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1. Introduction

The next generation of high power electronic devices, such as high
power LEDs, requires thermal interface materials (TIM) that exhibit
excellent heat dissipation properties through high thermal conduc-
tivity in order to control operating temperatures of the electronic
devices [1]. In addition, these materials should have appropriate
mechanical properties to prevent reliability issues during the life-
time cycle. Due to their relatively high thermal conductivity, and
low temperature processing, sintered silver pastes are of particular
interest. During sintering, a porous connected silver structure is
generated. Evidently, the processing conditions (e.g., sintering tem-
perature, heating rate, holding time) affect the microstructure of the
material and, consequently, the resulting thermal and mechanical
properties [2-4]. A common material development practice typi-
cally involves multiple trial-and-error cycles: application of expert
knowledge-based variations on chemical composition and process-
ing conditions, followed by material inspection by cross-sectioning
and time consuming and expensive experimental testing at the mate-
rial, subsystem and component level. This material development
cycle can be significantly shortened by establishing a fundamental
understanding of the microstructure statistics-property relations [5].

Several analytical models have been proposed in the literature to
predict the thermal and mechanical properties of TIMs. The simplest
estimate is given by the rule of mixtures, which is a zeroth-order
approximation and includes the volume fraction as the single param-
eter [1]. This simple approximation can be improved by adding
certain idealized assumptions on the microstructure of the material,
e.g. particle or pore shape (usually spherical or ellipsoidal), distri-
bution, orientation, packing, etc. [6-9]. Although these models can
match the experimental values, they usually require some fitting
and thus do not establish a direct relation between microstructural
variations and the effective properties. Another approach that leads
to very good prediction of the effective properties is based on direct
numerical (often finite element) simulations of either idealized [10],
or actual microstructures obtained from micrographs (2D) [11-13],
or computer tomography (3D)[14]. This is a very powerful and rather
accurate technique, however, demanding from the viewpoint of time
and computer resources. Although leading to property predictions, it
does not always provide insight into the relative contribution of the
different microstructural features. Effective material properties can
also be obtained using statistical micromechanics theories [15,16]. If
a good statistical description of the microstructure is known, e.g. size
distribution and configuration of particles, higher-order statistical
models can very efficiently and accurately predict the effective mate-
rial properties [17-19]. For complex, interconnected microstructures
with non-trivial 3D geometrical features, the choice of an appropriate
statistical model is less straightforward.

In this paper, the microstructure statistics-property relations
of silver TIM are established by the novel link between synthetic
microstructures (i.e. Gaussian random field and symmetric-cell
models) with statistical morphological measures and the higher-
order statistical micromechanics. The verification of the thermo-
mechanical properties is provided by the computational homog-
enization of the actual microstructure. This approach opens new
pathways for practical material development, where the expen-
sive experimental testing, microscopic material characterization and
numerical simulation cycles can be replaced by less expensive and
efficient predictions based on the higher-order statistical estimates.
This requires identification of a synthetic microstructural model that
is statistically representative of the TIM morphology, which in this
work has been generated based on Gaussian random field mod-
els. We note that the proposed microstructure statistics-property
methodology can be applied to other porous/heterogeneous thermal
interface materials (e.g., transient liquid phase conductive adhesives)
with bicontinuous structures.

The paper is organized as follows. Section 2 summarizes the
material processing and 3D microstructure visualization procedure,
as well as the generation of the synthetic microstructures. The sta-
tistical characterization of the real and synthetic microstructures is
performed in Section 3. After a brief summary of the computational
homogenization and statistical micromechanics approaches for the
effective property estimation in Section 4, the results are presented
in Section 5. The paper ends with concluding remarks in Section 6.

2. Material processing and 3D microstructure visualization

The silver-particle based thermal interface material has been pro-
vided by Heraeus company [20] in the form of silver particles/flakes
in a polymer solvent. Droplets of the material were placed on a glass
plate and processed in a Carbolite CSF1200 oven. The processing
temperature profile is shown in Fig. 1. The oven was first pre-heated
for 1 h to 160 °C to achieve a homogeneous temperature before plac-
ing the samples. The first step in the processing is known as “drying”,
during which the solvent evaporates and only silver particles remain.
Drying was done for 50 min at 160 °C for all samples. The second
step is the actual sintering of the silver particles, during which silver
particles agglomerate and form a connected structure. To obtain
a distinct variation in the microstructure, three different sintering
temperatures were used, i.e. 230 °C, 280 °C, 330 °C, resulting in three
samples, hereafter labeled S1, S2 and S3, respectively. The sintering
time was the same for all the three samples, equal to 60 min. The
cool down step was performed inside the oven at a measured rate of
12.5 °C/min.

For the visualization and subsequent characterization of 3D mate-
rial structure, the SEM-FIB technique [21,22] is applied using the
FEI DualBeam system. This imaging technique combines alternat-
ing milling of thin slices (in this work 30 nm) of the material using
Focused Ion Beam (FIB) and Scanning Electron Microscopy (SEM)
imaging. These consecutive SEM images can next be reconstructed to
a 3D volume. The SEM-FIB process is illustrated in Fig. 2.

The scanned reconstructed cross-sectional images are segmented
to distinguish between pixels representing silver and air. By
assigning a thickness to each pixel in the images (corresponding to
the thickness of the FIB removed layer), a 3D voxel data set is gen-
erated. Fig. 3 shows the segmented 3D visualizations of all three
samples; the corresponding voxel data can be found in Table 1. These
three 3D visualizations were used for the statistical characterization
and effective property estimation as will be discussed in the subse-
quent sections. Table 1 shows that the volume fraction of the solid
phase increases with increasing processing temperature, i.e. porosity
decreases.

In addition to these real microstructures, synthetic microstruc-
tures having a well defined analytical description are considered
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Fig. 1. Processing temperature profile of the three samples.
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FIB

Fig. 2. Illustration of the SEM-FIB procedure leading to 3D visualization of the microstructure of the material.
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(a) Sample S1

(b) Sample S2

139 pum

(c) Sample S3

Fig. 3. Segmented 3D visualizations of the three samples obtained by SEM-FIB.

in order to better understand the microstructure statistics-property
relations for these silver interconnects. For this purpose, we con-
sider Gaussian random field (GRF) models as introduced by other
researchers studying porous materials and microemulsions [23-26].
In this study, we found that a one-cut GRF model proposed by
Roberts and Teubner [23] has similar structural characteristics to the
porous silver microstructures. In particular, the field-field correlation
function, g(r), denoted as Model Il in [23] is considered, where

_ 3 (sin(ur) — pur cos(ur) — sin(r) — r cos(r))

g T : (1)
and the corresponding spectral density is given as

3
p(k) = m (H(k—p)—H(k-1)). (2)

Here, H is the Heaviside function, u is a free parameter, and r and
k are the real spatial and transform variables, respectively. Using the
definition of the field-field correlation function, T-periodic Gaussian
random fields with a maximum wave number of K = 2nN/T can be
formulated as

N N N

y@) = > > > cimnexp(ikiy -X), 3)

|I=—Nm=-Nn=-N

Table 1
Voxel data of the visualizations of the three samples.
Sample Volume Volume fraction of silver Pixel size
[nm?] (%] [nm]
S1 13.2 x 15.5 x 14.8 71.4 30
S2 13.9 x 15.6 x 13.1 73.9 30
S3 16.9 x 16.5 x 13.9 76.7 30

where i is the imaginary number, and k;,,, = 2T”(li + mj + nk) with
k = ||k]|. The coefficients ¢, are defined as ¢, = Qyn + ibjmn, and
ymn and by, are random independent variables from Gaussian dis-
tributions, where (a) = (b) = 0 and (@)2 = (b)2 = 1 p(kimn)(2m/T)>.
See [23] for more details. Here, microstructures with 5123 voxels
are generated with a MATLAB script while utilizing MATLAB'’s fast
Fourier transform (FFT) algorithms with y = 1.5and T = 8m.
The volume fractions were matched to samples S1-S3 by iteratively
selecting the threshold 3 such that all voxels with function values of
—oo < y(x) < Bare set to 1 (solid material phase), and all other vox-
els equal 0 (void phase). A qualitative comparison is made in Fig. 4 for
sample S3. For the remainder of the paper, S#-FIB and S#-GRF will
be used to differentiate between the real and synthetic microstruc-
tures, respectively. The pixel size was determined by minimizing the
difference in the two-point probability function, S¢s(r = |Y — Y'|), of
the real and synthetic microstructures [27]

() = Hsss,real(r) - Sss,synthetic(a T)H . (4)

Here Sgrear(r) is the two-point probability function of the real
microstructure (FIB) where the subscript s represents the solid phase,
Sss.synthetic(@ 1) is the function for the synthetic GRF microstructure,
and « is the pixel size of the synthetic GRF model and the variable
being optimized. This optimization variable results in a horizontal
scaling or stretching of the two-point probability function. Results
of the two-point point probability functions are discussed in further
detail in the following section. Note that the pixel size or scale of
the synthetic microstructures is considered here to simply scale the
numerically generated structures for consistent comparison of var-
ious statistical morphological measures. It should be noted that the
scaling has no impact on the effective property predictions of mate-
rials with linear constitutive relations. The resulting domain sizes
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(a) S3-FIB (real)

(b) S3-GRF (synthetic)

Fig. 4. Comparison of orthoslices for (a) real silver microstructure and (b) synthetic Gaussian random field (GRF).

and pixel sizes for the generated synthetic microstructures are sum-
marized in Table 2. Finally we note, that developing and tuning a
field-field function to match multiple structural characteristics (e.g.,
second-point correlations, filament thickness distribution, minimum
distance field, etc.) is an active area of research. Thus microstructure
statistics-property relations play an important role for future devel-
opment of new field-field functions designed specifically for these
materials.

3. Statistical characterization

Probability functions (n-point), Sgs...((X1,X2,---,Xs), are com-
monly used statistical descriptors that quantify complex microstruc-
tures [16,17,27]. These functions represent the probability of phases
q,s,-- -, texisting at points X1, X, - - -, X, and are defined as

Sgs-t(X1,%2, -+, Xn) = xq(X1) ¥5(X2) - xi(Xn). (5)

Here, y,(x) is the indicator function, and the overbar signifies an
ensemble average (equivalent to volume averaging when assuming
ergodicity). In this work, the two-point probability function quan-
tifies the short- and long-range character of these complex porous
microstructures and are computed using our in-house parallel sta-
tistical sampling code, Stat3D [17-19,27]. The two-point probability
functions, S, for the real and synthetic microstructures are shown in
Fig. 5. It can be observed that the shape of these functions is similar
for both the real and synthetic microstructures. The similarities sug-
gest that GRF models are suitable for representing the porous silver
interconnect materials. In addition, the functions saturate at rgs =
5um, which suggests a representative cell size 2 x rs;. Note that all
synthetic and real microstructures have domain lengths larger than
this characteristic size (see Tables 1 and 2).

In order to further quantify the local structures, image process-
ing and analysis have been performed. In Fig. 3, interconnected
bicontinuous structures are observed. Therefore, an image process-
ing pipeline similar to the one described in Shuck et al. [22] is utilized
to quantify the thicknesses of the ligament structures throughout
the voxel data set. The software package AvizoFire (FEI) is employed

Table 2
Domain descriptions for GRF samples with pixel sizes obtained from minimization
problem defined in Eq. (4).

Sample Volume Volume fraction of silver Pixel size
[um?] [%] [nm]
S1-GRF 10.7 x 10.7 x 10.7 71.4 209
S2-GRF 125 x 125 x 12,5 73.9 24.5
S3-GRF 12.6 x 12.6 x 12.6 76.7 24.7

for image processing. The image processing pipeline is illustrated
for sample S1-FIB in Fig. 6. The processing pipeline begins with
the thresholded binary data set (A in Fig. 6). A skeletonization
algorithm [28] is performed in two steps. First, a thinning algorithm
peels back the surface of the binary data set until a structure with one
voxel thickness remains. Note that the thinning algorithm results in
a line of voxels for filament structures, and a shell remains around
fully enclosed holes (see B in Fig. 6). Second, the thinned struc-
ture is smoothed until only ligaments of voxels remain (see C in
Fig. 6). A chamfer minimum distance map is also computed from
the input binary image data (see D in Fig. 6). The chamfer distance
field represents the minimum Euclidean distance from a point within
the material to the material/void interface. The resulting distance
field is then multiplied by the binary image of the thinned structure
(B x Dresults in E in Fig. 6), and the resulting dataset represents the
half thickness of each point in the skeleton. The image processing
pipeline is performed for all real and synthetic microstructures.
Following the image-processing pipeline described above, the
distribution of the average thickness (two times the half thickness
distribution) is determined for the real and synthetic microstruc-
tures. The resulting probability density function (pdf) distributions
are shown in Fig. 7. The minimum, mean, and maximum thickness
are also indicated in these figures. Comparing the thickness distribu-
tions between the three real samples, Fig. 7 (a, b), it can be observed
that the mean ligament thickness and the width of the ligament

0.8 : : : :
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——352-FIB
07 ——33-FIB |
- == S1-GRF
0.65 - ——S2-GRF |
- — —— S3-GRF
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0.5 Tt T TTTT T T ]
045 | ]
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Fig. 5. Isotropic two-point probability function for the solid phase, Sg;.
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Fig. 6. Overview of the image processing pipeline: Voxel datasets are processed using FEI's AvizoFire in order to quantify the structure of the morphology.

thickness distribution increase between the samples S1 and S2, while
the difference between the samples S2 and S3 is very small. The
thickness distributions of the real (Fig. 7 (a, b)) and GRF (Fig. 7 (c,
d)) microstructures are very similar. The synthetic GRF distributions
preserve the trend in the mean, with the mean thickness increas-
ing for microstructures having larger volume fractions (S1 has lowest
volume fraction, and S3 has largest volume fraction), although the
difference between the synthetic S2-GRF and S3-GRF is slightly larger
than for the real structures S2-FIB and S3-FIB.

The structure of the resulting skeletons (see image data C in
Fig. 6, for example) are analysed. The number of nodes (cross-point
vertices) and edges (ligaments) in the skeletons is reported in Fig. 8,
where the quantities are normalized by the volume V of the data
set. Note that the monotonic decrease of the no. of edges/vertices
in samples S1-S3 (increasing volume fraction) is captured for both
the real and synthetic microstructures. However, the density of the
edges/vertices is higher for the GRF samples. This is likely due to
the increasing number of average sized ligaments in the synthetic
microstructures, i.e. the probability of the mean thickness is higher
for the synthetic (GRF) microstructures (higher pdf values in Fig. 7 (d)
compared to pdf values in Fig. 7 (b)).

Based on the statistical analysis presented in this section, it can
be concluded that the generated Gaussian random field synthetic
microstructures can be considered statistically representative for the
sintered silver material. Consequently, the synthetic models can be
used for the prediction of the linear effective material properties of
sintered silver interconnect materials, thus avoiding (or minimizing)
the expensive material characterization. This hypothesis will be
verified in the following.

4. Thermo-mechanical property estimates

The thermo-mechanical properties of the silver paste intercon-
nect materials have been computed numerically, based on the
computational homogenization approach, providing the reference
solution, and by statistical micromechanics theories.

4.1. Computational homogenization for effective material properties

Computational homogenization is by now a well established
technique for computing the macroscopic (effective) properties of
heterogeneous materials, including non-linear behavior and evolving
microstructures. A general review on the computational homoge-
nization technique and the implementation details can be found in
references [29,30], among others.

The computational homogenization technique is based on the
construction and solution of a detailed microstructural model. In
this work, microstructural models were obtained by cutting out win-
dows of various sizes from the 3D reconstructed and segmented
microstructures, see Fig. 9. These models will be here referred to
as Microstructural Volume Elements (MVE). To create finite element
models of these MVEs, each voxel within an MVE has been trans-
formed to a (hexahedron) finite element. Based on the segmentation,
the finite element was assigned material properties of either silver or
“air”, given in Table 3. Note, that for the silver phase, material prop-
erties of bulk silver have been taken, due to the lack of material data
for nano-particle silver. The material properties of “air” have been
selected to represent a phase with thermal conductivity and stiffness
properties negligibly low compared to the metal phase. The mate-
rial properties have been assumed temperature independent in the
temperature range relevant for the application of the interconnect
materials (approx. —40 °C to 150 °C).

For the computation of the effective thermal conductivity, MVEs
were subjected to an overall macroscopic temperature gradient, in
combination with the periodic boundary conditions, see [13,31] for
details. Note, that the use of the periodic boundary conditions results
in a non-uniform, but periodic, temperature distribution on the cube
faces. This provides less thermal constraints and is known to lead to
better estimation of the effective thermal conductivity compared to
fully prescribing temperature on the whole face (giving overestima-
tion of the effective thermal conductivity) or prescribing the thermal
flux (giving underestimation) [32]. In this work, the temperature gra-
dient in the vertical direction of the images was prescribed; it has
been verified that prescribing a temperature gradient in the other
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Fig. 7. Probability density functions (pdf) for minimum distance field and thickness distribution for (a, b) real microstructures and (c, d) synthetic GRF microstructures.

directions did not change the results within the statistical deviation.
Assuming isotropic linear Fourier’s law for both phases, the steady
state heat conduction problem is solved, resulting in the microscopic
temperature and heat flux distributions within the MVE, Fig. 9. The
macroscopic effective heat flux is computed as the volume average of
the microscopic heat flux. Relating the computed macroscopic heat
flux to the macroscopic prescribed temperature gradient results in
the effective thermal conductivity.

For the mechanical simulations, uniaxial tensile loading was
applied on the MVEs. To this end, displacements have been prescribed

in the vertical direction, combined with the periodic boundary condi-
tions in the three spatial directions. The same remarks as above with
respect to the periodic boundary conditions apply to the mechanical
simulations as well. It has again been verified that prescribing ten-
sile loading in other directions did not change the results. Isotropic
linear elastic Hooke’s law was assumed for both phases. Solving the
equilibrium problem results in the distribution of displacement and
stress fields within the MVE, Fig. 9. Relating the prescribed overall
axial tensile strain to the reaction force corresponding to the overall
uniaxial stress provides the effective Young’s modulus.
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Fig. 8. Skeleton analysis for real and artificial microstructures.
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Fig.9. Overview of the numerical analysis: an MVE is created from the 3D segmented microstructure followed by the thermal or mechanical finite element analyses from which

the effective properties are computed.

4.2. Statistical micromechanics

Effective material properties are also computed using statistical
micromechanics theories to illustrate their applicability in accurately
determining microstructure statistics-property relations. Statistical
micromechanics theories have been developed over the past half
century, and details of these developments are presented in books by
Milton [15] and Torquato [16].

In this work, third-order statistical micromechanics models
are utilized for computing the effective thermal conductivity and
elastic constants. These estimates depend on the individual phase
properties (kj, K;, and G; being the thermal conductivity, bulk mod-
ulus, and shear modulus of material phase i), the material volume
fractions c;, and microstructural parameters ¢; and 7); that are func-
tions of the one-, two-, and three-point probability functions. For the
effective thermal conductivity, the expression obtained through the
strong-contrast expansion derived by Torquato is utilized (See Eq.
(20.84) in [16]). This expression is given as (for k3 /k; = 0)

dCz
d—c -4’

(6)

Ke/K1 =1

For the porous microstructures considered here, 7 is the effec-
tive thermal conductivity of the solid phase and k; = 0 (perfectly
insulating pore phase), d is the dimension of the structure (d = 3 in
this work), and the microstructural parameter ¢, is given as

20_1.
/ / / o 15222(r1,f2,0)d(‘3059)dr1 drz, (7)

2C2C1 2T1T2
where
= S222(11,72,0) — Sa2(11)S22(T
Sr(11.T2, 0) = 222(11, 12 )C2 22(11)S22( 2)' (8)

S222(r1,72,0) and Sy,(r) are the three- and two-point probability
functions (see Eq. (5)). As mentioned by Torquato, this expression
perturbs about the self-consistent estimate of Bruggeman [6] and
Landauer [33,34] and is expected to yield an accurate estimate for

Table 3
Material properties of silver and “air” used in the numerical simulations.

Phase Thermal conductivity Young’s modulus Poisson ratio
[W/(mK)] [MPa] [-]

Silver 419 83,000 0.37

“Air” 1x1075 1x10-5 0

phase-inversion-symmetric structures. Phase-inversion-symmetric
morphologies, e.g. symmetric cell materials and certain GRF models,
denote structures where microstructural parameters of phase 1 are
equivalent to the microstructural parameters of phase 2 when the
volume fraction of phase 1 is 1—c;. For the effective elastic constants,
the strong contrast expansion derived by Torquato (see Eqgs. (4.1)-
(4.5) in [35]) is considered. The bulk and shear moduli assuming no
stiffness in the pore phase (K, = G, = 0) are given as

15K
Ke  1-C— grrsc 152 9)
3K 15K; ’
K1+ 3o - gilgad
and
1_ec ELST R I SR G 2 _ 30G1(2K1 +3G1)
Ge _ 27 9K, + 8G, 12 91(1 + 8G; 27 T(9K, £ 8G 2 192
Gy - 6(Ky + 2Gy) 3K; ’
1+ o0k 86, 2 oK 186G, %2
3K, + Gy 72 30G;(2K; + 3Gy)
6[91(1 +861] 2~ oK, 1 86,7 152 (10
where
5 150 P4(cos0) =
m = §2 / / / al S 2d(cos 6)dridr,. (11)
7C2C1

Here P4(cos) is the fourth order Legendre polynomial. In addition,
these three-point approximations are also compared to the com-
monly used Hashin-Shtrikman bounds (HS) [36,37]. Note that the HS
bounds are second-order bounds and are only a function of the mate-
rial volume fraction and thus cannot differentiate among varying
microstructures.

Determining the microstructural parameters ¢; and 7; in these
higher order models is often difficult for a wide range of microstruc-
tures, as analytical expressions of the n-point probability functions
are often lacking. Symmetric-cell and GRF are among the models
for which the probability functions have been formulated analyti-
cally, and the microstructural parameters have been evaluated and
presented in the literature [16,23]. Recently, accurate methods have
been reported for computing these parameters directly from three-
dimensional microstructures [18,19]. In this work, we compute the
third-order effective properties utilizing parameters available in the
literature for symmetric-cell GRF models and compare them to the
computational homogenization results.
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5. Results

In this section, we report the microstructure statistics-property
relations for both the computational homogenization and statistical
micromechanics approaches. Regarding the statistical micromechan-
ics predictions, the HS upper bound and the third-order estimates
for four unique classes of ideal microstructures are considered. Note
that the microstructural parameters for the symmetric cell material
models (spherical, cubical, and needle-like cells) are summarized in
Chapter 22 of [16], and the microstructural data for the Gaussian ran-
dom field 1-cut model is presented in Table I and Table IX of [23]
(Model III). Fig. 10 shows the predictions of the effective ther-
mal conductivity, K., normalized by the thermal conductivity of the
solid phase, Ks, as a function of the solid material volume fraction.
Note that the third-order estimates deviate at most by 5% for the
microstructural models considered in the volume fraction range of
interest. In the previous sections, we have shown that the GRF model
captures many of the relevant structural features of the real sin-
tered microstructures. In contrast, the structural characteristics of
the symmetric cell materials are significantly different despite simi-
lar effective property predictions. Symmetric cell microstructures are
generated through subdividing the volume into cells of a particular
shape, followed by random assignment of material phases. The cubi-
cal symmetric cell material, for example, is composed of tiled cubes
where each cube is randomly chosen to be a solid or a void. Thus, this
microstructure results in a saturation of the two-point probability
function at one cell length (see [16]), which is significantly differ-
ent from the two-point probability function observed for GRF models
and the sintered silver paste material (see Fig. 5). This suggests
that GRF models have a longer correlation length. Moreover, while
there is little differentiation in the effective material predictions of
the symmetric cell and GRF models for linear materials, more com-
plex loading regimes and nonlinear irreversible material behavior
are likely to reveal significant differences. The importance of a large
correlation length, and thus large MVE size, has been shown for
nonlinear material softening in [38]. For future study of these mate-
rials, we have shown that a GRF material model is a good synthetic
microstructure for representing these sintered silver pastes.

In addition to the statistical micromechanics estimates, we also
consider direct simulation of the real microstructures. For the real
samples, the finite element simulations on 12 MVEs per sample (51,
S2, and S3) were performed as described in Section 4.1. Each MVE
contained 1103 hexahedral elements (1.331 M elements). The mean
results of the effective thermal conductivity obtained through the
MVE simulations are represented by the three markers (filled cir-
cle, triangle, and diamond for sample S1, S2, and S3, respectively),

and the gray shaded ellipses represent one standard deviation of
the distribution of 12 FEM simulations performed for each sam-
ple. This ellipse is determined from the covariance matrix of the
effective thermal conductivity/volume fraction data. Note that these
distributions overlap significantly with the idealized microstructural
models, illustrating the good agreement between the two modeling
approaches. The differences in the volume fraction of each sample
contribute most to the difference in the effective properties, while
the differences in the microstructural character among the samples
play a secondary role.

Similar to the effective thermal conductivity, the effective
Young’s modulus, E., is also computed using both modeling
approaches. The HS upper bound, the third-order estimates, and
the FEM computational homogenization results as a function of
the material volume fraction are presented in Fig. 11. The trends in
predictions of the effective thermal conductivity described above
are similar to the trends in the effective Young’s modulus. However,
the third-order estimates among the four ideal microstructures
vary at most by 10% for the volume fraction range of interest, indi-
cating that the Young’s modulus is more sensitive to morphology
for these types of microstructures. This sensitivity is also reflected in
the larger spread in the standard deviation ellipses of the FEM data.

The good agreement between the computational homogenization
FEM results, used here as the reference, and the analytical higher-
order statistical micromechanics estimates shows that the synthetic
models can be used for the prediction of the linear effective material
properties of the sintered silver interconnect material in the consid-
ered range of volume fractions, thus reducing the material develop-
ment efforts. Finally, it is remarked that the model predictions are in
good agreement with the experimentally measured ranges of ther-
mal and mechanical properties [39], although the experimental data
show a significant spread between different publications [13,40-42],
which can be attributed to large variations in processing conditions
(bulk material versus an interconnect), the presence of the defects
(e.g. large voids) and the capabilities of measurement techniques to
deal with small porous samples.

6. Conclusions

In this paper, a methodology for establishing microstructure
statistics-property relations has been presented and applied to a
sintered silver particle-based interconnect material for high power
electronic applications. The novel original feature of this approach
is the combination of the statistical morphological measures of
real and synthetic microstructures with the higher-order statistical

0.75

0.7

0.65

Ke/ ks [-]

0.6

»

o
ot

Second-order bound

Third-order estimate (GRF)

+ =+ = Third-order estimate (SCM: spherical)
= = = Third-order estimate (SCM: cubical)
v Third-order estimate (SCM: needle)

@® Sl-FEM
A S2-FEM
¢ S3-FEM

volume fraction [-]

0.67 0.7 073 0.76 0.79 0.82 0.85

Fig. 10. Second-order bound and third-order estimates for effective thermal conductivity, K., normalized by the thermal conductivity of the solid phase, ks, as function of the

material volume fraction for porous silver samples.



312 A. Gillman et al. / Materials and Design 118 (2017) 304-313

Ee/Eq [

Second-order bound

Third-order estimate (GRF)

\ ==+ == Third-order estimate (SCM: spherical)
= = = Third-order estimate (SCM: cubical)
oo Third-order estimate (SCM: needle)

® S1-FEM
A S2-FEM
& S3-FEM

0.66 0.69 0.72 0.75
Volume fraction [-]

0.78 0.81 0.84

Fig. 11. Second-order bound and third-order estimates for effective Young's modulus, E., normalized by the Young's modulus of the solid phase, E;, as function of the material

volume fraction for porous silver samples.

micromechanics and direct finite element computational homoge-
nization. The main steps and conclusions of this contribution can be
summarized as follows.

o Three sintered silver samples were produced under different
processing conditions, i.e. sintering temperatures of 230°C
(sample S1), 280 °C (sample S2) and 330 °C (sample S3). The
complex 3D interconnected microstructures of these sam-
ples were revealed by the SEM-FIB technique, i.e. through
the reconstruction of 3D structure based on Scanning Elec-
tron (SEM) microscopy images of sample surfaces revealed by
sequential Focussed lon Beam (FIB) milling.

e The statistical analysis of the microstructural features has
revealed that increasing sintering temperature leads to higher
volume fraction of the solid phase (lower porosity). More
interestingly, the mean ligament thickness and the width of
ligament thickness distribution have increased between the
samples S1 and S2 and was statistically almost equivalent
between the samples S2 and S3.

o In order to better understand the microstructure statistics-
property relations for these complex morphologies, synthetic
microstructures have been generated based on Gaussian ran-
dom field models, having a well defined analytical description.
The statistical characteristics of the real samples and the syn-
thetic models have been analysed and shown to have a good
correspondence.

o The effective thermal conductivity and Young’s modulus of the
considered sintered silver materials have been computed using
the computational homogenization approach based on the
finite element models of the 3D microstructures. The results
show that the effective thermal conductivity of this 3D inter-
connected microstructures, in the considered range of volume
fractions, is mostly determined by the volume fraction, with
the microstructural variations playing a secondary role. The
Young’s modulus, on the other hand, is more sensitive to the
local microstructural features.

e The computed effective properties have been compared to
the predictions based on the analytical higher-order statistical
micromechanics estimates for the synthetic microstructures,
demonstrating very good agreement. This shows that the linear
effective properties of these materials can be predicted based
on the analytical estimates for synthetic morphologies.

The results of this work can be used for increasing efficiency of
material development of sintered silver thermal interface materials

by (partially) replacing the costly material characterization by ana-
lytical predictions. In addition, the approach proposed in this work,
based on the combination of statistical micromechanics and compu-
tational homogenization, can be applied for other materials, leading
to the identification of suitable synthetic models for establishing
microstructure statistics-property relations.
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