”. (From Lee et al. [38].)

In [38], this reconstruction technique is performed for a tomographically characterized granular system composed of 
polydisperse silica (see inset of Fig. 5(a)). A large section (pack, see Fig. 5(b)) from the image data set (1445.37 × 1287.89 
× 789.11 μm3) is considered that contains 19,892 particles. The polydispersity of this system is reflected in the particle 
size distribution (see Fig. 5(a)), and the distribution is discretized into 9 distinct sizes (bins/modes) for further analysis. As 
mentioned above, the saturation point of the two-point probability function (rsat) provides a good estimate for an optimally 
sized RUC, �cell. For the granular system in Fig. 5(a), the statistical length scale is determined to be �stat = 2rsat = 400 μm
(∼10 mean particle diameters). Utilizing this knowledge, five RUCs of the second statistical order were reconstructed using 
a genetic algorithm [37,215]. One of these RUCs is shown in Fig. 5(b), and all RUCs contain 1082 particles with �m = �cell =
399.6 μm (geometric length scale, see Eq. (1)). Fig. 5(c) shows the good agreement achieved in the two-point statistics. Note 
the small standard deviation for 5 cell realizations.

5.2. Impact of microstructure on multiscale simulations

As introduced by Hill, Drugan and Willis, and Povirk, preserving the important geometric features is one critical aspect in 
accurately modeling heterogeneous materials. Utilizing the statistical reconstruction framework described above, the connec-
tion between a geometric material length scale, �cell ≈ �stat, and the optimally sized RUC, �RUC, is illustrated by determining 
the effective nonlinear material behavior in progressively damaged microstructures.

An example from [181] is considered, where the damage response of three different sized cells is simulated in the 
context of multiscale cohesive modeling [120] of heterogeneous adhesive layers. Here, micro-scale failure is modeled in 
a 3D finite strain setting with a viscous isotropic damage model (see [120,226,227] on constitutive damage theory). This 
damage process introduces a material (physical) length-scale, �μ , that represents diffusive thickness of micro-cracks (see 
inset image in Fig. 6(b)). Five statistically (macroscopically) equivalent RUCs of different morphology (microstructure) for 
three cell sizes were reconstructed. Note that for multiscale cohesive modeling, the height of the cell, lc , is fixed and the 
side length of the unit cell, �cell , is the in-plane cell dimension (see Mosby and Matouš [181]). The heterogeneous RUCs 
with a particle volume fraction of cp = 0.1 contain 23, 93, and 374 particles of diameter 10 μm for cell side lengths of 
�cell ≈ 1/2 �stat, �cell ≈ �stat, and �cell ≈ 2 �stat, respectively.

The macroscopic traction–separation response is shown in Fig. 6(a), where the error bars represent one standard devia-
tion over 5 cell realizations. Here, pn

M and �un
M � are the normal macroscopic first Piola–Kirchhoff traction and displacement 

jump vectors at the interface (across the height, lc), respectively. When comparing the macroscopic response, the hyper-
elastic behavior is nearly identical for all cell sizes. This is in agreement with analysis of linear modeling, where it has been 
demonstrated that a limited number of inclusions (∼12–30) is sufficient for capturing the mean response [34,40,205,228]. 
However, as illustrated here for nonlinear material behavior involving damage and material softening, O(102) inclusions are 
required to capture the mean response of the complete loading history for even moderate particle volume fractions [181]. 
Moreover, the mesh resolution needed to resolve �μ was determined by a convergence study and Richardson extrapola-
tion [229], and indicated hmean ≤ 1.5 μm. These requirements of a large number of inclusions (to capture the morphology, 
�RUC) and small numerical discretization (to capture the physics, �μ) lead to very large computations. Therefore, an efficient 
parallel solution strategy is essential (see Section 6).

The coupling between the strong nonlinearity and the microstructure affects the limit point and softening responses. 
While the two larger unit cells (�cell ≈ �stat and �cell ≈ 2 �stat) have small and overlapping error bars as the material softens, 
the smallest cell (�cell ≈ 1/2 �stat) has a distinctly different response with large standard deviation. One important quantity 
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Fig. 6. Effect of cell size on macroscopic traction–separation response. Note that the statistical length scale for this material is �stat = 140 μm. (a) Comparison 
of the average normal traction–separation response for different sized cells. (b) Convergence of the normal strength with increasing cell size. The inset image 
shows the damage field, ω ∈ (0, 1), for a �cell ≈ �stat cell. Figures taken from Mosby and Matouš [181]. © IOP Publishing. Reproduced with permission. All 
rights reserved.

Fig. 7. Counter-rotating vortices, initiation by ambient noise: details of a reconnection region. (a) t/t0 = 0.25, (b) t/t0 = 0.34. Reprinted from Comput. 
Methods in Appl. Mech. Eng., vol. 197, Chatelain et al. Billion vortex particle direct numerical simulations of aircraft wakes, pp. 1296–1304, Copyright 
(2008), with permission from Elsevier (see ref. [247].)

of interest is the maximum first Piola–Kirchhoff traction (strength). The convergence of the normal strength with respect to 
the side length of the unit cell, �cell , is displayed in Fig. 6(b). This figure shows the rapid convergence of both mean and 
standard deviation with increasing cell size, and confirms the connection between �RUC and �cell ≈ �stat.

It is important to close with the understanding that the material, �μ , (physics) and geometric, �RUC, (morphology) length-
scales are related in a complicated manner. Moreover, rare event statistics can sometimes dictate the effective material 
response, such as in high cycle fatigue. Therefore, a rigorous RUC study should be conducted for any material of interest in 
order to establish microstructure-statistics-property relations (see Fig. 1(b) for MSPR).

6. Parallel implementation and high performance computing

During the past 20 years, development of large and fast HPC resources [230,231] has been largely driven by the high-
fidelity simulations in nuclear stockpile stewardship [232], weather and hurricane waves/surge predictions [233–236], space 
exploration [237,238], biology [239–241], materials science [107,108,181,242,243] and many others [244–247]. In the begin-
ning, Moore’s Law of processor’s speed over CPU frequency [248] dominated gains in computational performance. Recently, 
the computational performance has increased through multi-level parallelism [231,249,250], while the per-CPU speed has 
remained nearly constant. For example, two of the world’s fastest supercomputers in 2016 (Tianhe-2, National Supercom-
puter Center, China and Titan [251], Oak Ridge National Laboratory, USA) use co-processors and GPUs. Moreover, the next 
generation of supercomputers slated for 2017–2018 delivery as part of the DoE CORAL program will all be composed of 
heterogeneous architectures [252–254]. Therefore, in order to efficiently use these machines for scientific discovery, the 
scalability of numerical models (i.e., the ability to compute solutions faster in proportion to increased resources) will be-
come ever more important [255].

The expansion of numerical modeling tools for scientific simulations enabled Direct Numerical Modeling (DNM) (com-
monly called Direct Numerical Simulation (DNS) in the fluid mechanics community) of complex physical systems to flourish 
(see two reviews on DNS in fluid dynamics [256,257]). For example, Chatelain et al. [247] presented the DNS of high 
Reynolds numbers aircraft wakes employing the vortex particle method [246] (see Fig. 7). This particle method is based 
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Fig. 8. (a) Schematic of the hierarchically parallel communication framework. The communication between scales is performed only by the “master” pro-
cessors of each server and the macro-scale client processors. Note that communication between servers is restricted to the equivalent task id (e.g., S1 on 
server 1 can communicate with S1 on server 2, but not S2 on server 2). (b) Computational speedup of the hierarchically parallel multi-scale solver. The 
macro-scale is discretized with 17.5k finite elements and 9.8k nonlinear degrees of freedom (DOF), and is computed using 32 cores. Each of the 512 RUCs 
is discretized with 1.46M finite elements and 773k nonlinear DOFs, and is computed using 512 cores. The complete multi-scale simulation contains 747M 
finite elements and 396M DOFs. Figures taken from Mosby and Matouš [108].

on the Navier–Stokes equations in vorticity–velocity form simulated using a Lagrangian discretization. Remeshing of the 
particles is employed in order to ensure the convergence.

Unfortunately, complex DNM/DNS simulations can require over one hundred billion computational cells to resolve com-
plex physical phenomena such as turbulence, crack propagation, shear band formation, etc., especially for heterogeneous 
materials and mixtures [181]. Moreover, numerical simulations of PDEs suffer from limited scalability due to algorith-
mic complexity and parallel communication overhead [255,258]. Therefore, even with recent increases in performance and 
availability of supercomputing environments, DNM/DNS often remains prohibitively expensive [259]. Fischer et al. [255] es-
timated that in order to take full advantage of the next–generation supercomputing platforms, the DNM/DNS would require 
approximately 10 Trillion computational cells. Therefore, advanced numerical techniques that provide comparable accuracy 
to DNM/DNS are needed. Such numerical techniques would enable the effective use of the next generation of supercomput-
ers, while also enabling simulation of larger domains with higher resolution on more accessible computing resources (i.e., 
commodity clusters).

Computational homogenization (see Section 4) is one of the methods that provides multi-level parallelism and reduces 
the computational cost, while maintaining high-fidelity representation of the physics (i.e., both microscale morphology and 
physical response when correctly specified at the microscale level). Due to the nested nature of the macro- and micro-
problems, RUCs may be computed independently from each other, enabling efficient parallelization. Moreover, each RUC can 
also be simulated in parallel, leading to an efficient hierarchically parallel CH solver [107,108]. This nested computational 
method, is often referred to as FE2, when two nested FE solutions are utilized or FE-FTT if a spectral solver is used at the 
RUC level with periodic boundary conditions.

There have been a few parallel implementations of the nested solution process [114,183,260–262], but they were not 
implemented in a true HPC setting that could take advantage of leadership class computing platforms and therefore showed 
only modest performance. Recently, Mosby and Matouš [107,108] introduced a hierarchically parallel implementation of the 
CH formulation that enables large scale simulations. In their implementation, the macro-scale equilibrium is computed in 
parallel on the “client” processors, and the contributions from the individual RUCs are computed in parallel on the “servers” 
(see Fig. 8(a)). Furthermore, all communications are performed using dynamic point-to-point non-blocking messages that are 
overlaid with computations at both scales. Mosby and Matouš [108] performed a simulation consisting of 53.8 Billion finite 
elements with 28.1 Billion nonlinear equations that was solved on 393,216 computing cores (786,432 threads). Moreover, nearly 
ideal strong scalability has been achieved (see Fig. 8(b)) from 4,096 to 262,144 computing cores on the Vulcan machine at 
LLNL. This exceptional performance holds excellent potential for deploying CH on future exascale computing platforms.

To demonstrate the ability of the CH solver to predict multiscale failure, we compute the response of a dual cantilever 
beam (DCB) using an isotropic viscous damage model at the microscale [181,263]. Fig. 9(a) shows the non-planar progres-
sive failure of the interface governed by the microscale damage as well as crack tunneling. The extent of damage in the 
microscale at the marked points along the macroscale interface (point 1 and point 2) is displayed in Fig. 9(b). The CH 
solver predicts that the fracture toughness of the interface is Gc ∈ [141, 175] J/m2 due to varying local strain rates. The 
mean toughness of the interface is Gmean

c = 162 J/m2. The critical interface first Piola–Kirchhoff traction is predicted as 
tc = max ‖�pM‖ ∈ [61, 68.2] MPa, with tmean

c = 65.6 MPa. Fig. 9(c) shows that the multiscale response of the DCB, loaded in 
mode-I, is bounded by the Linear Fracture Mechanics (LFM) theory (broken lines). One can see that LFM theory over-predicts 
the maximum load by more than 20% (Pmax = 759 N from the CH). The multiscale response is computed using up to 128k 
cores on the Mira supercomputer at Argonne National Laboratory.
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Fig. 9. Fully coupled multiscale simulation of progressive mode-I failure of a DCB. The material cells are each discretized with 249k finite elements, 
and the total multiscale simulation contains 80M finite elements and 42.5M nonlinear DOFs. (a) The macroscale response. (b) Extent of damage in the 
microscale at the marked points in (a). (c) Multiscale force-displacement curves. Broken lines denote the LFM theory response for Gmin

c = 141 J/m2 (dashed), 
Gmax

c = 175 J/m2 (dash–dotted), and Gmean
c = 162 J/m2 (dotted). Figures taken from Mosby and Matouš [108].

7. Reduced order models, data mining and acceleration of nonlinear multiscale methods

As indicated in the previous section (Section 6), full resolution simulations are possible using HPC. However, for material 
design, optimization, and uncertainty quantification, HPC simulations are not always optimal due to their high computational 
cost. To lower this computational expense, the research community has focused on model reduction, as it can significantly 
reduce time and data storage requirements. Moreover, solution accelerators are essential to make progress (e.g. through 
improving initial guess) in nonlinear DNM/DNS and multiscale methods alike.

Although closely related, model reduction for single scale problems [264–267] differs to those in the multiscale set-
ting [268–271]. In general, two nested BVPs are usually required in the multiscale setting. Considering the CH theory 
presented in Section 4, the macroscopic BVP provides boundary conditions for the microscale (process called localiza-
tion), and the microscopic BVP yields the average flux (process called homogenization, i.e. the macroscopic stress tensor 
at a macroscale material point), and the macroscopic (homogenized) consistent tangent for implicit numerical schemes. 
Although the homogenization and localization processes are concatenated for the fully coupled CH implementation, these 
processes have distinctly different complexities when used in the context of model reduction. The localization requires so-
lution of a nonlinear BVP (i.e. one of each RUC), whereas homogenization represents field averaging and solution of the 
macroscopic BVP (typically a smaller system of nonlinear equations).

Perhaps the simplest and efficient model reduction approach is macroscopic model calibration from detailed microscopic 
simulations. Note that this approach is only appropriate if the macroscopic model is known and accurate within the cal-
ibrated range. For example, Andrade and Tu [272] calibrated on the fly key material parameters of a phenomenological 
plasticity model at the macroscale from microscale computations using the discrete element method.

The Transformation Field Analysis (TFA) [206,273], its nonuniform extension (NTFA) [274,275], and eigenstrain based 
model reduction [146,276] have been popular for small stain analyses in particular. Although quite appealing, the mi-
crostructure evolution is neglected by these approaches, which limits their predictive capabilities for certain nonlinear 
applications.

One popular model reduction technique is rooted in proper orthogonal decomposition (POD) [277]. Yvonnet and He [271]
proposed a POD based model for both homogenization and localization of hyperelastic composites. Efficient integration 
of reduced-order equations in the POD context was performed by Hernández et al. [278]. Error bounding techniques for 
reduced order modeling using POD were proposed by Kerfriden et al. [279]. Other POD related reduction methods can be 
found in [280–285]. Although quite popular, POD is better suited for linear or weakly nonlinear processes (ordinary or partial 
differential equations), as it relies on a linear combination of a few basis vectors. Moreover, POD models can potentially drift 
from the true CH solution, since the method is directly coupled with the macroscale in terms of the reduced basis for most 
of the implementations.

Response Surface Models (RSM) [286] that substitute a microscale solution by an analytical function are also widely 
used. In this category, digital databases and/or discrete material maps are used to construct the overall homogenized macro-
potentials or to directly homogenize the stress tensor [287–289]. In particular, Temizer and Wriggers [288] and Temizer and 
Zhodi [289] have applied a concept of virtual material experiments and developed discrete material maps. Here, a range 
of tri-axial stretches and rotations is applied to create a material homogenization map of the second Piola stress tensor. 
Another attempt to construct a RSM of the strain energy density function includes a technique based on the phase–space 
simplicial interpolation [290]. Unfortunately, the localized solution (i.e. detailed RUC solution) is usually lost using the RSMs.

Machine learning approaches like Neural Networks (NN) have also been employed to obtain approximate constitutive 
behavior in both single- and multi-scale settings. NN is inspired by the central nervous systems of animals, in particular the 
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Fig. 10. The “Swiss roll” data set (In mechanics of materials, this data can represent detailed RUC simulations and/or full-field in situ experimental mea-
surements, for example), illustrating how Isomap exploits geodesic paths for nonlinear dimensionality reduction. (a) For two arbitrary points (circled) on a 
nonlinear manifold, their Euclidean distance in the high-dimensional input space (length of dashed line in figure (a)) may not accurately reflect their in-
trinsic similarity, as measured by geodesic distance along the low-dimensional manifold (length of solid curve). (b) The neighbor-hood graph G constructed 
in step one of Isomap (with k = 7 and N = 1000 data points) allows an approximation (red segments) of the true geodesic path to be computed efficiently 
in step two, as the shortest path in G . (c) The two-dimensional embedding recovered by Isomap in step three best preserves the shortest path distances 
in the neighborhood graph (overlaid). Straight lines in the embedding (blue) now represent simpler and cleaner approximations to the true geodesic paths 
than do the corresponding graph paths (red). Reprinted from Science, vol. 290, Tenenbaum et al. A global geometric framework for nonlinear dimensionality 
reduction, pp. 2323–2326, Copyright (2000), with permission from AAAS (see ref. [303]). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

brain, and is used to estimate functions that depend on a large number of generally unknown inputs. NN has been used to 
approximate chemical potentials [291–293], constitutive behavior of concrete [267], geomaterials [294,295], and has many 
other applications in mechanics of materials [296–300].

Recently, several dimension reduction techniques have been proposed that seek meaningful low-dimensional structures 
hidden in high-dimensional data [264,266,268,301–307]. In the context of mechanics of materials, this high-dimensional 
data may represent full-field experimental measurements and/or detailed RUC simulations. Among these, Laplacian Eigen-
maps [308] and Locally Linear Embeddings (LLE) [309] preserve only local geometry. Thus, these local methods can fail to 
capture the global pattern, especially when the data manifold contains a noisy signal [304,310]. Therefore, global techniques 
were developed to learn the underlying global geometry of a data set [303,304,311,312]. Some global techniques, such as 
kernel principal component analysis (PCA) [312] and diffusion maps [311] are sensitive to the selection of kernels. On the 
other hand, a global technique like the complete isometric feature mapping (Isomap) approximately preserves relevant ge-
ometrical scales [303,304,307]. Isomap is rooted in classical Multidimensional Scaling (MDS), but attempts to preserve the 
intrinsic geometry of the data. Isomap has been used in several contexts. For example, a Gaussian process emulator of 
parametrized partial differential equations for single scale analysis has been developed by Xing et al. [264] and Triantafyl-
lidis et al. [266]. Ganapathysubramanian and Zabaras employed Isomap for nonlinear dimension reduction of a data-driven 
stochastic input model [305], and Bhattacharjee and Matouš [268] used Isomap for manifold-based reduced order modeling 
of nonlinear heterogeneous hyperelastic materials as highlighted bellow.

Isomap is composed of three main steps. The first step involves identifying neighboring points on the manifold M, 
which contains the set of data Z associated with the corresponding set of input parameters T. The distance DT(i, j) is 
computed between pairs of points i and j in the input space T. Next, neighborhood relations are established using a graph. 
The manifold is represented by the graph, G , constructed from the points, i, using the k-rule, where k nearest neighbors 
are connected through the graph edges with weight DT(i, j) (see Fig. 10(b)). The second step in Isomap is to approximate 
the geodesic distances D M(i, j) between all pairs of points on the manifold M by computing their shortest path distances 
DG(i, j) in the graph G . In the final step, Isomap involves the computation of an affinity matrix, D̄i j = D2

G(i, j), from the 
data set Z, and applies classical MDS techniques for constructing an embedding of the data in a d-dimensional Euclidean 
space A. Thus, near and far points on M (by geodesic distance) are also near and far on A (by Euclidean distance) (see 
Fig. 10(c)).

To highlight the potential of a manifold-based nonlinear reduced order model (MNROM) in the context of CH, we present 
the macro and microscale coupling approach from the nonlinear manifold point of view as developed in [268]. The MNROM 
is constructed from a digital database of 4 × N = 4 × 4032 detailed microscale nonlinear simulations of RUCs (denoted as Z) 
and the set of their associated macroscale loading parameters (denoted as T) (see Fig. 11(a)). Using the digital database, we 
build a high-dimensional manifold M, and construct a low-dimensional Euclidean space A. The inverse or reconstruction 
map, f †

N : A �→ M, that is employed in the localization phase (without additional BVP solutions over a RUC) is constructed 
in the sense of non-parametric regression. To close the MNROM, the low-dimensional parameters need to be linked to the 
physical macroscale loading conditions through the map P. This map is established using NN.

As an example, we investigate the behavior of randomly configured (statistically isotropic) particulate hyperelastic mate-
rials. A cubic RUC with side length 5 μm contains 95 nonoverlapping spherical particles with 1 μm diameter. The unit cell 
is loaded, as in the strain driven CH, by the macroscopic deformation gradient, 0 F ( �X) = 0 R0U . Recognizing that the micro-
scopic response is invariant to the macroscopic rotation, we characterize macroscopic loading by three principal stretches, 
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Fig. 11. A manifold-based nonlinear reduced order model. (a) Schematic of the manifold-based nonlinear reduced order model and corresponding maps. 
(b) Isomap dimensionality. (c) Visualization of the microscopic effective Almansi strain (‖e‖F ). (Note that particles are rigid-like and hence are removed 
for the purpose of visualization.) Top: FEM simulation. Bottom: MNROM analysis. Figures taken from Bhattacharjee and Matouš [268].

0λi , and three principal rotations, ϕ i . The digital database is divided into four separate loading segments to cover complete 
envelope of principal stretches and rotations (referred to as Modes 1–4). After constructing the digital database, Isomap 
gives a reduced dimensionality of d = 6 for each loading mode, down from the complete solution manifold with the dimen-
sion of D = 4,374,459 (see Fig. 11(b)). Fig. 11(c) compares the microscopic effective Almansi strain within the matrix for 
both the FEM (top) and MNROM (bottom) analysis (localization step). As can be seen, the MNROM captures well the highly 
localized strain regions (see top cell surface and cross-sectional vertical surface) as well as the overall strain distribution 
(see the rest of the cell) without the need for additional solution of the BVP over the RUC. Note that this framework can also 
be used to accelerate fully coupled multiscale CH simulations (i.e. FE2). Developing MNROM for path dependent nonlinear 
material behavior is currently an active area of research.

8. Verification, validation and uncertainty quantification in multiscale computational science and engineering

When evaluating the predictive ability of a simulation tool, systematic verification, validation, and uncertainty quantifi-
cation is critical to understand the various sources of numerical and modeling errors. Verification is a process to ensure 
that the equations are being solved correctly by the numerical method, while validation denotes comparison of a simulation 
to experimental data to check physical validity of the governing equations. Verification and Validation (V&V) has first been 
formalized in the fluid mechanics community [313], and a book by Roache [229] discusses numerous techniques and case 
studies.

As numerical modeling strategies become increasingly complex and sophisticated, scientific software packages are being 
utilized for critical decision making in nuclear power reactors, weather, and hurricane wave surge modeling. Therefore, 
predictive abilities of simulation tools with Uncertainty Quantification (UQ) are critical.

The most complete definition of verification ensures both order of accuracy and consistency (solution approaches contin-
uum form as discretization approaches zero) of the method [314]. Verification has traditionally been accomplished through 
comparing discretized solutions to analytical problems. However, analytical solutions for nonlinear problems only exist for 
simple scenarios. To overcome this limitation, Salari and Knupp used the method of manufactured solutions (MMS) [314]. 
This method rigorously tests many parts of a simulation code that affects the order of accuracy in the solution. MMS has 
been utilized extensively in the nonlinear solid mechanics community [315,316]. A suite of verification problems for physics 
simulation codes used by Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL) and LLNL has played 
a fundamental role in the V&V community [317]. A comprehensive discussion about V&V, its purpose and importance, as 
well as historical perspectives have been featured in many papers and monographs [229,318–321].

Unfortunately, for multiscale modeling, there are only a limited number of verification studies, and even mathemati-
cal foundations for verification are lacking. For certain classes of problems in linear and nonlinear mechanics, Oden and 
coworkers [322] derived a posteriori error estimates and adaptivity measures for modeling error. This work has been applied 
to multiscale problems also [323,324]. For general problems, one of the easiest verification approaches for CH is comparison 
to DNM at both the macro- and micro-scales. Mosby and Matouš [107] considered the constrained axial tension simula-
tion (see Fig. 12) using both DNM and CH for multi-scale cohesive modeling in a 3D finite strain setting. In this case, the 
microstructure of the heterogeneous adhesive layer is composed of monodisperse spherical voids, and the adhesive is mod-
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Fig. 12. Verification of fully coupled CH for adhesive layers from Mosby and Matouš [107]. (a) Schematic illustrating macroscopic boundary conditions of 
adherends with L = 1 mm connected by a heterogeneous layer of thickness lc = 0.0625 mm. (b) The microscale heterogeneous layer for the DNM simulation 
(top) is based on a regular tessellation of the microstructure identified by the dotted box, and the cell used in the CH simulation with �RUC = 0.25 mm
contains 10 spherical voids with 40 μm diameter. Note that the CH simulation involves 16 computational cells, one for each macroscale cohesive element. 
(c) Comparison of force-displacement response between DNM and CH with inset comparing the microscale Almansi strain field.

eled as hyperelastic. As the microscale mesh is refined, the solutions obtained from both DNM and CH at both macro- and 
micro-scales converge (see Fig. 12(c)). While this is expected for simple loading cases where the macroscopic fields vary on 
a much larger length scale than heterogeneities, non-local effects [34,325] can become apparent for irregular macroscopic 
geometries (and thus violating the separation of scales inequality (see Eq. (1))). Bishop et al. [326] illustrate this for a poly-
crystalline I-beam where the mean of the DNM solution deviates from a simple one-way coupled up-scaling scheme near 
sharp edges of the macroscopic domain. Once more, verification studies and procedures for multiscale modeling approaches 
are currently lacking.

As the complexity of the physical models coupled across several scales increases, the experimental and computational 
collaborations are becoming paramount. The close link between experimentalists and computational scientists is crucial for 
successful validation across all relevant scales and physical phenomena. In this direction, co-designed image-based modeling 
and experimental techniques can yield higher quality validation and provide insight into physical behavior often hidden from 
only a macroscopic perspective.

Similar to verification challenges, validation in the multiscale setting for complex material behavior is in the early stages. 
Obtaining high-resolution validation data across multiple scales is difficult [327–331]. Frequently, only two-dimensional 
microstructures are presented with qualitative description of the projected morphology and its evolution. Moreover, com-
parison to macroscopic measurement, e.g. macroscopic loading curve, is often the only extent of bulk validation.

To illustrate macroscale validation (upscaling), RVE/RUC simulations of a nickel-based superalloy from the work of Ghosh 
et al. [327] are presented. Careful reconstruction of the microstructure from FIB/SEM is considered, and two different mi-
crostructures are compared (with and without accounting for twinned crystals) in Fig. 13(a). Note that the microstructure 
reconstructed with twins (preserving grain higher order correlations) better represents the experimental data. Fig. 13(b–d) 
shows the micro-CT based macro- and micro-validation data of silica-reinforced polymer. Material is loaded in situ and 
imaged for quantitative assessment of void formation and growth. Moreover, the detailed macroscopic loading profile is 
obtained.

With the introduction and utilization of nondestructive three-dimensional imaging techniques in the materials science 
community [330,332], validation of microscale data is becoming feasible. Many papers have utilized tomography for post-
mortem or offline assessment [331,333], and a few have performed in situ X-ray tomographic imaging during loading [330]. 
A powerful exploitation of tomographic approaches is three-dimensional digital volume correlation [334,335] where mi-
croscale changes are characterized over the loading history. Micro-scale in situ validation using tomographic approaches 
have been investigated for cellular materials (both metallic and polymeric) [330,331,336], metals [337], and woven com-
posites [338,339], just to name a few. Such image-based multiscale validation techniques with co-designed simulations will 
provide further confidence in physics simulation codes and advance the ICME paradigm (see Section 1).

A final yet nontrivial step in decision making abilities of predictive scientific codes is to understand and quantify un-
certainties. Many of the simulation techniques including CH are deterministic, but uncertainties exist in the physical and 
experimental world that must be accounted for. Two broad classifications of uncertainty are recognized in the community: 
aleatory and epistemic uncertainty [313,340]. Aleatory uncertainty refers to variability, irreducible uncertainty, inherent 
uncertainty, and stochastic uncertainty, whereas epistemic uncertainty denotes reducible uncertainty, subjective uncertainty, 
and model form uncertainty. When modeling heterogeneous materials, errors due to stochastic boundary conditions and ma-
terial variability are sources of aleatory uncertainty. A common source of epistemic uncertainty in modeling heterogeneous 
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Fig. 13. Validation examples for modeling of nonlinear materials. (a) Macro-scale validation of quasi-static loading for polycrystalline RUCs of nickel-based 
superalloys (microstructure in insert is that of nickel-based superalloys with (denoted synthetic) twins). Reprinted from Mechanics Research Commu-
nications, Ghosh et al. Multiscale modeling of polycrystalline nickel-based superalloys accounting for sub-grain microstructures, Copyright (2015), with 
permission from Elsevier (see ref. [327]). (b–d) Multiscale validation experiment for silica-reinforced polymer with incremental microstructure imaging and 
in situ testing (from Computational Physics Group at the University of Notre Dame). (b) 3D reconstruction images of progressive debonding for points A, B 
and C on the macroscopic loading curve in (c). Macroscale force-displacement curve indicating imaging points A, B and C (red dots). (d) Void size distri-
bution for loading point C with inset three-dimensional rendering of voids. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

materials relates to calibration of microscale constitutive models, where experimental data for calibrating all parameters of 
a microscale can be lacking.

In multiscale simulations, understanding and quantifying errors is critically important. How these errors initiate and 
propagate across scales is essential for determining the overall accuracy of any multiscale scheme. Moreover, this subse-
quently affects how the results from a multiscale scheme can be used. Multiscale simulations can efficiently transform 
epistemic uncertainty in parameters of coarse-grained models into the aleatoric uncertainty of the finer-grained models. 
Unfortunately, it is beyond the scope of this review article to go deeper into UQ at this point. Thus, we point an interested 
reader to a review article entitled “Uncertainty Quantification in Multiscale Simulation of Materials: A Prospective” [5] for 
more details on UQ in multiscale setting. More articles and books on general aspects of UQ can be found in [340–343].

9. Conclusions and future directions

Although existing computational science and engineering capabilities for modeling nonlinear material behavior are im-
pressive, it is unclear how much impact they have had on materials engineering and design in general. Moreover, an 
integrated vision and/or framework that would be widely usable in multiscale computational materials engineering is lack-
ing. Therefore, establishing microstructure-statistics-property relations underpinned by Integrated Computational Materials 
Engineering, based on an image-based (data-driven) multiscale modeling framework with co-designed simulations and ex-
periments, has the potential to transform the materials science and engineering field. Such a framework would ultimately 
lead to Virtual Materials Testing standards and aid in the development of new material formulations as well as decrease the 
time to market of innovative products.

In spite of the progress made over the past decades, a lot of work still remains to be done, and several technological 
barriers have to be mitigated to make integrated computational materials engineering a reality for a broad spectrum of 
materials applications. Among the ongoing challenges and expected trends the following ones are outlined:

• Fully coupled hierarchical and concurrent multiscale models in 3D
Without any doubt, three-dimensional multiscale simulations (both hierarchical and concurrent) that resolve all es-
sential length (and time) scales are needed. Fully coupled multiscale simulations of realistic devices/components (test 
specimen) with complex physics are still uncommon and multiscale modeling is accomplished by the input and out-
put of stand-alone codes mostly in two-dimensions only. The progress to be made here is evidently coupled to the 
next item on Advances in Computing Capabilities.
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• Advances in computing capabilities
Exponential growth in computer performance over the last several decades is one of the factors in integrated compu-
tational materials engineering feasibility. Moreover, high performance computing has a dramatic effect on multiscale 
computational materials engineering. If current computer resources can do X , we envision that exascale machines will 
provide O(1000 X) improvement in terms of larger multiscale problems being solved, more physics being included, 
etc. Therefore, development and application of modern parallel computational methods will be paramount in the de-
ployment of integrated computational materials engineering and utilization of the next generation of supercomputers 
(see Section 6).

• Intelligent model reduction – whether applied to computational or experimental data
Large 3D parallel simulations and experimental/imaging materials characterizations will necessitate the intelligent 
reduction of information required for the next level of materials integration. Mathematical/Statistical (e.g. machine 
learning) methods that seek meaningful low-dimensional structures hidden in high-dimensional multiscale data (both 
computational and experimental) will be important for a variety of tasks, i.e. multiscale solution accelerators, visual-
ization, decision making, uncertainty quantification, reduced order model construction (see Section 7).

• Co-designed simulations and experiments in 3D
This review article has clearly illustrated the need for growing interaction with materials science. Materials science 
provides not only the required insight in the physical and mechanical behavior at small scales, but also the necessary 
quantitative data (parameters and models) on which any multiscale method relies. If the quality of this data is inad-
equate, not well understood or physical parameters are not reliable, then multiscale methods cannot possibly yield 
predictive results. Proper characterization of materials at small scales relies on strong collaboration between me-
chanics of materials experts with materials scientists. Cutting-edge research areas in 3D nondestructive experimental 
techniques with in situ measurements are not mature yet, but show a promising path for validation. Experimental 
measurements co-designed with simulations will have a profound impact on filling gaps in theoretical understand-
ing and calibrating and validating computational methods. This can only be achieved by joining the expertise in 
experimental mechanics, computational mechanics and materials science.

• Verification, validation and uncertainty quantification
Verification and Validation in computational science and engineering have been accepted as a key part of modern 
physics simulation codes and this trend must continue. Verification in a multiscale setting (i.e. how to efficiently con-
struct verified solutions) is still an open area of work, and validation is linked to the discussion above on Co-designed 
Simulations and Experiments. Uncertainty is a complex issue with pervasive effects that deserves its own attention. 
Although UQ is a large and richly developed area of research in the context of computer modeling, applications of 
multiscale UQ techniques in materials science are still quite limited. Epistemic uncertainty in parameters of macro-
scopic models (i.e. global models) can be properly linked though multiscale simulations to aleatoric uncertainty of the 
microscopic (i.e. fine scale) models. Therefore, uncertainty quantification, propagation, mitigation and management, 
which are all relatively recent research areas in multiscale computational science and engineering, have to be further 
investigated (see Section 8).

• Multiscale versus multi-level description
Damage and fracture is one of the challenging problems that hierarchically cascades across all length scales, for 
example. Although multiscale modeling and multi-level materials design are related, these two endeavors are distinct. 
Multiscale techniques pertain to data and systems representing two or more distinct spatial and/or temporal scales 
whereas multi-level approaches aim at data and systems representing multiple levels of material arrangements. In the 
perspective of integrated computational materials engineering, multiscale modeling (both hierarchical and concurrent) 
is contributing to progress in multi-level materials design.

• Multiple temporal scales
A lot more attention has to be given to temporal scales and to spatial–temporal coupling. Many physical time scales 
in diffusion and small-scale deformation mechanisms cannot be accelerated. Likewise several small-scale processes 
happen very quickly, e.g. in many chemical reactions. Scale separation limitations and micro-inertia effects are also 
areas of interest. Therefore, capturing fully transient regimes and extreme spectra of temporal processes still remains 
a challenge.

• Cultural barriers, education and workforce readiness
If integrated computational materials engineering is to become part of the industrial design chain, a cultural change 
in the engineering and science disciplines is needed and will require the integration of computational science and 
engineering into curriculum at all levels (from baccalaureate to doctoral). Skills from statistics, mechanics, physics, 
chemistry, applied mathematics, scientific computing, data science, materials science, are all needed and will have to 
enrich traditional single-discipline curricula.
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