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a b s t r a c t 

We present co-designed experimental, theoretical, and numerical investigations aiming at estimating the 

value of the Young’s modulus for cold compacted powder materials. The concept of image-based mod- 

eling is used to reconstruct the morphology of the powder structure with high fidelity. Analyses on alu- 

minum powder pellets provide significant understanding of the microstructural mechanisms that preside 

the increase of the elastic properties with compaction. The role of the stress percolation path and its 

evolution during material densification is highlighted. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Materials or components made from powders have enormous

societal and industrial impact. To list some everyday examples: i)

pharmaceutical tablets ( Michrafy et al., 2002; Kadiri et al., 2005;

Wu et al., 2005; Klinzing et al., 2010 ) are the most widespread

use of compressed powder materials; ii) detergent tablets, a mix

of surfactants, alkalis, bleaches, and other chemicals, are used in

day-to-day chores; iii) candies are often created by compacting

glucose powder with a small amount of binder. Structural and

advanced materials also take advantage of compression technol-

ogy. Cold compaction of ceramic powders ( Piccolroaz et al., 2006a;

2006b ) is extensively used in industry for advanced structural ap-

plications, such as chip carriers, and consumer products, such as

tiles and porcelain. Powder metallurgy has a broad range of indus-

trial applications, including manufacturing light engineering com-

ponents and tools, along with bioengineering technologies ( Laptev

et al., 2016 ). 

In many applications, the manufacturing process begins with

cold compaction of powders ( Fleck, 1995 ), performed using dies

machined to close tolerances. This methodology enables powder

cohesion through mechanical densification, which is governed by

different mechanisms, including particle rearrangement, elastic and
∗ Corresponding author. 
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lastic deformations. The purpose of compaction is to obtain a

reen compact, with sufficient strength to withstand further han-

ling operations, such as sintering. 

Processing options permit selective placement of phases or

ores to achieve targeted effective properties after cold com-

action. The mechanical properties of green compacts are strongly

nfluenced by the morphological characteristics of the compound.

icrographs of the particle arrangement show that the morphol-

gy of the powder pack changes with the forming pressure from

n assembly with ideal point-wise contact to a severely plastically

eformed state, with a substantial reduction of voids. This and

ther studies show that the Young’s modulus varies with the stiff-

ess of each phase and with the network of inter-particle contacts.

Tracking the contact regions between the particles while

hey experience large deformations is a formidably complex task

 Gonzalez and Cuitiño, 2016 ) and is not the goal of this manuscript.

his paper aims to estimate the Young’s modulus of cold com-

acted metal powders via computational simulations using image-

ased morphological reconstructions of the microstructure and high

erformance computing . The work has sound motivations: whereas

xperimental investigations on the topic are covered by relatively

road literature, only a few numerical analyses have been carried

ut. 

Experimental investigations on the elastic properties of cold

ompacted powders have been published by several authors, see

arnavas and Page (1998) and Argani et al. (2016b ) and references

herein, studying the effects of the powder morphology. Two major

http://dx.doi.org/10.1016/j.mechmat.2017.05.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechmat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2017.05.010&domain=pdf
mailto:alberto.salvadori@unibs.it
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Fig. 1. An illustration of aluminum particle rearrangement, deformation, and densi- 

fication during compaction. A sharp differentiation between these phases could not 

be precisely identified. Dots correspond to experimental data, which refer to the 

same powder compound used for Young’s modulus estimation. 
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onclusions have been confirmed by the present numerical analy-

es, namely: i) the load response of lightly compressed powders

s dominated by its particulate nature and inter-particle forces; ii)

he load response of heavily compressed materials is similar to

hat of a porous solid. Our simulations provide further insight into

he microstructural mechanisms that control the increase of the

oung’s modulus with forming pressure by highlighting the rele-

ance of the stress percolation path generated by the contact ar-

as between particles. Similar studies have been made by Kruyt

2016) and Kruyt and Antony (2007) , as well as by Poquillon et al.

20 02a; 20 02b) . The role of the rate of compaction was investi-

ated more recently in Wang et al. (2009) . 

Literature on macroscopic models of metal powder densification

nder cold compaction is very broad (cf. Gu et al., 2001 and the

eferences in Piccolroaz et al. (2006a )). Microscopic investigations

ave been carried out by studying the contact force distribution

n idealized rigid ( Kanatani, 1981 ) or deformable ( Jefferson et al.,

002; Argani et al., 2016a ) particles. Numerical analyses have been

erformed by the discrete ( Makse et al., 20 0 0 ) or finite ( Argani

t al., 2016a; Kim and Cho, 2001; Lee and Kim, 2002 ) element

ethods. By treating the powder material as a two-phase compos-

te, effective properties can be extracted from the extensive liter-

ture on the subject - see for instance Torquato (2002) . Numeri-

al investigations in the present paper have been compared to the

ashin–Shtrickman bounds ( Hashin and Shtrikman, 1962 ) and the

oolean model of spheres ( Serra, 1980; Stoyan and Mecke, 2005 ) -

lso termed overlapping spheres theory ( Torquato, 1997; 1998 ). 

Computational simulations have the capability to test virtual

aterials, allowing for major cost savings, provided that scien-

ific predictivity is achieved. The present work pinpoints the rel-
Fig. 2. Experimental setup for uniax
vance of the image-based strategy in this regard. It confirms in-

ightful conclusions drawn on experimental basis about the micro-

echanics of the cold compaction by highlighting the role of mor-

hology and its evolution during the forming process. Specifically,

t brings attention to the fact that a unique value for the Young’s

odulus, especially at low volume fractions, may not be identified

ince it is severely influenced by the history of deformation and

he generation of the stress percolation path ( Radjai et al., 1998 ). 

The paper is organized as follows. Section 2 comprises the

oung’s modulus measurements, as well as the full description of

he powder compound and of the experimental setup. The notion

f image-based modeling is discussed in the subsequent section,

ighlighting the fundamental tasks of data acquisition, the con-

truction of percolation paths, and the statistical and the numerical

nalyses. Results are discussed in Section 4 , assessing numerically

everal insights provided on experimental basis. 

. Experimental evidence 

Powders (99.8% pure Al with -100+325 and -325 mesh size)

ave been purchased from Alfa Aesar. They have been sieved for 24

 using a sieve shaker (RO-TAP RX-29) to a particle size range of

06–355 μm. Young’s modulus has been measured from the sieved

s-received and high-energy ball milled Al powders. The milling

rocedure and results for high-energy ball milled Al powders are

eported in Appendix A . 

.1. Quasi-static measurement of Young’s modulus 

Pellets ranging from 80 to 98% theoretical maximum den-

ity (TMD) were cold pressed from the sieved Al powders in a

.35 mm die purchased from MTI Corporation at a 1:1 aspect ra-

io. By increasing the amount of forming pressure, powder materi-

ls were transformed from a granular to a dense state in different

hases, which have been plotted in Fig. 1 . 

The faces of the pellets were sanded to a flatness of approxi-

ately 10 μm. The samples were then loaded in 300 N/step incre-

ents in a uniaxial configuration, shown in Fig. 2 . Graphite powder

as used between the steel platens and the compact surface to re-

uce the effect of friction. The changes in the height of the pellets

ere measured using an Epsilon 3542 Axial Extensometer attached

o the platens above and below the samples with the signal being

ecorded on a Tektronix 3054b oscilloscope. The relative density of

he pellets was calculated after the experiment by measuring the

ellet height, diameter, and mass. 

The total measured displacement, δx tot , is the sum of the dis-

lacement due to the measured portion of the plates, δx sys , and of

he sample, δx . Combining Hooke’s law ( σ = Eε) with the defini-

ion of engineering strain ( ε = δx/L ) and engineering stress ( σ =
/A ), the displacement due to the deformation of the sample is
ial compression experiments. 
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Fig. 3. Comparison of experimentally measured compliance data to ANSYS calcula- 

tion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Young’s modulus obtained from experimental measurements. Compounds 

have been measured quasi-statically (unfilled triangles) as well as dynamically (un- 

filled squares). Error bars represent twice the standard deviation. 
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given by δx = P L/EA, where σ is the axial stress, E is the Young’s

modulus, ε is the axial strain, P is the axial load, L is the initial

sample height, and A is the initial cross-sectional area of the sam-

ple. With a test material of known Young’s modulus, E ∗, and cross-

sectional area, A 

∗, the displacement due to the platens is calcu-

lated from δx sys = δx tot − P L/E ∗A 

∗. Tool steel and aluminum rods of

the same diameter as the pellets were used to measure the sys-

tem compliance, C . The value of C was determined by loading the

materials under five different loading conditions and calculating

the system displacement. Once calculated, a linear fit of the load

versus system displacement provides the compliance. The result-

ing compliance can be seen in Fig. 3 . 

The system compliance was estimated also through a linear

elastic simulation using the commercial package ANSYS. In this

simulation, a single platen was modeled with a uniform pressure

across a 6.35 mm circular area in the center of the platen. The

base of the platen was fixed. The total displacement for a single

platen was measured at the center of the loading area. Plotting

a linear fit between load and twice the displacement of a single

platen yielded the result seen in Fig. 3 . The measured response

matches the elastic calculation using ANSYS well. 

Data generated from the above experiments are plotted in

Fig. 4 . The pellets were loaded to the peak at a rate of ∼ 1 kN/s,

held at this load for a period of approximately 6 s, and then re-

leased to a lower level where it was held for another 6 s period.

All strain measurements were taken upon release. This was con-

tinued until the load was completely released (4–5 steps). This al-

lowed very accurate measurement of the position by averaging the

voltage signal over a 6 s period. This process was repeated 3 times

on each pellet. Fig. 5 depicts the Young’s modulus estimated from
Fig. 4. Data generated from uniaxial strain measurement. (a) Position and voltage data w

error bars propagated from uncertainty in voltage and axial force. 
xperimental measurements. Unfortunately, it was not possible to

easure the quasi-static Young’s modulus at any volume fraction

denoted henceforth with φ) below 80% TMD, because the cold-

ressed pellets were too fragile to handle at those densities. 

.2. Dynamic Young’s modulus 

Specimens of elastic materials at ambient temperatures possess

pecific mechanical resonant frequencies, which are determined by

he elastic modulus, mass, and geometry of the test specimen. Ex-

erimental tests by impulse excitation, according to ASTM E 1876

tandard, measure the fundamental resonant frequency of disc-

haped specimens by exciting them mechanically with a singular

lastic strike with an impulse tool. A transducer senses the result-

ng mechanical vibrations of the specimen and transforms them

nto electric signals. The supports of the specimens, the impulse

ocations, and the signal pick-up points are selected to induce and

easure specific modes of the transient vibrations. The signals are

nalyzed and the fundamental resonant frequency is measured.

he Poisson’s ratio is determined using the resonant frequencies of

he first two natural vibration modes. The dynamic Young’s modu-

us and dynamic shear modulus are then calculated using the Pois-

on’s ratio, the experimentally-determined fundamental resonant

requencies, and the specimen dimensions and mass. 

Dynamic Young’s modulus experimental tests have been car-

ied out on -100+325 aluminum powders at 99.8% purity, sieved

o the 106–355 μm size range over 24 h. The aluminum powder

as cold pressed to disk samples (30 mm in diameter and between

 . 3 − 2 . 9 mm in height) with TMD varying from 70% to 100%. For

ach TMD, two separate samples were prepared, and each sample
ith error bars on position representing 2 standard deviations; (b) σ − ε data with 
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Fig. 6. A pictorial view of the I-BM concept. The probability density function of a very large number of particles is recovered after experimental data acquisition, in terms of 

morphological features (shapes, sizes, and aspect ratio). The 3D geometry of a large pack of particles has been replicated by an in-house developed software that makes use 

of complex packing algorithms and sophisticated computational geometry tools to build the percolation path required by the porous nature of powder pellets. A statistical 

analysis is carried out afterwards in order to identify the characteristic size of the RUC, which has been estimated by a two point probability function analysis. The RUC is 

finally discretized by finite elements, towards numerical simulations. 
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as tested three times. 1 Outcomes are compared with quasi-static

oung’s modulus in Fig. 5 . 

Dynamic Young’s modulus experimental tests by impulse exci-

ation are specifically appropriate for materials that are elastic, ho-

ogeneous, and isotropic ( E1876-01, 2002 ). According to the ASTM

 1876 standard, this method of determining the moduli is appli-

able to composite and inhomogeneous materials only with careful

onsideration of the effect of inhomogeneities. The influence of the

orphology on the impulse wave propagation and resonant fre-

uency in the specimens has a direct effect on the effective elastic

roperties of each specimen. 

Comparisons between quasi-static and dynamic Young’s mod-

lus as a function of the TMD (see Fig. 5 ) show a similar trend,

et suggest that the dynamic Young’s modulus is lower than the

uasi-static one at small volume fractions, and thus high porosity. 

. Image-based modeling 

Image-based modeling (I-BM) of particulate composite materials

an be defined as the class of computational algorithms and ex-
1 Measurements were provided by IMCE, Genk, Belgium. 

M  

t  

c  
erimental methods that allow for reconstruction of the morphol-

gy of an ensemble, accounting for the fine structure properties

f the particles ( Matouš et al., 2017 ). I-BM encompasses four fun-

amental tasks: data acquisition, statistical analysis of the particu-

ate pack, computational domain reconstruction of the representa-

ive unit cell (RUC) to match selected statistical descriptors mea-

ured from real image data, and computational modeling . This pro-

edure will be detailed with reference to the aluminum powders

escribed in Section 2 . Fig. 6 visually depicts the I-BM concept. 

.1. Data acquisition 

Morphological data of a powder compound can be acquired

ith different techniques, either destructive or not, depending

pon the size of the microstructure and the resolution required

y the investigation ( Shuck et al., 2016 ). Tomography, for instance,

an be used to reconstruct three-dimensional packs in situ , and

mage-processing afterwards provides data-sets of idealized shapes

hat reproduce the actual powder compound ( Gillman et al., 2013 ).

icro-computed tomography (micro-CT) was used in several con-

exts (solid propellant, glass bead, paper, sandstones, engineered

ementitious composites) and microtomographic data have been
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Fig. 7. Volume-based distributions (in percentage of the total particles volume) plotted as a function of the aspect ratio ( ar ) and of the equivalent diameter ( d eq ) for oblate 

and prolate sets of particles on a 10 × 10 grid. 
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analyzed in Gillman et al. (2013) and Lee et al. (2011) with some

similarities to the present note. Since traditional X-ray systems do

not penetrate metals easily, micro-CT was not used in this scien-

tific endeavor. 

Instead, characterization of the particle geometry was con-

ducted using a FlowCam 

®(Fluid Imaging Technologies, USA) sys-

tem. This method of analysis was chosen due to the high

throughput of individual particles. 2.5 g of aluminum powders

were initially suspended in 500 mL of a 5% polyvinylpyrrolidone-

deionized water solution, then sonicated for 30 min. The suspen-

sion of powders was flown through a 1 mL cell with a corre-

sponding optical microscope (the optics were 4x for the micro-

scope lens). Each particle that flowed in the field of view was in-

dividually imaged and processed with the VisualSpreadsheet soft-

ware for size and shape characteristics. 

Acquired data were analyzed in order to computationally recon-

struct the morphology of the three-dimensional powder pack from

the list of geometrical properties available after the acquisition. 

The FlowCam 

®technique provides a two-dimensional projection

of each particle, 2 sampled as an ellipse of semi-axes a and b . Par-

ticles have been further idealized as three-dimensional ellipsoids,

with third semi-axis of length c . Two data sets have been gener-

ated concurrently in order to estimate the amount of c , assuming

that particles are either all oblate , i.e. a = c > b, or all prolate , i.e.

a > b = c. 

Rectangular domains, in the aspect ratio ( ar ) and diameter of

an equivalent spherical particle ( d eq ), have been discretized by an

N × N grid. All particles that pertain to any of the N 

2 subdomains

have been associated to a single representative particle with the

equivalent diameter and aspect ratio of the centroid of the subdo-

main. The volume distributions on a 10 × 10 grid are plotted as

a function of the aspect ratio ( ar ) and of the equivalent diameter

( d eq ) in Fig. 7 . 
2 FlowCam 

®allows acquiring large sets of particles image data for analysis. Sam- 

ples are put into the flow cell in the optical path. As the sample passes, a flash LED 

is triggered behind the flow cell which backlights the sample and effectively freezes 

the particles in motion. Simultaneous to the flash, the computer instructs the cam- 

era viewing the sample through the microscope optics to acquire frame of the flow 

cell view illuminated by the flash. When each frame reaches the computer, the soft- 

ware automatically extracts separate images of each particle for further processing. 

Each image and several related measurements are stored for each particle. The area 

of the projected image is used in subsequent calculations of the area-equivalent di- 

ameter. Lengths of the major and minor axes of a Legendre ellipse, whose center 

is the centroid of the particle shape, are measured. The moments of the Legendre 

c  

e  

p  
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i  

i  

s  

p  

e

b

Fig. 8 depicts the distribution of oblate particles on a 10 × 10

rid. A similar plot results for prolate particles, also. The distribu-

ion is plotted against the equivalent diameter of idealized parti-

les in the range [10 0, 50 0] microns. Curve I represents the nor-

alized number of particles, the dashed curve II is the normal-

zed volume of particles, curve III is the cumulative volume of all

cquired particles, and finally the dots represent the volume esti-

ated from the 10 × 10 discretization of experimental data. Stem-

ing from the 100 idealized representatives, and on the volume-

ased distributions in Fig. 7 , a set of 19 oblate and 18 prolate bins

as selected. Based on this data, we have generated a large pack

see Fig. 6 top right) that contains 992 particles, 424 oblate and

68 prolate particles respectively. This microstructure has been

acked in a cube of size 1.731 mm, at 65, 70 and 75% volume

raction using the particle packing software Rocpack ( Maggi et al.,

008; Stafford and Jackson, 2010 ). 

Rocpack is based on a hybrid algorithm combining the optimal

eatures of the Lubachevsky-Stillinger and Adaptive Shrinking Cell

lgorithms, which begins by placing the 992 particles with zero

nitial volume (points) at random locations inside the domain of

nterest. The particles are given random velocities, sampled from

 Maxwell-Boltzmann distribution, and are allowed to grow at a

pecified growth rate. The particles collide and rearrange as they

row to fill the space in the domain. The algorithm stops when

he specified densities of 65%, 70%, and 75% are reached. For an

xtensive description of Rocpack , the reader may refer to Stafford

nd Jackson (2010) and Amadio (2014) . 

.2. Percolation path construction 

Since the packing algorithm does not provide interconnections,

omputational geometry algorithms have been devised in order to

onstruct percolation paths. The two closest points between two

llipsoids are sought first: they define the distance between the

articles. In the midpoint of these two locations a joint, typically in

he form of a sphere, is inserted if the distance between particles

s below a given constant, termed zero-distance parameter . Accord-

ngly, two parameters define the percolation path: the radius of the

pherical interconnection and the minimum distance between two

articles in order to consider them as connected (the zero-distance
llipse and shape are the same up to the second order. The aspect ratio is obtained 

y dividing the minor axis by the major axis. 
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I II

III

Fig. 8. Oblate particle set distribution on a 10 × 10 grid, depicted in terms of equivalent diameter in the range [10 0, 50 0] microns. Curve I represents the normalized 

number of particles, curve II the normalized volume of particles, curve III the cumulative volume of all acquired particles, the dots the volume estimated from the 10 × 10 

discretization of Fig. 7 . 

Fig. 9. Influence of the zero-distance parameter on the number of interconnections. 

For the distance a of the zero-distance parameter, no particles are connected. For 

the amount b , two particles are joined, whereas three (four) particles are joined for 

the amount c ( d ). 
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Fig. 10. Influence of the radius of the spherical joint on the surface area of the 

interconnections, which can be estimated by the intersection between the circles 

( a − d ) and the elliptical boundary of particles ( I − I I ). 
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arameter). Thus, the increment of volume fraction and the surface

rea of the interconnections depends upon these two parameters. 

The number of joints is influenced by the zero-distance param-

ter: the larger this parameter, the larger the number of linked

articles. At the same time, the zero-distance parameter also influ-

nces the connectivity of the pack: the smaller the zero-distance

arameter the higher the number of particles that are discon-

ected and “float” in the Euclidean space. 3 Fig. 9 describes how the

ero-distance parameter influences the number of interconnections

nd illustrates that the zero-distance parameter is the lower bound

f the radius of the joints, such that a spherical joint itself is not a

isconnected entity. The surface area of the interconnections is re-

ated to the radius of the joint, see Fig. 10 . This notion may require

n accurate topological definition, yet here it is taken as the area

f the largest circle within the spherical joint radius. 

The goal of spherical connections is primarily to simulate the

pointwise” contact between particles. Accordingly, the increment

f volume due to the joints must be small compared to the par-
3 Full connectivity between the particles in the RUCs is ensured in the numerical 

nalyses in Section 3.4 . 

3

 

a  
icle’s volume. Nevertheless, increasing the radius of the spherical

nterconnection may lead to a significant overlap between parti-

les and may substantially increment the volume fraction of the

UC. How this affects the Young’s modulus will be discussed in

ection 4 . 

In reality, plastic deformation during cold compaction may in-

rease the number of contact locations as well as their surface

rea. This effect is particularly significant during the final part of

he compaction process of a metallic powder - see Fig. 1 . To sim-

late this occurrence, one may consider to enlarge the particles

ather than adding connections between them. By increasing the

article size, however, volume is generated not just at the closest

oint location, but over the whole pack - see Fig. 11 . Therefore, the

olume fraction increases more significantly than the surface area,

n a “global” fashion that does not appear to reproduce properly

he evolution of the particle shape during compaction. Therefore,

e simulate particle contact by local joint addition and growth. 

.3. Statistical micro-mechanics concepts 

For materials that satisfy ergodicity, statistical homogeneity,

nd isotropy the one- and two-point probability functions can be
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Fig. 11. Overlapping while the particles undergo a homothetic transformation. 
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4 NETGEN is open source based on the LGPL license. NETGEN has been developed 

at RWTH Aachen University, Germany and Johannes Kepler University Linz, Austria. 
5 Shear G = 26 GPa and bulk K = 76 GPa moduli have been taken from literature 

for pure aluminum. 
defined as follows: 

c r = 

∫ 
V 

χr ( � x ) d V , S rs (|| � d || ) = 

∫ 
V 

χr ( � x ) χs ( � x + 

�
 d ) d V x . (1)

Here χr ( � x ) is the phase r indicator function, which holds 1 if point

 x is in phase r and zero otherwise. c r is the volume fraction of the

phase r . Functions S rs represent the probability of the endpoints �x

and 

�
 y = 

�
 x + 

�
 d of a line of length || � d || existing in both phases r (for

 x ) and s (for � y ) simultaneously. To evaluate S rs all orientations of

the line in 3D space have been averaged. Details on the numeri-

cal evaluation can be found in Lee et al. (2009) and Collins et al.

(2010) . 

Statistical micro-mechanics theories that include higher order

statistical measures (such as one, two, and three-point probabil-

ity functions) have been shown to yield accurate predictions of ef-

fective material properties ( Roberts and Garboczi, 2002; Pham and

Torquato, 2003; Gillman and Matouš, 2014; Gillman et al., 2015 ).

A third-order estimate of the elastic stiffness tensor derived by

Torquato (1997) ; 1998 ) is considered in Section 4 for compari-

son with numerical and experimental analyses. The three-point ap-

proximation for the effective bulk ( K e ) and shear ( G e ) modulus of

bicontinuous porous media reads 

K e 

K 1 

= 

1 + 

4 G 1 

3 K 1 

K 21 c 2 − 10 G 1 

3 K 1 + 6 G 1 

K 21 G 21 c 1 ζ2 

1 − K 21 c 2 − 10 G 1 

3 K 1 + 6 G 1 

K 21 G 21 c 1 ζ2 

, (2a)

and 

G e 

G 1 

= 

1+ 

9 K 1 + 8 G 1 

6 K 1 + 12 G 1 

G 21 c 2 − 2 K 21 G 21 G 1 

3 K 1 + 6 G 1 

c 1 ζ2 · · ·

− G 

2 
21 

6 

{[ 
3 K 1 + G 1 

K 1 + 2 G 1 

] 2 
c 1 η2 + 5 G 1 

[ 
2 K 1 + 3 G 1 

(K 1 + 2 G 1 ) 2 

] 
c 1 ζ2 

}

1 −G 21 c 2 − 2 K 21 G 21 G 1 

3 K 1 + 6 G 1 

c 1 ζ2 · · ·

− G 

2 
21 

6 

{[ 
3 K 1 + G 1 

K 1 + 2 G 1 

] 2 
c 1 η2 + 5 G 1 

[ 
2 K 1 + 3 G 1 

(K 1 + 2 G 1 ) 2 

] 
c 1 ζ2 

}
, 

(2b)

where 

K 21 = 

K 2 − K 1 

K 2 + 

4 

3 

G 1 

, G 21 = 

G 2 − G 1 

G 2 + G 1 
9 K 1 + 8 G 1 

6 K 1 + 12 G 1 

. (2c)

Here, K q and G q are the bulk and shear moduli of phase q ,

respectively. Phase q = 1 represents the solid particles, and q = 2

identifies the void phase. 
The detailed mathematical theories for deriving effective mate-

ial properties while incorporating a high-order statistical descrip-

ion of the microstructure can be found, for instance, in books by

ilton (2002) and Torquato (2002) . In the latter, the interested

eader can find formulae (20.67) and (20.171) for the microstruc-

ural parameters ζ 2 and η2 used in Eqs. (2a) and (2b) . We do not

eprint these parameters here for the sake of brevity, but note that

2 and η2 are functions of the one-, two-point probability func-

ions (see formula (1) ) as well as of the three-point probability

unction, which vary for different microstructures. In Section 4 , we

ill compare numerical simulations to the microstructural boolean

odel of spheres (for which the n-point probability functions are

ormulated analytically) using accurate data published in Helte

1995) . 

.4. Numerical analysis 

The saturation point l sat of the two-point probability functions

n Eq. (1) yields a geometrical length scale, l RUC ≈ 2 l sat , which has

een shown ( Torquato, 2002 ) to define the smallest cubic sample

hat can statistically describe the powder compound (up to the

econd order). The saturation point l sat is the size at which the

rst derivative of all isotropic two-point probability functions van-

sh (numerically, their absolute value is below an assigned toler-

nce) ( Lee et al., 2009 ). Fig. 12 clearly depicts this concept for the

luminum powders analyzed in the present study: the functions

aturate around l sat = 400 μm, and thus suggest a RUC side length

f l RUC ≥ 800 μm. 

Five realizations of RUCs at 65%, 70%, and 75% volume fraction

ave been generated considering joints of radius of 21.4 μm. To this

im, the particle packing software Rocpack ( Maggi et al., 2008 ) was

sed to generate the fifteen RUCs, five for each volume fraction set,

ach of size l RUC ≥ 800 μm according to the I-BM concept with full

onnectivity of the particles. Fig. 13 shows the geometry of one of

he RUCs at different volume fractions. 

The connected set of ellipsoidal particles and spherical joints

as been discretized afterwards, using the 3D mesh generator Net-

en . 4 This tool natively implements three-dimensional primitives

spheres, ellipsoids, boxes) and boolean operations between them,

nd provides tetrahedral element meshes. Numerical analyses of

he five RUC realizations, considering different mesh refinements,

llowed for the statistical characterization of the Young’s modulus

stimation. 

Finite elements simulations stem from the weak form of the

overning equations, which are the balance of linear and angu-

ar momentum together with the constitutive specifications. With

eference to the latter, the assumption is made that the intrin-

ic shear ( G ) and bulk ( K ) moduli in the particles do not change

ith the forming pressure, 5 whereas the effective properties of the

ompound obviously will. The isochoric-volumetric decoupling of

he strain energy function W 

 (C, J) = 

ˆ W ( ̂  C ) + U(J) , (3)

s applied ( Doll and Schweizerhof, 20 0 0 ). In Eq. (3) , J is the deter-

inant of the deformation gradient F , C = F T F is the right Cauchy–

reen deformation tensor, and 

ˆ C = J −2 / 3 C is its isochoric counter-

art. The isochoric strain energy function 

ˆ W has been taken as for

 neoHookean material model 

ˆ 
 ( ̂  C ) = 

G 

(
tr 
[

ˆ C 
]

− 3 

)
, (4)
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Fig. 12. Two-point probability functions for the aluminum powder, φ = 75% , subject of the present study. 

Fig. 13. Percolated particle RUCs at 65% volume fraction (a), 70% (b), and 75% (c) constructed as detailed in Section 3 and corresponding to the particles distribution of 

Fig. 7 . The joint radius is 21.4 μm. All RUCs contain 53 oblate and 71 prolate particles, selected on a set of 19 oblate bins and 18 prolate bins according to the volume based 

distribution of Fig. 7 . The size of the RUC for φ= 65% is 887 μm, for φ= 70% is 865 μm, and for φ= 75% is 849 μm. 
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Fig. 14. Young’s modulus of cold compacted Al powder via image-based modeling 

and simulations for joints with a radius of 21.4 μm. Error bars represent twice the 

standard deviation of 5 RUC realizations. 

s  

t  

a  
hereas the volumetric contribution holds ( Doll and Schweizerhof,

0 0 0 ) 

(J) = 

K 

2 

(J − 1) ln J . (5)

The RUCs have been subject to loading conditions that repro-

uce the experimental setup described in Section 2 . One of the

ix faces of the cubic RUC has been fully constrained in its nor-

al direction, and let free to expand (frictionless) in any tangen-

ial direction. The opposite face has been displacement controlled,

y imposing a constant displacement rate. Free expansion has been

llowed on the other four faces. 

Simulations have been performed with a highly parallel in-

ouse package, PGFem3D ( Mosby and Matouš, 2015; 2016 ). No in-

rtia effects have been accounted for. Finite element analyses pro-

ide reaction forces as the integral of the pressures on the con-

trained faces. Those reaction forces are the counterpart of the ex-

erimentally measured forces. Effective Young’s modulus has been

valuated as the ratio between the engineering stress (estimated

n the area of the RUC face) and the engineering strain. Fig. 14

lots the estimated values as a function of the volume fraction

or joints with a radius of 21.4 μm. Error bars, which represent

wice the standard deviation of 5 RUC realizations, show that the
tandard deviation in numerical analysis is significantly smaller

han in experimental investigations (see Fig. 5 ). Stemming from the

ccuracy of the numerical solution, only one single RUC realization
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Table 1 

Young’s modulus (E) evolution with the surface area of the interconnecting network, as a function of 

the joint radius, at point-wise connected volume fraction about 75%. Radii below 21.4 μm increase the 

volume fraction by an amount less than 0.5%, thus simulating the rearrangement mechanism. 

Label on Joint Discrete E 

Fig. 16 radius [μm] # surf. area [μm 

2 ] surf. area [%] vol. [%] φ [-] [GPa] 

A 5.9 44 6.9e3 3.3e-2 0.0048 0.7425 19.5 

B 12.7 64 3.2e4 0.23 0.034 0.7427 20.5 

C 21.4 117 1.7e5 1.19 0.49 0.7461 21.7 

D 32.2 205 6.6e5 4.70 3.21 0.766 24.9 

E 42.9 242 1.4e6 9.87 6.47 0.790 28.3 

F 47.9 343 2.5e6 17.5 12.06 0.832 34.7 

G 52.5 378 3.3e6 23.12 15.01 0.854 38.8 

Fig. 15. A clip of the particulate pack at 75% volume fraction with 5.9 μm joints (a) and with 52.5 μm joints (b). 
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6 In the spirit of the present work, the zero-distance parameter captures the rise 

of the plastic deformation due to cold compaction. 
7 See the first three lines of Tables 1 and 2 . 
at 65, 70, and 75% volume fraction has been considered in all sim-

ulations that follows. The influence of the joint size on the Young’s

modulus has been studied and will be discussed in the next

section. 

4. Discussion 

The effective mechanical properties of cold compacted powders

are strongly influenced by the morphology of the arrangement, in

a non trivial way that depends significantly on the micro-structural

interactions between the particles and on their ability to distribute

the stress field through the volume. The number and size of inter-

connections between the particles in cold compressed metal pow-

ders evolve with the forming pressure, increasing the ability of the

powder compound to transfer the force and in turn the effective

stiffness of the material. As the area of interconnections saturates

while the volume fraction tends to unity, so does the effective

Young’s modulus towards an experimentally measured value that

corresponds to the intrinsic, solid aluminum Young’s modulus, as

depicted in Fig. 5 . 

Analysis for compounds at 75% volume fraction - Table 1

depicts the influence of the surface area of the interconnecting

network on the Young’s modulus for a RUC at 75% volume frac-

tion. Several radii of spherical connections have been selected. The

largest radius, 52.5 μm, is about a half of the smallest axis of the

smallest particle (106 μm). The smallest radius is 5.9 μm. Two

clips of the reconstructed particle packs can be seen in Fig. 15 . 
The zero-distance parameter was enlarged together with the

ize of the joints 6 : the number of connected particles therefore

rew by about a factor 8.5, as reported in the third column of

able 1 . At the initial stage (points A-C in Table 1 ), the surface

rea increased significantly, by one order of magnitude per each

adius increment - see column 4, and so did the volume added

o the particle pack. However, the increment in volume stayed be-

ow 0.5% for a joint radius less than or equal to 21.4 μm. Column

 reports the ratio between surface area of the joints and the to-

al surface area of the particles, whereas column 6 shows the ratio

etween the added volume and the volume of the particles alone

fter the discretization, which amounts to 0.456 mm 

3 . 

Carnavas and Page ( Carnavas and Page, 1998 ) noticed in their

xperimental investigations that the load response of lightly com-

ressed powders is dominated by its particulate nature and inter-

article forces. The experimental and numerical analyses in this

aper completely support this statement. Simulations have been

un first by constructing the percolation path via small spheri-

al joints, which adequately simulate a particle rearrangement with

oint-wise inter-particle force transmission . Relevant outcomes have

een plotted in Fig. 16 at points A , B , and C . They correspond

o joint radius less or equal than 21.4 μm. 7 The boolean model
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Table 2 

Young’s modulus (E) evolution with the surface area of the interconnecting network, as a function of the 

joint radius, at volume fraction 70%. 

Label on Joint Discrete E 

Fig. 16 radius [μm] # surf. area [ μm 

2 ] surf. area [%] vol. [%] φ [-] [GPa] 

I 5.9 68 7.6e3 5.45e-2 0.0072 0.6943 12.8 

– 12.7 109 5.7e4 0.407 0.0737 0.6947 14.2 

– 21.4 175 2.6e5 1.87 0.665 0.699 16.7 

– 32.2 253 8.5e5 6.08 3.33 0.717 20.3 

H 42.9 323 1.9e6 13.8 8.03 0.750 26.2 

Fig. 16. Young’s modulus estimation. Image-based simulations (circular empty 

markers) are compared with quasi-static experimental analysis (triangular empty 

markers with error bars) as well as with the boolean model of spheres curve (see 

equations (2) , printed in continuous line) and the Hashin–Shtrikman bound (dashed 

line). Square markers are relevant to dynamic Young’s modulus experimental out- 

comes. Error bars represent twice the standard deviation. 
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f spheres theory over-estimates the Young’s modulus by 30% or

ore, while the Hashin–Shtrickman upper bound is even higher.

y comparing Figs. 14 and 16 , it can be seen that points A-C in

ig. 16 are well within the confidence interval of the Young’s mod-

lus at volume fraction 75% in Fig. 14 , obtained with 5 realizations

f the RUC. 

The volume fraction increases significantly - to 79% - if particles

re connected with joints of radius 42.9 μm. The Young’s modulus

orresponding to such a volume fraction (point E in Fig. 16 ) turns

ut to be 28.3 GPa and fits well the experimental data at volume

raction 80%. This may signify that although the surface area in-

reased and large joints have been added, the underlying micro-

tructural behavior is still captured well. The network of inter-

ranular contacts in Fig. 15 appears to be of less point-wise nature

nd may correspond to large localized plastic deformations that

ccurred since rearrangements are no longer possible. Similar con-

lusions can be drawn for joints with radius 47.9 μm and 52.5 μm

points F,G in Fig. 16 ), even though it could be argued that the

igher the plastic deformation, the less accurate it is to approxi-

ate the network of inter-granular contacts with large joints. 

Analyses of compounds at different volume fractions - A sim-

lar approach was taken on the RUC at volume fraction 70%, see

able 2 . In this case, the enlargement of the joints leads to a total

5% volume fraction (point H in Fig. 16 ) that is higher than analysis

or the small joints in Table 1 . We may speculate that: i) the un-

erlying micro-structural behavior is not captured well, since large

ocal deformations have been reproduced in place of further re-

rrangement; ii) the underlying micro-structural behavior is well

aptured and further rearrangements did not take place in spite of

he fact that they were possible, potentially because of very high

ocal friction; iii) both mechanisms would likely take place concur-

ently. The last statement appears to be the most logical, and may

lso justify the scatter and the large error bars in the experimental
ata. In fact, depending on the non-unique history of rearrange-

ents and deformations, the Young’s modulus values may differ

ignificantly. 

It was not possible to construct RUCs with volume fractions

bove 75% due to geometric constraints in the packing algorithm.

acking limitation beyond such a threshold suggests that higher

ensities can be achieved only with large plastic deformations of

rains, which in turn change the interconnecting network from

ointwise to a more extensive contact. In other terms, intense irre-

ersible particle sliding and rearrangement may initially occur with

imited plastic deformations at point of contact, whereby energy is

ainly dissipated due to the inter-particle friction ( Poquillon et al.,

002b ). Aluminum powders with the morphology of Fig. 7 might

each a 75% volume fraction in this stage. Fig. 1 shows a different

rend for powder densification right at such a value. Other publica-

ions infer this limit for aluminum powders at 72.5% ( Lee and Kim,

002 ). A similar behavior has been observed in other metal pow-

er compounds, described in terms of force-chains ( Makse et al.,

0 0 0 ) with comparable compaction pressures ( Poquillon et al.,

002b ). Above this threshold, the ability of further compaction

s highly dependent upon the inclination of the grains to de-

orm plastically, since particle interlocking triggers further massive

lastic deformations. These quantitatively different responses have

een observed for different materials in Poquillon et al. (2002b ). 

The experiments of Carnavas and Page ( Carnavas and Page,

998 ) concluded that the load response of heavily compressed ma-

erial is similar to that of a porous solid, i.e. with large contact ar-

as between particles. The analyses in this paper support this con-

lusion. The increment of Young’s modulus is micro-mechanically

elated to the broadening of the micro-structural interconnecting

etwork during the compaction, which allows the stress percola-

ion paths to widen. Ideally, at complete particle deformation, the

ontact between grains becomes perfect and homogeneous material

ehavior should be recovered. This effect is made clear in Fig. 17 . It

lots the percolation paths for the diagonal component σ yy of the

auchy stress tensor in the loading direction at different volume

ractions. The interconnected network of “black” finite elements,

apable of transmitting an amount of stress higher than the vol-

me average stress on the RUC, widens with the increase of vol-

me fraction. This outcome agrees well with the evolution of per-

olating chains in spherical compounds observed in Makse et al.

20 0 0) . 

The computational domain was built via small spherical joints

onnecting the random aggregate. As stated, this approach simu-

ates a particle rearrangement with point-wise inter-particle force

ransmission, and since it allows a transfer of shear forces at the

unctions without limitation in magnitude, it is qualitatively equiv-

lent to a partial sintering. Experimental results of Young’s modu-

us of partially sintered alumina particles are available in the lit-

rature (see e.g. Green et al., 1988 ). Outcomes of Fig. 16 can be

ompared with Fig. 9 in Jefferson et al. (2002) and with Fig. 7

n Green et al. (1988) if sintering is assumed to have taken place

t initial packing densities 65%, 70%, and 75% before further com-

action. Such a comparison has been done in Fig. 18 . Experimental
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Fig. 17. Stress percolation paths in the RUCs at 65% volume fraction (a), 70% (b), and 75% (c) described in Fig. 13 . In the elements painted in black the magnitude of the 

Cauchy stress, σ yy , in the loading direction is larger than the average stress in the same direction. The gray colored elements have a level of Cauchy stress in the direction 

of the load less the 50% of the average Cauchy stress in the same direction. 

Fig. 18. Experimental data of the effective Young’s modulus of a partly sintered 

ceramic powder (filled and unfilled triangles, unfilled squares) compared with nu- 

merical outcomes (circular empty markers). Experimental results are taken from lit- 

erature ( Jefferson et al., 2002; Green et al., 1988 ). Numerical outcomes are the same 

as in Fig. 16 , normalized by the intrinsic aluminum Young’s modulus (70 GPa). 
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data (filled and unfilled triangles, unfilled squares) refer to the ef-

fective Young’s modulus of alumina ceramic powders, normalized

with the intrinsic, or fully dense, Young’s modulus. They have been

taken from Fig.9 in Jefferson et al. (2002) . Our predictions on alu-

minum powders, normalized by the solid aluminum Young’s mod-

ulus (70 GPa), are plotted with the same notation of Fig. 16 . A com-

parison shows a remarkable qualitative agreement between the

numerical solutions and experimental evidence. These simulations

are more accurate than the theoretical investigations in Jefferson

et al. (2002) . The literature values for the intrinsic Young’s mod-

ulus of alumina are about 300 GPa, i.e. Al 2 O 3 is more than four

times stiffer than Al. Fig. 18 thus suggests that the evolution of the

normalized Young’s modulus with the compaction in the volume

fractions range of Fig. 18 is not significantly influenced by the in-

trinsic Young’s modulus, but is rather dictated by the evolution of

the microstructure. This is compatible with moderate plastic defor-

mations, whereby at higher TMDs the different plastic behavior of

alumina (brittle) and aluminum is expected to play a major role. 

Anisotropic behavior - It has been clarified here that the be-

havior more closely resembles a porous solid for higher volume

fraction samples, and the variation of the force transmission net-

work becomes lower. This is also indicated by convergence to the

boolean model of spheres (see Fig. 16 ). At small volume fractions

though, the percolation paths may differ significantly within the

RUC. As a consequence, the response of the RUC may become

anisotropic. Table 3 collects the values of computed Young’s mod-

ulus in the three principal directions of the RUC for a single re-

alization at different volume fractions. The coefficient of variation
Co.V.) that measures anisotropy decreases significantly as the vol-

me fraction increases. 

. Scaling law 

An attempt was made to derive a scaling law between the sur-

ace area of the interconnections and the Young’s modulus. To this

im, denote with E ≥ 1 the Young’s modulus normalized by the

mallest estimated one, denoted with E 0 henceforth, with a joint

adius of 5.9 μm. Denote with A ≥ 0 the percentage surface area

f the interconnections normalized by the total surface area of the

articles. Finally, denote with φ0 the volume fraction of the RUC

t E 0 . In Table 1 , φ0 = 0 . 742 (75% RUC) and in Table 2 , φ0 = 0 . 694

70% RUC). A scaling law of type 

 ( φ0 , A ) = α( φ0 ) 
√ 

A (6)

as found with parameter α( φ0 ) ≥ 1. When A → 0 the Young’s

odulus converges to E 0 , i.e. E → 1 , with a square-root asymptot-

cal behavior. Away from φ0 , high order terms dominate. 

Fig. 19 (a) depicts the scaling law (6) at φ0 65%, 70%, and

5%, and compares it with the data taken from simulations - see

olumns 5–8 in Tables 1 and 2 for φ0 70% and 75%. Parameter

( φ0 ) has been estimated by a piecewise linear interpolation, not-

ng that α → 1 when φ0 → 1. A lower estimate E 0 ( φ0 ) of the

oung’s modulus at the origin (i.e. small joint approximation) can

e extracted from the scaling law (6) . To this aim, the normalized

urface area A when the Young’s modulus equals the solid alu-

inum one (70 GPa) is evaluated first. It is termed A 70 ( φ0 ) and

lotted in Fig. 20 (a). The lower estimate on the Young’s modulus

ollows from the equation 

 0 ( φ0 ) = 

70 

α( φ0 ) 
√ 

A 70 ( φ0 ) 
. (7)

his estimate has been plotted in Fig. 20 (b). The trend of the ex-

erimental data is captured accurately. 

The surface area that has been formed in a compaction process

s very influential on several material properties, such as thermal

nd electrical conductivities. Unfortunately, this important param-

ter is particularly difficult to measure. An estimate of the surface

rea can be recovered from the scaling law (6) as a function of the

oung’s modulus, which in contrast can be measured with well es-

ablished experiments. 

The discrete volume fraction ( φ) in column 7 of Tables 1

nd 2 is the initial volume fraction ( φ0 ) incremented by the vol-

me of the joints. The increase of the volume also leads to an in-

rement in the surface area A , printed in column 5 of the same

ables. It turns out that φ − φ0 and the increment of the area A

an be approximated well with a linear relation 

 = k ( φ − φ0 ) , (8)
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Table 3 

Values of computed Young’s modulus (E) in the three principal directions of the RUC 

of Fig. 17 for a single realization at different volume fractions. 

φ [%] Young’s modulus [MPa] Mean [MPa] st. dev. [MPa] Co. V. [-] 

E x E y E z E σ σ /E 

50 3730 5155 4222 4369 723 0.165 

60 9698 11,723 9907 10,443 1113 0.106 

65 12,198 11,587 12,267 12,017 374 0.0311 

70 14,885 15,990 15,278 15,384 560 0.0364 

75 21,251 20,732 19,711 20,565 783 0.0381 

Fig. 19. (a) Scaling laws at 65%, 70%, and 75% volume fraction (dashed lines). Solid lines represent data taken from simulations - see columns 5–8 in Tables 1 and 2 for φ0 

70% and 75%. (b) Piecewise linear interpolation of function α( φ0 ). Markers A, I, L in (b) represent the same data points as in Fig. 16 . 

Fig. 20. (a) Piecewise linear interpolation function A 70 ( φ0 ) . Markers A, I, L represent the same data points as in Fig. 16 . (b) The numerical lower estimate curve derived from 

Eq. (7) . 
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n the neighborhood of φ0 , as seen in Fig. 21 (a) with k = 214 . 17 . By

oupling the scaling law (6) with the lower estimate (7) and the

inear expansion (8) , the Young’s modulus can be estimated as a

unction of φ and φ0 in the neighborhood of φ0 : 

( φ0 , φ) = E 0 ( φ0 ) α( φ0 ) 
√ 

k ( φ−φ0 ) . (9)

his estimate of the Young’s modulus is plotted in Fig. 21 (b)

gainst the numerical data already presented in Fig. 16 , showing

verall good accuracy. 

Scaling law (9) can be conveniently used to obtain information

n the surface area that has been formed in a compaction process.

n example can illustrate this idea well. Assume to have a pack

ith initial volume fraction φ0 = 67% (point O in Fig. 22 ), and to

ave measured a Young’s modulus of 27 GPa after compaction at

 final 80% volume fraction (point M in Fig. 22 ). Since 27 GPa is

arger than the estimate E 0 (0.8) (point N in Fig. 22 obtained from

q. (7)) , the compaction process must have involved particle rear-

angement and deformation concurrently. If one could ideally plot
he sequence of points { φ, E } during compaction, such a history

urve would lie between the two continuous curves E (0.67, φ) and

 (0.76, φ), within points M , Q , O , P in the shadowed area in Fig. 22 .

 mere rearrangement from 67% to 76% along the curve E 0 from

oints O and Q , and sole deformation afterwards, would follow

he deformation curve E (0.76, φ) from point Q to point M . Since

 pure deformation from a volume fraction higher than 76% would

ause a Young’s modulus between points M and N , one may ar-

ue that no mere rearrangement above point Q has taken place.

n the other hand, the curve E (0.67, φ) is the history path taken

y pure deformation from point O at φ0 = 67%, which largely over-

stimates the measured value of the Young’s modulus at φ = 0 . 80

point R ). Point P that corresponds to Young’s modulus of 27 GPa

as φ = 0.767. The surface area increase is limited by the surface

rea created up to point P . The increment of the surface area

an be estimated via Eq. (8) for φ0 = 67% , φ0 = 76% . If the com-

action follows the curve E (0.67, φ), one has A = 20 . 77 , whereas
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Fig. 21. (a) Linear approximation function A (φ) in the neighborhood of φ0 . Markers A to L represent the same data points as in Fig. 16 . (b) Black solids lines correspond to 

the estimate of the Young’s modulus derived from Eq. (9) . 

Fig. 22. An illustrative example of the surface area estimate after a compaction pro- 

cess: the increment of surface area can be easily estimated via Eq. (8) for φ = 80 % 

and φ0 = 67 % and φ0 = 76 %, respectively. 
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if the compaction follows the curve E (0.76, φ), one has A = 8 . 57 .

The packing software provided a total surface area of the particles

equal to 14.026 mm 

2 and 14.169 mm 

2 for φ0 = 67% and φ0 = 76% ,

respectively. Accordingly, the surface area that has been formed in

the compaction process is estimated between 1.21 mm 

2 and 2.91

mm 

2 , respectively. 

6. Conclusions and final remarks 

In this paper, the Young’s modulus of cold compacted metal

powders has been estimated via computational simulations, us-

ing image-based morphological reconstructions of the microstruc-

ture and high performance computing. Computational simulations

have been compared with co-designed experimental investigations

for the quasi-static Young’s modulus. The dynamic Young’s modu-

lus was measured, also. Proposed numerical procedures are general

and provided insightful comparisons with the Young’s modulus of

alumina cold compacted powder compounds. 

Penetrating conclusions on the micro-mechanics of cold com-

paction processes have been drawn. As already envisaged on an

experimental basis, the load response of moderately compressed

powders is dominated by its particulate nature and inter-particle

forces, while the load response of heavily compressed material is

similar to that of a porous solid. Numerical analysis has shown

that, especially at low volume fractions, the two mechanisms

of powder compaction (rearrangment and deformation) interact

strongly, and a unique value of Young’s modulus can hardly be es-

tablished as a function of the volume fraction only, because it de-
ends on the history of deformation and of the stress percolation

ath. The importance of the inter-particle morphology and the sur-

ace area of such a network has been highlighted and quantified

ia a novel scaling law. Evidence of anisotropy at low volume frac-

ions, as well as significant scatter in experimental investigations,

lso confirm this conclusion. 

In the current implementation, local tensile states are utterly

ransmitted by joints, inducing a local cohesion with no magnitude

imitation. Moreover, it was not possible to estimate the dynamic

oung’s modulus numerically without tracking the contact regions

etween the particles. Further developments may numerically re-

olve the contact between particles, imposing pure unilateral con-

traints. 
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ppendix A. Young’s modulus for high energy ball milled Al 

owder 

A second set of measurements was carried out on high energy

all milled Al powders. The initial powders were 99.8% pure Al

ith -325 mesh size purchased from Alfa Aesar. The powders were

all milled in a Retsch PM100 planetary mill with 10 min (min) ac-

ive milling time, where each 5 min milling period was followed

y a 15 min rest period. The total mass of the powder was 33 g

nd a crash ratio of 5:1 was used with 440C stainless steel media

ith a diameter of 6.35 mm. Hexane (20 mL) was included as a

rocess control agent. The rotation speed was 650 rpm (rpm). The

owders were dried in air and then sieved using a sieve shaker to

 particle size range of 106–355 μm over 24 h. 

Fig. A.23 depicts the Young’s modulus estimated from exper-

mental measurements. Due to the small displacements at high

oading the uncertainty is large. The uniaxial stress experiments

how that the elastic response in the 80–90% TMD range for un-

illed and milled powders are on the same order. The Young’s

odulus increases gradually until approximately 95% TMD. After
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Fig. A1. Young’s modulus obtained from experimental measurements: a) high energy ball milled aluminum; b) summary - milled aluminum (filled triangles) powder com- 

pounds have been measured quasi-statically, whereas unmilled compounds have been measured quasi-statically (unfilled triangles) as well as dynamically (squares). Error 

bars represent twice the standard deviation. 
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his point the modulus increases rapidly, approaching the response

f a nonporous solid. 
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