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Abstract
Three-dimensional simulations capable of resolving the large range of spatial 
scales, from the failure-zone thickness up to the size of the representative unit cell, 
in damage mechanics problems of particle reinforced adhesives are presented. 
We show that resolving this wide range of scales in complex three-dimensional 
heterogeneous morphologies is essential in order to apprehend fracture 
characteristics, such as strength, fracture toughness and shape of the softening 
profile. Moreover, we show that computations that resolve essential physical 
length scales capture the particle size-effect in fracture toughness, for example. 
In the vein of image-based computational materials science, we construct 
statistically optimal unit cells containing hundreds to thousands of particles. We 
show that these statistically representative unit cells are capable of capturing the 
first- and second-order probability functions of a given data-source with better 
accuracy than traditional inclusion packing techniques. In order to accomplish 
these large computations, we use a parallel multiscale cohesive formulation and 
extend it to finite strains including damage mechanics. The high-performance 
parallel computational framework is executed on up to 1024 processing cores. A 
mesh convergence and a representative unit cell study are performed. Quantifying 
the complex damage patterns in simulations consisting of tens of millions of 
computational cells and millions of highly nonlinear equations  requires data-
mining the parallel simulations, and we propose two damage metrics to quantify 
the damage patterns. A detailed study of volume fraction and filler size on the 
macroscopic traction-separation response of heterogeneous adhesives is presented.

Keywords: multiscale cohesive modeling, computational homogenization, 
damage mechanics, high-performance computing, heterogeneous adhesives
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1. Introduction

Understanding of how materials fail is a long standing quest [1–22]. A crack has often been 
idealized as a separation of two adjacent material surfaces (two adjacent atomic layers) [1]. 
However, material failure is a result of massive breakage involving thousands of atomic planes 
localized to a representative zone that can be called the characteristic crack thickness, lµ (see 
figure 1) [18, 23, 24]. Unfortunately, experimentally measuring this material length scale is 
extremely difficult. Recent theoretical work by Volokh [24–26] relates the volumetric and 
surface fracture energies to estimate the characteristic failure zone thickness, µl , of a material. 
Volokh shows that lµ is 10 m0(   )µO  for typical metals, 10 m2(   )µO  for rubber, and (   )µO 10 m4  
for concrete [24–26]. This knowledge of the failure zone is crucial in numerical modeling of 
damage since it introduces a length scale that must be numerically resolved for the physics of 
the problem to be captured.

Opposite to the characteristic length of damage localization, lµ, is the macroscopic size of 
the structure, L of ( )O m , and the size of a material domain that describes the material mor-
phology with sufficient detail (i.e. Representative Unit Cell (RUC)), lRUC of ( )O mm , as shown 
in figure 1. Numerically resolving such a wide range of scales, ( )O 103  from macro-to-micro 
(from m to mm) and 103( )O  from micro-to-lµ (from mm to μm), is a challenge. This large range 
of scales usually results in simulations that are 2D [27], often within the small strain confines, 
and/or small strain 3D computations [28], but with small domains and discretizations unable 
to resolve the characteristic crack thickness. Therefore, obtaining in-depth understanding of 
the effects of material morphology on the fracture processes has traditionally been attempted 
through experiments [9, 10, 29–35]. However, to the best of our knowledge, a numerical study 
of damage that resolves the length scales from the failure zone, lµ, up to the size of the RUC, 
lRUC, in the 3D finite strains setting with complex material geometries has not been presented. 
Well resolved computations of this type can help address questions on the effect of particle 
volume fraction in the toughening response, the effect of particle diameter on non-monotonic 
fracture toughness, the competition between cohesive versus adhesive failure, and many oth-
ers. Thus, performing such a three-dimensional study in the context of heterogeneous material 
interfaces is the aim of this work.

Heterogeneous interfaces are pervasive in engineering [29, 36, 37] as well as geological 
[38], biological [39], and many other natural and man-made applications. In engineering, typi-
cal examples are adhesive bonds replacing solder in electronics [36], dental adhesives [40], 
structural composite bonds [29], and bone repair adhesives [41]. In many of these examples, 
the heterogeneity is introduced to obtain desired mechanical properties or multi-functionality, 
such as in self-healing adhesives [37]. For instance, the addition of rubber particles to a stiffer 
epoxy increases fracture toughness due to cavitation and particle bridging [29]. The addition 
of glass particles to a softer adhesive increases fracture toughness by crack deflection and 
blunting [10]. Other constituents such as natural fibers [42] and carbon nanotubes [43] also 
modify mechanical properties, while the inclusion of silver flakes increases electrical conduc-
tivity [36]. Regardless of the reinforcement, the addition of these heterogeneities have a large 
effect on the macroscopic fracture response of the interface.

The multiscale cohesive modeling framework, proposed by Matouš et al [27], naturally 
includes the full description of the microscale in computing the overall macroscopic cohesive 
response. The multiscale cohesive theory is based on energy equivalence, i.e. Hill’s Lemma 
[44], which introduces the concept of a RUC with in-plane dimension lRUC and thickness 
of lc. The dimension, lc, corresponds to the actual thickness of the adhesive bond line, see 
figure 1. Following this work, there have been numerous studies of failure within heterogene-
ous interfaces in the 2D small strain setting [45–47]. The first 2D fully coupled multiscale 
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cohesive simulations of failure were published by Matouš’ group in 2010 [48]. The original 
multiscale formulation for interfaces (Matouš et al [27]) was derived within the confines of 
small strains. Unfortunately, the small strain assumption is easily broken, especially at the 
micro-scale, even for a small macroscopic displacement jump across the cohesive surfaces. 
Therefore, Hirschberger et al [49] extended the formulation to finite strains, but did not con-
sider material failure. The first fully coupled hyperelastic multiscale cohesive simulations 
in the 3D finite strain setting were presented by Mosby and Matouš [50]. Conen et al [51] 
presented a method to transition from bulk to cohesive multiscale modeling based on devel-
opment of a strain localization band within the microstructure. McBride et al [52] added the 
effects of in-plane stretch and presented results in 3D. However, they did not include damage 
mechanics, and microscopic domains used in the numerical results included only one void 
or particle. Recently, Aragón et al [28] studied the effect of in-plane stretch on failure in 3D 
with domains containing 110 particles, but the formulation was in the small strain regime 
once more.

In this work, we use our in-house parallel 3D finite strains multiscale cohesive solver 
PGFem3D capable of capturing the large range of scales from lµ to lRUC (see figure  1). 
The primary focus of this work is to examine the link between material morphology and 
micro- and macro-scale damage response in complex three-dimensional microstructures. 
Specifically, we examine the discretization size (h) required to capture the characteristic 
crack thickness ( µl ), fracture toughness and strength, and the size of the RUC (lRUC) that is 
required for macroscopically resolved and physically meaningful results. We also investi-
gate the effect of particle volume fraction (cp) and diameter (d) on the macroscopic cohesive 
response. Simulations involving this wide range of scales are inherently expensive, consist-
ing of tens of millions of computational cells and millions of highly nonlinear equations, 
thus requiring the use of high-performance computing. Therefore, we employ a high-per-
formance computational framework utilizing up to 1024 processing cores. We note that this 
parallel computing strategy is not the first of its kind (see e.g. [53]). However, executing 
such a framework is not a trivial task. We apply the parallel framework here, in the context 
of multiscale cohesive modeling of damage, to capture the wide range of spatial scales 
(l lRUC→µ ). These large simulations generate an enormous amount of data which is difficult 
to process for engineering decisions. Therefore, we use data-mining of the parallel simula-
tions and introduce two damage metrics that allow us to characterize the damage pattern 
and quantify the effect of microstructure on the macroscopic cohesive characteristics, such 
as maximum traction (strength) and fracture toughness.

A key aspect of the multiscale modeling framework is development of a RUC. The size 
of a RUC for heterogeneous materials is related to both morphology and constituent material 

Figure 1. Multiscale modeling of failure in heterogeneous interfaces with widely 
varying spatial scales.
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properties (and their contrast), and is a frequent topic in computational material science [54–
58]. While the literature is relatively rich with studies developing RUCs for hardening materi-
als, there are comparatively fewer studies for materials with softening [55, 56]. Kulkarni et al 
[45] performed a RUC size study based on the convergence of mean and standard deviation of 
failure response in a thin heterogeneous interface. In Kulkarni et al [45], cells were generated 
by Random Sequential Addition (RSA) and showed fast convergence of mean response, but 
very slow convergence of the standard deviation.

This work follows the concept of data-driven (image-based) modeling, and we propose 
to reconstruct RUCs from statistics of a material sample, similarly to our prior work on bulk 
materials [57, 59]. In this way, our unit cells not only match particle size and volume fraction, 
but overall second-order statistical description. We show that using a statistically equivalent 
RUC leads to more accurate and faster convergence of response with respect to the cell size.

The paper is organized as follows: section 2 provides the finite strain multiscale cohesive 
modeling formulation. Section 3 describes the method for reconstructing RUCs from statisti-
cal material data. Section 4 presents the numerical results and analysis of the multiscale stud-
ies. Finally, conclusions are drawn in section 5.

2. Governing equations

In this section, we present the 3D finite strain multiscale cohesive formulation. Our work is 
based on the original small strains model derived by Matouš et al [27] that was extended to 
finite strains by Hirschberger et al [49]. Here we extend the 3D finite strain multiscale cohe-
sive model to include damage mechanics, and implement it in a highly parallel computing 
environment. In the following subsections, we provide an overview of the finite strain multi-
scale kinematics, the scale transition using the Hill–Mandel condition for interfaces, and the 
constitutive failure response at the microscale. Our computational work makes use of finite 
element procedures implemented for parallel computing, and the interested reader is referred 
to appendix A for details of the computational implementation.

2.1. Macroscale problem

Consider a body 0
3⊂Ω R  consisting of material points ∈ΩX 0 (see figure 2). The boundary 

∂Ω0 is decomposed such that ∂Ω = ∂Ω ∪∂Ωu t
0 0 0 and u t

0 0∂Ω ∩∂Ω = ∅. Let the boundaries u
0∂Ω  

and ∂Ωt
0 represent the areas of applied displacement u and traction t, respectively. Next, let 

the adhesive layer with thickness >l 0c  be represented by an oriented manifold RΓ ∈0
2 with 

unit normal ( )N X0  in the reference configuration. The manifold decomposes Ω0 into two bod-
ies (adherends) denoted by Ω+0  and Ω−0 . The deformation of the adherends is described by the 
deformation map and its gradient

( ) ( )
( )
ϕ

ϕ

= + ∀ ∈Ω

= ∇ = +∇ ∀ ∈Ω

±

±

X X u X X

F X u X1

,

,X X

0 0
0

0 0 0
0

 (1)

where 1 is the second-order identity tensor, and ( )u X0  is the macroscale displacement. Under 
arbitrary loading, there is a jump in the deformation across the interface,

[[ ]]( ) ( ) ( ) [[ ]]( )ϕ ϕ ϕ= − = ∀ ∈Γ+ −X X X u X X ,0 0 0 0
0 (2)

and we define the average deformation gradient as
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( ) [[ ]]( ) ( )= + ⊗ ∀ ∈ΓF X u X N X X
l

1
1

.0

c

0 0
0 (3)

Neglecting inertial forces, the macroscale equilibrium boundary value problem is given by

∇ ⋅ + = ∈ Ω

⋅ = ∂Ω

= ∂Ω

+ = Γ

±

+ −

FS b

FS N t

u u

t t

0

0

,

on ,

on ,

on ,

X
t

u

0
0 0

0 0
0

0
0

0 0
0

( )
( )

 (4)

where = ∂ ∂S CW2 /0 0 0  is the macroscopic second Piola-Kirchhoff stress tensor, =C F F0 0 T 0  
is the macroscopic right Cauchy-Green deformation tensor, and 0W is any suitable, e.g. hyper-
elastic, macroscopic strain energy density function. Application of standard variational pro-
cedures leads to the weak form of the boundary value problem given in equation (4). Find 

∈ Ω > Ω =Ω ∂Ωu X u F u u: det 0 in and0 0
0

3 0
0

0 u
0 0

RC { }( ) → ∣ ( ) ∣  such that

∫ ∫

∫ ∫

δ δ

δ δ

= ∇ + ⋅

− ⋅ − ⋅ =

Ω Γ

Ω Ω

±

±

S F u t u

t u b u

R V A

A V

: : d d

d d 0

u X
0 0 T 0 sym 0 0

0
0

0
t

0

0 0

0 0

[ ] [[ ]]
 

(5)

holds for variations u X u u 0:0 0
0

3 0 u
0 0

V( ) { ∣ ∣ }δ δ δ∈ Ω → =Ω ∂ΩR . Equation  (5) is identical to 
the classical cohesive modeling formulation [4]. Note that in traditional cohesive modeling, t0  
is defined by a phenomenological traction-separation relation [4, 5]. In this work, the traction-
separation relation is computationally derived from the microscale response as described in 
the following sections.

2.2. Microscale problem

A microstructure R⊂Θ0
3 consisting of microscale points ∈ΘY 0 is locally attached to each 

macroscale point ∈ΓX 0 (see figure 2). The motion and deformation gradient in the micro-
structure are functions of both macro- and micro-variables as

Figure 2. Kinematics of multiscale cohesive modeling. Note that Ω0 represents the 
macro-domain, while Θ0 is the micro-domain.
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( ) ( ) ( )
( ) ( ) ( )
ϕ = + ∀ ∈Θ

= +∇ ∀ ∈Θ
X Y F X Y u Y Y

F X Y F X u Y Y

, ,

, ,Y

0 1
0

0 1
0

 (6)

where ( )u Y1  is the microscale displacement fluctuations. The boundary, ∂Θ0, is decomposed 
into non-overlapping sections ∂Θ±0  and ∂Γ±0  corresponding to the ±Y1,2 and ±Y3  faces respec-
tively (see bottom left of figure 2). In this work, Θ0 is Y1,2-periodic. The microscale equi-
librium boundary value problem, neglecting body forces and without prescribed traction, is  
given by

( ) ϕ ϕ∇ ⋅ = ∈Θ = ∂ΘF S 0 , with on .Y
1

0 0 (7)

In equation  (7), ( )ϕ X Y,  is a prescribed motion, = ∂ ∂S CW2 /1 1  is the microscale sec-
ond Piola-Kirchhoff stress, and =C F FT . We will describe the form of 1W, the microscale 
strain energy density function, in section 2.4. The weak form of equation (7) is derived from 
the micro-to-macro transition with a particular set of physically applicable and mathemati-
cally admissible boundary conditions. The micro-to-macro transition is described in the next 
section.

2.3. Micro-to-macro transition

In computational homogenization, the behavior of a material point at the macroscale is linked 
to the microscale through the Hill–Mandel stationarity condition [44], and for interfaces [27, 
49] is given by

∫ψ =
Θ

+∇ Θ
Θ

u F u
l

Winf inf inf d ,
u u u

Y
0 0 c

0

1 0 1
0 0 1

0

([[ ]])
∣ ∣

( )
[[ ]] [[ ]]
 (8)

which minimizes the potential energy at both scales. Equation  (8) relates the macroscopic 
traction potential energy, ψ0 , to the average of the microscale strain energy density, 1W. Note 
that the formulation departs from the bulk homogenization in that lc scales the volume average 
microscale strain energy in order to equate it to the macroscale traction potential.

The Hill–Mandel condition places restrictions on the microscale kinematics [44], equa-
tion (6), namely

∣ ∣ ∣ ∣∫ ∫Θ
∇ Θ =

Θ
⊗ =

Θ ∂Θ
u u N A 0

1
d

1
d ,Y

0

1

0

1

0 0
 (9)

where N is the unit normal to ∂Θ0. For multiscale modeling of heterogeneous layers, we use 
hybrid (semi-periodic) boundary conditions [27, 49] given by

u u u t t0 0 0on , on , on ,1
0

1 1
0

1 1
0= ∂Γ − = ∂Θ + = ∂Θ± + − ± + − ± (10)

where ∂Γ±0  are the top and bottom surfaces of the layer, and ∂Θ±0  are positive and nega-
tive Y1 (front and back) and Y2 (right and left) faces of the cell, respectively. The hybrid 
boundary conditions (shown schematically in figure 3) are physically motivated by fixing the 
top and bottom surfaces of the adhesive layer, ∂Γ±0 , to the adherends, and approximating an 
infinite medium in the Y1, 2-directions, ∂Θ±0  (see equation (10)). Admissibility of the hybrid 
boundary conditions are proved in [27, 49]. We note that other mathematically admissible 
boundary conditions are also physically applicable to multiscale modeling of heterogeneous 
layers, such as homogeneous kinematic boundary conditions ( =u 01  on ∂Θ0) or the Taylor 
model ( = ∀ ∈Θu Y01

0). In the case of a homogeneous layer, the hybrid and homogeneous 
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kinematic boundary conditions yield identical response to the Taylor model. We will return to 
this point in section 4.3.

We now derive the weak form of the microscale equilibrium (equation (7)). Taking varia-
tions of equation (8) with respect to u1 , we arrive at the weak form of the microscale problem. 

Find RC { }( ) → ( ) ∣|∈ Θ > Θ = − ∂ΘΘ ∂Γ
±

±u Y u F u u Y0: det 0 in , and is periodic on1 1
0

3
0

1 1
1,2 00 0

 

such that

∫ δ=
Θ

∇ Θ =
Θ

S F u
l

: : d 0u Y
c

0

1 T 1 sym
1

0

R
∣ ∣

[ ] (11)

holds for variations V( ) { ∣ ∣ }δ δ δ δ∈ Θ → = − ∂ΘΘ ∂Γ
±

±Ru Y u u u Y0: and is periodic on1 1
0

3 1 1
1,2 00 0

. 
Note that the macroscopic constitutive response of the interface is given by

[[ ]]
ψ

=
∂
∂

t
u

,0
0

0 (12)

which is the result of Coleman and Noll’s procedure [60, 61]. Taking the variation of equa-
tion (8) with respect to u0[[ ]] yields

R
∣ ∣

[[ ]][[ ]]
⎡
⎣⎢

⎧
⎨
⎩

⎫
⎬
⎭

⎤
⎦⎥∫ δ=

Θ
Θ ⋅ − ⋅ =

Θ
F S N t u:

1
d 0,u

0

1 0 0 0
0

0

 (13)

where u X0
0V( )δ ∈ Ω . Upon microscale equilibrium, equation (13) yields the closure on the 

macroscale traction, namely

∣ ∣
⎡
⎣⎢

⎤
⎦⎥∫=

Θ
Θ ⋅

Θ
t F S N

1
d ,0

0

1 0

0

 (14)

and is used at the macroscale in equation (5).

2.4. Microscale constitutive model

Concern of the multiscale formulation is now turned to definition of a constitutive model at the 
microscale. We use an isotropic viscous damage model based on irreversible thermodynamics 

Figure 3. The hybrid (semi-periodic) boundary conditions on ∂Θ0.
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and internal state variables theory as described in [12, 13, 27, 45, 48]. For completeness of the 
presentation, we summarize the damage model in what follows.

Consider the strain energy density function from equation (8)

ω ω= −C CW W, 1 ,1 1( ) ( ) ( ) (15)

where [ ]ω∈ 0, 1  is the isotropic damage variable. In this work, we use the Neo-Hookean hyper-
elastic model and employ the volumetric and deviatoric split, = +C CW W U J1 1 1( ) ( ˆ ) ( ), with

µ

κ

= −

= − − −

C CW

U J J J

*

2
tr 3 ,

2
exp 1 ln 1 .

1

1

( ˆ ) [ ( ˆ ) ]

( ) [ ( ) ( ) ]
 (16)

In equation (16), ( )= FJ det  is the Jacobian of the deformation, ˆ = −C CJ 2/3  is the deviatoric 
right Cauchy-Green deformation tensor, µ* is the shear modulus, and κ is the bulk modulus. 
The Clausius–Duhem inequality, neglecting all but mechanical effects, reads

⩾− + S CẆ
1

2
: ˙ 0,1 1 (17)

where ( )•̇  denotes the material time derivative. Substituting for Ẇ1  and using standard argu-
ments of thermodynamics yields

S
C
W

Y1 2 and : ˙ 0,1
1

D( ) ⩾ω ω= −
∂
∂

= −ω (18)

where D ω is the damage dissipation, and − = =Y Y W1  is the damage energy release rate, 
thermodynamic force conjugate to the damage variable, ω. The evolution of damage is gov-
erned by a damage surface analogous to a yield surface in plasticity [12, 13],

χ χ= −g Y G Y, 0,t t( ) ( ) ⩽ (19)

where ( )G Y  is a function describing the damage process in the material and χ χ ==, 0,t t 0  is 
the damage internal state variable which describes the maximum damage reached at a given 
material point. The damage process is governed by

ω λ λ χ λ χ χ χ=
∂
∂
= = =

∈ −∞

⎧
⎨
⎩

⎫
⎬
⎭

g

Y
H H˙ ˙ ˙ , ˙ ˙ , max , max ,t t

s t

s0

,( ]
 (20)

where = ∂ ∂H G Y/  and λ = Y˙ ˙  is the damage consistency parameter. We assume unloading 
towards the origin. The damage loading/unloading is governed by the Kuhn–Tucker consis-
tency conditions:

λ χ λ χ =g Y g Y˙ 0, , 0, ˙ , 0.t t⩾ ( ) ⩽ ( ) (21)

It has been shown that many adhesives exhibit a range of viscous behavior [62, 63]. 
Therefore, we employ a linear viscous damage model as in [12, 13, 27, 45, 48], which refor-
mulates the evolution equation (20) as

ω λ ω µ χ λ χ µ= → = = → =H g H g˙ ˙ ˙ and ˙ ˙ ˙ ,t t (22)

where [ )µ∈ ∞0,  [s−1] is a damage viscosity parameter and •  are McAuley brackets. The 
damage viscosity is inverse proportionally related to the damage relaxation time, µ τ∝ 1/ . 
Voyiadjis [11] suggested that for certain materials and loading rates, the damage viscosity 
(μ) can be assumed as proportionally related to material (extensional) viscosity, η [Pa·s], 
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by µ η∝ E /  where E is Young’s modulus. This introduces a viscous damage length scale 

( )η ρ µ ρ∝ ∝µl E E E/ / , where ρ is the material density and ρE  is the longitudinal wave 

propagation speed. We note that the viscous damage model has its own limitations and the 
localization zone, µl , can be introduced using different theories, e.g. non-local damage models 
[8]. Nevertheless, we use a viscous damage model in this work for simplicity of implementa-
tion. However, we attempt to calibrate the damage viscosity such that it lies within the range 
of material data. Thus, we relate μ to the characteristic damage length scale [24, 25], µl , in 
order to capture the physical behavior of interest (e.g. particle size effect). A value of µ = 0 
gives the instantaneous hyperelastic response while µ→∞ recovers the rate-independent 
damage model. Finally, we note that the damage viscosity also regularizes the solution of the 
governing boundary value problem, equation (7), which retains the strong material ellipticity 
[12, 13].

In this work, the Weibull function,

( ) = − −
−⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎥

G Y
Y Y

p Y
1 exp ,

p
in

1 in

2

 (23)

is used to describe the damage process for >Y Yin, where p p,1 2 and Yin are material parameters 
denoting scale, shape, and initial damage energy threshold respectively. We discuss the values 
of the damage parameters in section 4. Note that the damage surface, equation (19), and the 
three parameter isotropic damage function, equation (23), govern the character of the normal 
versus shear material strength and fracture toughness. Moreover, the finite strain kinematics 
couple all loading modes. We will comment on this further in section 4. The computational 
implementation of the isotropic damage model based on an adaptive time-stepping scheme is 
presented in appendix B.

3. Statistical characterization and representative unit cell reconstruction

In this section, we extend the statistical characterization and unit cell reconstruction tech-
niques developed for bulk materials in [57, 59] to material layers. We use our software tools 
for statistical characterization, Stat3D, and reconstruction, Recon3D, that both run in a paral-
lel computing environment [57, 59]. The material characterization and cell reconstruction 
results were computed on up to 1024 processing cores.

In data-driven (image-based) modeling, the material morphology is typically obtained from 
experiments such as micro-computed tomography, or scanning electron microscopy, etc [64]. 
Other possible data sources are digital microstructures obtained from packing algorithms such 
RSA, or the Lubachevsky-Stillinger packing algorithm [65], just to name a few. Regardless of 
its source (experimental and/or digital), this large volume of morphological data lends itself 
to statistical characterization. In our work, we use the isotropic one- and two-point probability 
functions [58],

( ) ( ) (∥ ∥)= = −′ ′Y Y Y Y YS c S S, and , .r r rs rs

 

(24)

In equation (24), cr is the volume fraction of phase r and Srs is the probability of the end-
points of a line of length ∥ ∥= − ′Y Yl  existing in both phases r and s simultaneously. For 
bulk materials, all orientations of the line in 3D space are averaged to obtain the isotropic 
second-order statistical representation. For material layers of a given thickness, lc, we pro-
pose in-plane material sampling, i.e. only horizontal orientations of the random line, l, in 3D 
space are averaged. Nevertheless, the full 3D character of the material is preserved since the 
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sampling proceeds randomly throughout the thickness of the layer (lc). Thus, the functions Srs 
are in-plane isotropic. The saturation of Srs yields a geometric length scale, lstat, which is the 
smallest sample that can statistically describe the overall material. The saturation point used 
to determine lstat is given by the point at which derivatives of all in-plane isotropic two-point 
probability functions reach zero.

In this work, we digitally generate material samples by RSA. We call these digital sam-
ples packs. For each material mixture, five random packs are generated and statistically 
characterized. Figure 4(a) shows one pack with 10% volume fraction of 20 μm diameter 
particles and overall dimensions of × ×1000 1000 200 μm3, containing 4774 particles. 
Figure  4(b) shows the average in-plane isotropic two-point probability functions for the 
five packs. The maximum standard deviation for all functions is ⋅ −2.79 10 4, and error bars 
representing one standard deviation are not shown since they are small in this case. The 
geometric length scale for this material is = =l l2 140stat  μm, and is denoted by the dashed 
vertical line in figure 4(b).

The geometry of the cell with dimensions × ×l l lcell cell c is reconstructed using a genetic 
algorithm [59]. For completeness, we provide a brief description of the reconstruction proce-
dure augmented in this work for material layers. Using an initial guess for the side length of 
the cell, typically lstat, the least-square difference of the one-point probability functions (vol-
ume fraction) is minimized. The first objective function for spherical mono-disperse particle 
mixtures is given by

F ( ) ( )
⎛

⎝
⎜

⎞

⎠
⎟π

= − = −l c c c
r n

l l

4

3
,1 cell p c

2
p

3

c cell
2

2

 (25)

where cp and cc are the volume fractions of particles in the pack and the cell, respectively. The 
number of particles is denoted by n, and r is the radius of the particles. Note that the extension 
of this objective function to poly-disperse packs is trivial (see [59]). The optimal size of the 
cell is determined analytically from the local minimum of equation (25):

F π
= ⇒ =

l
l

nr

l c

d

d
0

4

3
.1

cell
cell

3

c p
 (26)

After optimizing the size of the cell, the in-plane isotropic two-point probability functions 
are matched to find the optimal location of particle centers. The second objective function 
minimizes the L2 error of the in-plane isotropic statistics between the pack and cell and reads

F ( ) ∥ ∥∑∑= −Y S S ,n
r

N

s

N

rs
p

rs
c

L2 2 (27)

where Yn are the positions of the particles in the cell. Note that our cells are Y1, 2-periodic (see 
section  2.3 regarding the hybrid boundary conditions). More details on the reconstruction 
procedure are given in [57, 59].

For the RUC convergence study presented in section 4.2, we reconstruct five cells each 
with side lengths given by ≈l l1/2cell stat, ≈l lcell stat, and ≈l l2cell stat (69.408, 139.569, and 
279.887 μm) containing 10% volume fraction of 20 μm diameter particles. Figure  5(a) 
shows a comparison between the pack and a cell with ≈l lcell stat. Figure 5(b) shows a com-
parison of average in-plane isotropic two-point probability functions from the pack and 
cells with different side lengths. The standard deviations are very small and are not shown. 
The maximum standard deviation of all functions for all reconstructed cells is ⋅ −8.65 10 4. 
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Note that all of the different sized cells accurately capture the statistics due to the recon-
struction algorithm.

In order to determine the relative accuracy of different cell generation methods, we compute 
the statistics of five cells generated by RSA with =l 139.569cell  μm and compare them to those 
from the reconstructed cells. A comparison of the average L2 error with respect to the pack, 
using equation (27), and the maximum standard deviation for all in-plane isotropic probability 
functions is shown in table 1. Both cell generation methods have similar precision (indicated 

Figure 4. A random material pack and in-plane isotropic two-point probability 
functions. (a) A pack consisting of 10% volume fraction of 20 μm diameter particles 
( × ×1000 1000 200 μm3 with 4774 particles). (b) Average in-plane isotropic two-point 
probability functions (Srs) for five realizations of the pack (p - particle, m - matrix). The 
vertical dashed line that defines l1/2 stat (the saturation point) is determined by the point 
at which derivatives of all Srs functions reach zero.

(a) (b)

Figure 5. Comparison of morphology and average statistical functions for the pack and 
its statistically equivalent Y1, 2-periodic cells containing 10% volume fraction of 20 μm 
diameter particles. (a) Comparison between the pack (4774 particles in × ×1000 1000 200 
μm3) and the cell with ≈l lcell stat (93 particles in × ×139.569 139.569 200 μm3). (b) 
Comparison of the average in-plane isotropic two-point probability functions from the 
different cells and the pack. Markers denote different probability functions, and gray-
scale denotes cells with different side lengths. The subscripts p and m denote particle 
and matrix phases, respectively.

(a)
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by similar maximum standard deviations), but the statistically optimal cells capture the pack 
statistics approximately seven times better. While the link between morphology, statistics, and 
the overall material behavior is complex, it has been shown that even small variations in statis-
tics can have a significant effect on macroscopic properties [64]. Thus, cells which match the 
statistics of the overall material morphology as closely as possible are preferred.

In this section, we have presented a method for characterization of material layers (packs) 
and reconstruction of statistically optimal unit cells within the context of image-based mod-
eling. The statistically optimal cells provide a more accurate and precise representation (in 
the L2 sense) of the material morphology than typical material-blind packing algorithms (e.g. 
RSA). In addition to accurately representing the material geometry, RUCs must also provide 
accurate physical response. In section 4.2, we examine the link between the geometric length 
scale, lstat, and the physical size of a RUC, lRUC, required to yield representative macroscopic 
response.

4. Numerical results

The following section details the numerical studies performed for the physical analysis. First, 
the required mesh size is determined from a grid convergence study. Then, the required size 
of a RUC with respect to the statistical length scale is determined by a convergence study of 
physical behavior. For both of these studies, the adhesive layer consists of 10% volume frac-
tion of 20 μm diameter particles. After determining the required mesh and RUC size, analysis 
of the effects of particle volume fraction and diameter on the multiscale response of the adhe-
sive layer is presented.

In this work, we are interested in complex loading conditions where all three fracture 
modes are present (mode I, normal opening; mode II, in-plane shear; mode III, out-of-plane 
shear). Therefore, the mixed-mode macroscopic loading history, with [[ ]] [[ ]] [[ ]]= =u u u0

1
0

2
0

3  
and a macroscopic loading rate of ∥[[ ]] ∥=u l˙ / 0.10

c  s−1 is used for all examples. Note that we 
do not solve the fully coupled multiscale problem in this work. Fully coupled cohesive mul-
tiscale simulations of damage in 2D and hyperelasticity in 3D were presented in [48] and 
[50], respectively. Instead, we prescribe the macroscale deformation gradient, equation (3), 
and solve the microscale problem given by equation (11). Upon equilibrium, the macroscopic 
traction vector is evaluated using equation (14). The solution is obtained using our multiscale 
parallel solver, PGFem3D [66, 67], executed on up to 512 processing cores. See appendix A 
for details regarding the parallel computational implementation. Under the prescribed loading 
conditions, and due to isotropy of the RUCs (in the Y1, 2-direction), the traction-separation 
response in the Y1, 2-directions is identical for the purposes of engineering analysis. For sim-
plicity of presentation, we reduce results to the normal and shear directions defined as

( ) ( ) ( ) ( ) ( )= = +• • and • • • ,n s3 1
2

2
2 (28)

where ( )• i is the i-th component of t0  or u0[[ ]], respectively.

Table 1. Average L2 error and maximum standard deviation of two-point isotropic 
probability functions for RSA generated and statistically optimal cells with 
=l 139.569cell  μm.

Avg. L2 error Max. std. dev.

RSA ±0.0778 0.0069 0.0011
Statistically optimal ±0.0112 0.0023 0.0008
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In this work, we use surrogate material properties given in table 2 that mimic stiff nylon 
(Nylon 6) particles embedded in a polyurethane structural adhesive (e.g. 3MTM Polyurethane 
Structural Adhesive W1600). We choose hyperelastic properties that are within the range of 
material response reported in references [68, 69]. Moreover, the damage parameters Yin, p1 
and p2 are chosen to achieve ultimate strength within the range of reported values [68, 69]. 
One material property that deserves more discussion is the damage viscosity, μ [s−1]. As 
mentioned in section 2.4, the damage viscosity is inverse proportionally related to the mate-
rial relaxation time. Unfortunately, in many engineering studies μ is often chosen artificially 
small, O( )101  [27, 45]. This small value allows for easy numerical solution, but results in 
highly rate-dependent response and unrealistically thick damage zones [27, 28, 45]. In this 
work, we use µ = 100 s−1 which is within the range of reported values for structural adhe-
sives from O( )102  to O( )106  s−1 [70, 71], and results in lower rate-sensitivity and thinner 
damage zones. The response of each material is shown in figure 6 for three different strain 
rates. Instead of the typical stress-strain response, we plot the traction-separation relation 
for easy comparison with multiscale results that follow. We note that the chosen value of 
μ is on the lower range of physical values. However, the realistic response displayed in 
figure 6 over the broad range of strain-rates suggests that the selected damage viscosity is 
acceptable.

Table 2. Constituent material properties for the adhesive layer.

E [MPa] ν [-] Yin [MPa] p1 [-] p2 [-] μ [s−1]

Particle 2.4e3 0.34 0.32 2.5 8.0 100.0
Matrix 8.0e2 0.34 0.15 8.0 2.5 100.0

Note: E and ν are Young’s modulus and Poisson’s ratio, respectively. The damage model is 
governed by the initial damage energy threshold, Yin, the scale and shape parameters of the 
damage function, p1 and p2, and the damage viscosity, μ.

Figure 6. Traction-separation relations for the stiff particle and soft matrix under 
mixed-mode loading with three different strain-rates. Solid lines denote the strain rate 
prescribed in subsequent studies, while dashed and dot-dashed lines represent response 
from ×1/10  and ×10  the applied strain rate. Note that the materials are only weakly 
rate-sensitive over a wide range of strain rates. Also note that the layer thickness in our 
examples is 200 μm for displacement jump to strain conversion. (a) Normal component 
of mixed-mode response. (b) Shear component of mixed-mode response.
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4.1. Mesh convergence study

In this section, we determine the required mesh size to capture the hyperelastic, limit (strength), 
and softening response as well as the fracture toughness. One realization of the cell recon-
structed in section 3 with ≈l lcell stat is used in this mesh convergence study. The cell contains 
93 particles and has dimensions of × ×139.569 139.569 200 μm3. It is important to note that 
we use highly unstructured tetrahedral meshes created by the T3D meshing tool [72]. The 
reported mesh size, h, is the desired mesh density and is used as an identifier for the different 
refinement cases. The meshes have localized refinement and coarsening points which generate 
finer and coarser elements, but the average element size is guaranteed to be ⩽h havg . The aver-
age, minimum, and maximum element size, as well as number of nodes, elements, and degrees 
of freedom (DOFs) are listed in table 3. Note that the finest mesh solved in this work contains 
over 90 million elements and nearly 48 million nonlinear algebraic equations. Therefore, an 
efficient solution strategy is essential.

Due to the rate-dependent damage model used in this work, the loading rate has an impact 
on the mesh convergence. Typically, a slower loading rate will require finer meshes. Recall that 
a macroscopic loading rate of =u l˙ / 0.10

c∥[[ ]] ∥  s−1 is used for all simulations, including the mesh 
convergence study, and that the accuracy of the damage model is controlled by an adaptive time-
stepping scheme with ⩽ω∆ 5max % (see appendix C). Moreover, to understand the rate effects, 
figure 6 shows the rate sensitivity of both the matrix and reinforcing particles. Note the small dif-
ference in material response for 0.01 s−1 and 0.1 s−1 loading rates. Therefore, the mesh conver-
gence study presented hereafter is sufficiently conclusive for the physical analysis that follows.

Figure 7 shows the macroscopic traction-separation response computed from increasingly 
finer meshes. Not surprisingly, all discretizations capture the hyperelastic response without 
any difficulty. Finer meshes transition to a more gradual softening response due to properly 
capturing the microscale damage features that are linked to morphology and damage proper-
ties (e.g. damage viscosity μ). We will analyze these microscale damage features in more 
detail in subsequent studies (see sections 4.2–4.4).

The convergence of the strength and fracture toughness with respect to decreasing mesh 
size is displayed in figure 8. We define the dissipated energy (crack driving force—fracture 
toughness) in the normal and shear directions as

[[ ]] [[ ]]
[[ ]] [[ ]]

∫ ∫= =G t u G t ud and d ,n

u

n n s

u

s s
0

0 0

0

0 0
n f s f

0 0

 (29)

where [[ ]]un f
0  and [[ ]]us f

0  are the normal and shear values of displacement jump at the final 
(failure) point in the load history. This normal and shear split is introduced to understand 
the energy released by the adhesive layer (homogenized RUC) due to the overall normal and 
shear tractions, respectively. In this work, we combine the in-plane (mode II) and out-of-
plane (mode III) shear modes into Gs in accordance with our reduction of shear modes given 
by equation (28). For the chosen level of mode mixity and applied loading rate (each kept 
constant throughout the loading process and for all simulations), the computed shear tough-
ness and strength are smaller than their normal counterpart. This trend is observed for all 
simulations presented in this manuscript, and is likely influenced by the mixed-mode loading 
conditions as well as the simple isotropic damage model used in this work. Moreover, our 
kinematic decomposition (see equation (3)) introduces a constraint since the in-plane response 
of the heterogeneous layer is restricted. Furthermore, similar behavior has been observed 
experimentally for varying material systems under different levels of mode-mixity (see e.g. 
[73–76]). A more sophisticated anisotropic damage model could be adopted at the microscale 
to decouple the normal and shear response [12].
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Note that Gn and Gs are different in value from the traditional normal, G I, and shear, G II and/or 
G III, fracture toughness due to the mixed-mode loading conditions, rate-dependence and finite 
strain kinematics. In the small strain limit, →G Gn I for [[ ]] [[ ]]= =u u 00

1
0

2  and [[ ]]≠u 00
3 , while 

→G Gs II for = =u u 00
2

0
3[[ ]] [[ ]]  and ≠u 00

1[[ ]] . Similarly, →G Gs III for = =u u 00
1

0
3[[ ]] [[ ]]  and 

[[ ]]≠u 00
2 . Under the finite strain kinematics, shear loading introduces a normal opening and 

Table 3. Mesh identifiers and characteristics for the grid convergence study.

Identifiers Characteristics

h [μm]
1/h 
[μm−1]

havg 
[μm]

hmin 
[μm]

hmax 
[μm] # nodes # elements # DOFs

6.00 0.167 4.34 0.23 8.17 56 809 330 172 167 832
3.00 0.333 2.55 0.16 4.15 307 232 1792 655 913 449
1.50 0.667 1.37 0.073 2.25 2087 736 12 223 528 6232 029
0.75 1.333 0.697 0.022 1.09 16 020 086 93 856 013 47 938 704

Figure 7. Traction-separation response for selected mesh sizes. (a) Normal component 
of the mixed-mode response. (b) Shear component of the mixed-mode response.
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Figure 8. Convergence trend of the macroscopic response with increasing mesh 
refinement. (a) Convergence trend of strength (maximum traction). (b) Convergence 
trend of fracture toughness as given by equation (29).
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vice versa. The energy release rate, − =Y W1  (see equations (16) and (18)), used in computing 
the damage surface, equation (19), is an isotropic function of both normal and shear contri-
butions through the Jacobian, J, and deviatoric right Cauchy-Green deformation tensor, Ĉ. 

Therefore, the total damage dissipation D[[ ]] ∣ ∣
[[ ]]
∫ ∫ ∫= ⋅ ≡ Θ Θω

Θ
t uG l td / d d

u t
tot 0

0 0
c 0 0

f f
0

0
 is a 

coupled function of all deformation modes. Note that since we are dealing with heterogeneous 

materials and isotropy is not strictly enforced, ≈ +G G Gn stot  in this work.
In this mesh convergence study, we use {[[ ]] [[ ]] } { }=u u, 5.20, 7.35n f s f

0 0  μm for computing 
the normal and shear fracture toughness. We note that these final normal and shear opening 
displacements are not those at complete failure (see figure 7). The simulations are prematurely 
terminated due to convergence issues associated with large mesh distortions. Unfortunately, 
these convergence issues are common for such large and complex damage simulations (recall 
that for h   =   0.75 μm, we solve 47.9 M nonlinear DOFs). A potential solution to these con-
vergence issues can be mesh smoothing or re-discretization (e.g. see [77, 78]). Since we are 
interested in the numerical properties of the solution (i.e.convergence), we select the last com-
mon opening data-point for all mesh densities. This leaves some residual stresses and a por-
tion of the fracture energy is not accounted for. However, we note that neglecting this fraction 
of energy does not impact the discussion of numerical characteristics since comparisons are 
made at the same opening displacement. We will comment on this portion of energy in our 
further studies, where we examine the physics of failure and account for the total fracture 
toughness.

As seen in figure 8, the strength and fracture toughness converge rapidly and there is a 
negligible change, from an engineering perspective, for mesh sizes ⩽h 1.5 μm (filled sym-
bols). In order to obtain a higher-order estimate of the continuum response ( →h 0), we use 
Richardson extrapolation [79]. The difference in strength between the estimated continuum 
response and the mesh with h   =   1.5 μm is 0.89% for tn0  ( ( )→ =t h 0 24.04n

0  MPa) and 1.03% 
for ts0  ( ( )→ =t h 0 8.40s

0  MPa), while the difference in fracture toughness is 0.92% for Gn 
( ( )→ =G h 0 73.44n  J m−2) and 0.59% for Gs ( ( )→ =G h 0 37.61s  J m−2).

As a final measure of mesh convergence, the damage features are presented for three levels 
of mesh refinement in figure 9 at the last common loading point (see figure 7). As shown, the 
coarsest mesh (h   =   3 μm) does not capture the smaller damage zones and over predicts the 
level of damage in some regions. The medium and finest meshes (h   =   1.5 μm and h   =   0.75 
μm) display very similar damage patterns.

In this study, we have shown that resolved behavior of the hyperelastic response, strength, 
fracture toughness, softening profile (shape of the traction-separation relation), and damage 
pattern is captured by meshes with average element size ⩽h 1.50avg  μm. This very fine dis-
cretization is primarily required to resolve the thin viscous damage zones, µl , resulting from 
the physical value of the damage viscosity parameter, μ. Based on the small differences in 
both t0  and Gn, s (maximum error less than 1.05%), we use meshes with ⩽h 1.50avg  μm for the 
remainder of this paper. We believe that such a fine mesh density, with =h 0.073min  μm, is 
essential to properly capture the physics of the problem.

4.2. RUC convergence study

The size of the RUC used in multiscale simulations is key to the computational homogeni-
zation framework. In this section, we analyze the material response of three different sized 
unit cells reconstructed in section 3 (containing 10% volume fraction of 20 μm diameter par-
ticles) in order to determine if the geometric length scale also captures the material behavior. 
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The cells are increasing in size with side lengths ≈l l1/2cell stat, ≈l lcell stat, and ≈l l2cell stat. In 
what follows, five statistically (macroscopically) equivalent unit cells of different morphol-
ogy (microstructure) are used, and average response is reported with error bars showing one 
standard deviation. The dimensions of the cells, number of particles, and the average mesh 
characteristics for each sized cell are given in table 4.

Figure 10 shows the macroscopic traction-separation response for the different cells. The 
initial stiffness is identical for each cell, but the limit and softening responses are not. While 
the two larger unit cells have small and overlapping error bars until the very end of the com-
puted load history (black lines with open symbols), the smallest cell has a distinctly different 
softening response with very large error. The deviation between the two larger cells at the end 
of the computed loading history is mostly due to large mesh distortions and the associated 
deterioration of accuracy, as mentioned previously. Moreover, as in the mesh convergence 
study, the simulations do not reach complete failure (i.e. ∥ ∥=t 00 ) due to numerical difficul-
ties. Since we are interested in the complete traction-separation response and the total fracture 
toughness, we extrapolate the simulation data to failure (∥ ∥=t 00 ). Specifically, we linearly 
extrapolate each independent simulation from the last data-point in the computed load history. 
The average extrapolated traction-separation relations for each set of five cells (cells with 
equal side lengths) are displayed as light gray lines with filled markers in figure 10. Note that 
the average extrapolated data are nonlinear due to the different cell realizations reaching zero 
traction at different extrapolated opening displacements.

We are interested in the convergence of the maximum traction (strength) and fracture 
toughness with respect to the side length of the unit cell, lcell (see figure  11). Using the 
computed and extrapolated data in figure 10, the fracture toughness is evaluated accord-
ing to equation (29) with = = ∞u un f s f

0 0[[ ]] [[ ]] . Figure 11 shows the rapid convergence of 

Figure 9. Damage pattern within the microstructure for different levels of mesh 
refinement. Note that all refinements are shown at the last common point in the load 
history (see figure 7). (a) h   =   3 μm. (b) h   =   1.5 μm. (c) h   =   0.75 μm.

(a) (b) (c)

Table 4. Microstructure and average mesh characteristics for the RUC convergence 
study.

Cell size Dimensions [μm3] # particles # nodes # elements # DOFs

1/2 lstat × ×69.408 69.408 200 23 552 086 3235 854 1648 686

lstat × ×139.569 139.569 200 93 2103 957 12 317 628 6280 495

2 lstat × ×279.887 279.887 200 374 8294 617 48 537 975 24 758 080
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both average and standard deviation of macroscopic response (both strength and fracture 
toughness) with increasing cell size, using five cell realizations for each cell size. To clearly 
identify the amount of fracture energy determined from extrapolated data, we report its 
percentage of the total energy (see figure 11(b)). Note that the maximum contribution of 
extrapolated data to the average fracture toughness is less than 6.0%. In our previous study 
[45], rapid convergence of the mean response was also observed. However, the standard 
deviation of response remained substantial even for very large unit cells. In this study, rapid 
convergence of both mean and standard deviation can be attributed to the use of statistically 
equivalent unit cells that attenuate the variation in macroscopic response. The cell with 
≈l l1/2cell stat (69.408 μm) yields clearly unrepresentative average response with large stand-

ard deviation. The cells with ≈l lcell stat and ≈l l2cell stat have very similar average response 
with rapidly decaying standard deviation. The reductions in standard deviations are due to 

Figure 10. Comparison of the average traction-separation response for different sized 
cells consisting of 10% volume fraction of 20 μm diameter particles. Error bars represent 
one standard deviation from five realizations. Average extrapolated simulation data is 
shown with light gray lines and filled symbols. (a) Normal component of mixed-mode 
response. (b) Shear component of mixed-mode response.
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Figure 11. (a) Convergence of strength with increasing cell size. (b) Convergence of 
fracture toughness with increasing cell size. Percentage values are the contribution of 
extrapolated data to the mean toughness. Note the diminishing error bars with increasing 
cell size.
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the larger cells capturing both the geometric (lstat) and physical ( µl ) length scales, including 
the effect of boundary conditions.

We now compare the damage patterns at the final computed points (last open black sym-
bols in figure 10) for the different sized cells in figure 12. The two larger cells have a more-
distributed damage pattern, whereas the cell with ≈l l1/2cell stat has a single dominant crack at 
the top of the cell.

In order to quantify the complex microstructural damage, we introduce two damage met-
rics. To motivate these metrics, let us consider a single crack of finite thickness, µl , with the 
volume, ∣ωV , consisting of points with ω greater or equal to some threshold value as shown in 
figure 13(a). First, we define

∣ ∣ [ ]= −ω
ωM

V

V
,1

cell
 (30)

which is the volume fraction of damage in the microstructure, where Vcell is the volume of 
the cell. Now let us consider a single discrete crack, as shown in figure 13(b), given by the 
contour of points with ω equal to some threshold value. Similarly to equation (30), we define 
the damage metric

∣ ∣ [ ]=ω
ω −M

A

V
m ,2

cell

1 (31)

which is the area density of cracks in the microstructure for a given value of ω. Note that ∣ωA  is 
the area of only one face of the crack, i.e. ∣ ∣= ∂ω ωA V1/2 , where ∣∂ ωV  is the outer surface bound-
ing ∣ωV . The damage metrics M1 and M2 are related through the effective crack thickness µl  by

∣ [ ]= =µ ω
ω ω

l
M

M

V

A
m .1

2
 (32)

Figure 12. Comparison of the damage pattern at the final computed point in cells with 
different side lengths. Particles remain undamaged and are colored white for contrast. 
Only one realization of each sized cell is shown. (a) Failure due to a single dominant 
crack in a cell with ≈l l1/2cell stat. (b) Failure due to multiple cracks in a cell with 
≈l lcell stat. (c) Failure due to multiple cracks in a cell with ≈l l2cell stat.
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Finally, we establish the bounds on M1 and µl , with M2 being an auxiliary metric only. M1 
is a volume fraction and thus its range is given by [ ]∈M 0, 11 . At failure, ∣ =ω=M 01 1  since 
only the surface of a crack (i.e. no volume) can reach ω = 1. For the case of constant failure 
throughout the cell (e.g. failure of a cell with =c 0p %), ω∇ = ∀Y0Y  and ∣ =ωM 11  for any 
threshold value ⩽ω ωmax. Examining equation (32), it is clear that the limit cases for µl  are 
given by the limit cases of ∣ =ωV 0 and ∣ =ωV Vcell. We note that ∣ →ωV 0 faster than ∣ →ωA 0, 
and thus the minimum value of µl  is 0. In the case that =ωV Vcell we get,

=
+

+ − = −
+

µl
l l

l l l
l l l

l

l l2

2

2
.c cell

2

c cell cell
2 c c c

c
2

c cell
 (33)

The periodic boundary conditions approximate →∞lcell , and after taking the limit of equa-
tion (33) we obtain [ ]∈µl l0, c . The effective crack thickness, µl , is a macroscopic measure that 
is related to the material properties (e.g. damage viscosity μ) and the material morphology. 
The metric M1 describes the extent of failure in the microstructrue, whereas µl  characterizes 
the overall shape of cracks in the microstructure. These metrics allow for quantitative com-
parison of the microstructural failure between material layers with different morphologies.

Figure 14 shows the volume fraction of damage (M1) and effective crack thickness ( µl ) for 
different values of ω at the last computed point (see last black open symbols in figure 10). 
Note that we plot the damage metrics on the x-axis, since the shape of the curve can be inter-
preted as the effective crack profile. As can be observed, the damage metrics in the two larger 
cells are nearly identical, while the smallest cell has a smaller volume fraction of thinner 
cracks. Additionally, the error bars (one standard deviation) in both M1 and µl  are largest for 
the smallest cell.

With these results, we have established the convergent behavior of both the macroscale 
properties and our newly defined damage metrics, which encompass the microscopic effects, 
with respect to the cell size. Furthermore, we have shown that cells that are smaller than 
the statistically representative cells ( <l lcell stat) are incapable of providing overall material 
response. While cells with ⩾l lcell stat provide a more accurate and precise material descrip-
tion, they are computationally expensive. Thus, an engineer needs to balance the required 
accuracy of overall macroscpic response with resulting increases in computational cost. Since 

Figure 13. Schematic of damage metrics for a single dominant crack in the 
microstructure. For the single damage zone, = µM l l/1 c from equation  (30) and 
=M l1/2 c m−1 from equation (31). (a) A crack of finite thickness µl . (b) A discrete crack 

face where ω = 1.

(a) (b)
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acceptable response for this particular system is obtained for ≈l lcell stat (the geometric length 
scale), we define the side length of a RUC as = ≈l l lRUC cell stat. Note that the statistical length 
scale, lstat, is dependent upon volume fraction, particle diameter, etc as shown in [59]. This 
leads to cells of different sizes, lRUC, based on the material morphology (e.g. volume fraction, 
particle diameter). Here we establish that statistically equivalent cells are sufficient for analy-
sis of this particulate medium. We will return to this point when we analyze individual results 
of the particle volume fraction and diameter studies.

Finally, we re-emphasize that the relationship between lRUC and lstat is dependent on both 
the microstructure, and the constituent material properties and their contrast. Therefore, the 
careful RUC analysis performed in this section should be done for any given material system 
of interest before the conclusion that ≈l lRUC stat (i.e. the RUC size is based on morphology) 
is made.

4.3. Effects of particle volume fraction

In this section, we investigate adhesive layers containing 5%, 10%, and 20% volume fraction 
of 20 μm diameter particles. Five RUCs of each mixture are reconstructed as described in sec-
tion 3 using the statistics-based geometric length scale, since we established that ≈l lRUC stat 
for our systems of interest. We will reinforce this claim with comparisons of standard devia-
tions reported later in this subsection. The RUC dimensions, number of particles, and average 
mesh properties for each mixture are given in table 5. The homogeneous layer ( =c 0p %) and 
layer with an imperfection ( = +c 0%p ) are also examined. The imperfection is introduced by 
setting the damage initiation threshold in a small region around the geometric center of the 

Figure 14. Comparison of damage metrics at the last computed point for different sized 
unit cells. The standard deviations are shown at the marked points for five realizations 
of each cell. (a) Volume fraction of damage, M1. (b) Effective crack thickness, µl .
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Table 5. Microstructure and average mesh characteristics for the volume fraction study.

cp Dimensions [μm3] # particles # nodes # elements # DOFs

0%+ × ×139.569 139.569 200 0 1869 193 11 001 473 5577 588
5% × ×119.271 119.271 200 34 1470 546 8619 897 4389 665
10% × ×139.569 139.569 200 93 2103 957 12 317 628 6280 495
20% × ×199.766 199.766 200 381 4588 885 26 843 933 13 699 649
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layer to a small value, = −Y 10in
5 MPa (compare with Yin in table 2). We will comment on the 

effect of the imperfection (strong versus weak) in the next paragraph.
Figure 15 shows the macroscopic traction-separation curves for different volume fraction 

mixtures. Note again that the light gray lines with filled symbols are average extrapolated data 
from the final computed points (last open black symbols) to complete failure (∥ ∥=t 00 ). We 
note that the homogeneous and imperfect layers ( =c 0p % and = +c 0%p ) differ from each other 
in their failure response. This is because the homogeneous layer damages uniformly (constant 
failure, ω∇ = ∀Y0Y  and ∣ =ωM 11 ) with zero microscale displacement fluctuations, and is 
therefore equivalent to the Taylor estimate described in section 2.3. Conversely, the imperfect 
layer localizes deformation to a single crack and develops a periodic fluctuation field (see 
figure 17(a)). The thickness of the localized crack, characterized by µl , is influenced by the 
strength of the defect (imperfection). A weak imperfection results in a thicker crack, whereas a 
strong imperfection leads to a thinner crack. For very strong imperfections, the thickness of the 
crack, µl , is governed solely by the material properties. We note that there are an infinite number 
of solutions between the imperfect and homogeneous response depending on the strength of the 
defect, bounded by µl  from below (strong imperfection) and lc from above (weak/no imperfec-
tion). We will present the value of µl  for the matrix later in this section. As lμ approaches lc, the 
homogeneous and imperfect response will become identical as the effect of the imperfection 
and boundary conditions (homogeneous versus periodic) diminishes.

For the particle reinforced RUCs, we observe that an increase in volume fraction results 
in increased stiffness, but reduced strength in both normal and shear (figure 15). The 20% 
volume fraction mixture (dot-dashed line with squares) exhibits steeper softening response 
in shear due to increased adhesive failure (see also figure 17(d)). We note that the residual 
tractions of the different mixtures vary (last open symbols on black lines in figure 15). The 
simulations are terminated at different levels of applied displacement jumps due to numerical 
difficulties associated with large mesh distortions in the complex damage zones. We com-
ment on these residual tractions as they will become a point of interest in later analysis of the 
microscale failure.

Figure 15. Comparison of average traction-separation response for different volume 
fraction mixtures of 20 μm diameter particles. The limit cases of homogeneous ( =c 0p

%) and imperfect ( = +c 0%p ) layers are shown as solid and dashed lines with no 
symbols. Error bars show one standard deviation of response from five RUCs. Average 
extrapolated simulation data is shown in light gray with filled symbols. (a) Normal 
component of the mixed-mode response. (b) Shear component of the mixed-mode 
response.
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The strength and fracture toughness in normal and shear directions are compared in 
 figure 16. As in the previous section, we evaluate the fracture toughness using the computed 
and extrapolated data shown in figure 15, and identify the contribution from the extrapolated 
data to the average fracture toughness in figure 16(b). The fracture toughness is computed 
according to equation (29) with = = ∞u un f s f

0 0[[ ]] [[ ]] .
All values monotonically decrease with increasing volume fraction of particles except for ts. 

Similar trends of decreasing strength and fracture toughness with increasing volume fraction 
of particles have been observed in experiments of failure in stiff particle reinforced adhesives 
[30, 31]. We note that the effect of volume fraction on the strength and fracture toughness is 
strongly influenced by material properties and their contrast. For example, experiments of stiff 
epoxy with soft embedded particles showed the opposite effect: increasing fracture toughness 
with increasing volume fraction of particles [32]. The strength and fracture toughness for the 
homogeneous and imperfect layers are given in table 6, and are higher than the particle rein-
forced layers for our choice of material properties.

Figure 17 shows the damage pattern in the RUCs at the final computed point with increas-
ing volume fraction of particles. Note that each cell has a different side length, lRUC, based 
on the statistical length scale, lstat (see also [59]). However, the standard deviations over five 
cell realizations remain small and comparable in value to those of the base study ( =c 10p %, 
d   =   20 μm, see section 4.2). This reconfirms that ≈l lRUC stat is a good choice for this mate-
rial system, since large standard deviations would be apparent for unrepresentative cells (see 
figures 10 and 11). The homogeneous layer, =c 0p %, damages uniformly and is not shown. 
The addition of a strong imperfection causes a pronounced damage localization (figure 17(a)). 
The shape of the crack is due to the mixed-mode loading with periodic boundary conditions. 
The 5% volume fraction RUC (figure 17(b)) shows cohesive failure by a thick dominant crack 

Figure 16. Comparison of strength and fracture toughness for different volume 
fractions of 20 μm diameter particles. Average and standard deviations are shown for 
five RUCs of each mixture. (a) Decay of strength with increasing volume fraction. (b) 
Monotonic decay of fracture toughness with increasing volume fraction. Percentages 
represent the contribution of extrapolated data to the mean toughness.
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Table 6. Strength and fracture toughness for homogeneous and imperfect layers of the 
matrix material.

cp tn0  [MPa] ts0  [MPa] Gn [J m−2] Gs [J m−2]

0% 29.76 10.21 168.73 81.87
+0% 29.39 10.10 104.78 51.01
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connecting particles in the microstructure. Other small cracks are visible, but they are arrested 
as a dominant crack is formed. Figure 17(c) shows the damage pattern in the 10% volume 
fraction RUC. There is still a clear dominant crack, but it is thinner due to the higher number 
of obstacles. Furthermore, there are large secondary cracks that contribute to material weaken-
ing. Finally, figure 17(d) shows the final state of the 20% volume fraction RUC. The damage 
has localized in cracks towards the top and bottom surfaces, transitioning from cohesive to 
adhesive failure as particles repel cracks closer to the adherends.

Now we compare the metrics M1 and µl  in figure 18 for the range of ω at the final computed 
point (last black open symbols in figure 15) for the different microstructures. The 5% and 10% 
volume fraction mixtures have similar volume fractions of damage, but the 10% volume frac-
tion has thinner cracks. The 20% volume fraction mixture has a lower volume fraction of dam-
age, but a similar effective crack thickness as the 10% volume fraction mixture. The effective 
crack thickness in the higher volume fraction cases is reduced due to the increased number 
of obstacles and an increased number of thin damage zones mimicking particle debonding 
(see figures 17(c) and (d)). The larger values of µl  in the 5% volume fraction case suggest 
failure due to coalescence of a few thick dominant cracks as opposed to formation of many 
thin cracks as in the higher volume fraction cases, which is consistent with observations in 
 figure 17. As mentioned previously, the simulations for all volume fraction cases are termi-
nated at different points with varying residual tractions. We note that if all of the mixtures 

Figure 17. Comparison of the damage pattern at the final computed point in RUCs with 
increasing volume fractions of 20 μm diameter particles. Particles remain undamaged 
and are colored white for contrast. Only one realization of each RUC is shown. (a) RUC 
with a strong imperfection, = +c 0%p . (b) RUC with =c 5p %. (c) RUC with =c 10p %. 
(d) RUC with =c 20p %.
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would be simulated to complete failure (∥ ∥=t 00 ), a different trend of M1 for 5% volume frac-
tion (figure 18(a)) would develop. The 5% volume fraction case (dashed line with triangles) 
would lie to the right of the 10% volume fraction case (solid line with circles) in figure 18(a). 
The higher volume fraction of damage is related to additional energy required to break the 
material, and thus higher fracture toughness as seen in figure 16(b). This trend is consistent 
with the homogeneous ( =c 0p %) and imperfect ( = +c 0%p ) cases (see table 6).

For completeness, the damage metrics of the homogeneous and imperfect layers at fail-
ure for ω = 1/2 are given in table 7. Note that the thickness of the crack resulting from the 
imperfection increases with a weaker defect. We recall that the imperfect layer is made of 
only the matrix and contains a small but strong defect. Moreover, we point out that increasing 
the strength of the imperfection ( →Y 0in ) beyond = −Y 10in

5 MPa has no measurable effect on 
µl  or the macroscopic response. Thus, for our strong imperfection, ∣ =µ ω=l 6.7021/2  μm is the 
intrinsic crack thickness of the matrix material (see Volokh [24–26]) and is dependent pre-
dominantly on the damage parameters (see table 2).

To support the prediction that M1 at complete failure, t 00∥ ∥= , would be greater for the 5% 
case than the 10% case, we examine the evolution of ∣ω=M1 1/2 and the evolution of the average 
effective crack thickness. The average effective crack thickness is defined by

∣ [ ]∫ ω=µ µ ωl l d m .
0

1
 (34)

A higher volume fraction of particles results in earlier initiation of damage, as depicted in 
figure 19(a). This early onset of damage leads to a decrease in strength (see figure 16(a)) 
and is a result of the higher number of damage nucleation sites per unit volume. At the end 
of the load history in figure 19(a), one can see that the 20% and 10% volume fraction cases 

Figure 18. Comparison of the damage metrics at the final computed point for different 
volume fraction RUCs. The standard deviations are shown for five realizations of each 
RUC. (a) Comparison of M1. (b) Comparison of µl .
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Table 7. Damage metrics at failure for the homogeneous and imperfect layers. Note 
that for =c 0p %, = =µl l 200c  μm.

ω=M1 1/2∣  [-] µ ω=l 1/2∣  [μm]

=c 0p % 1.0 200

= +c 0%p 0.129 6.702
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are approaching a steady state value of M1 (the slope of both curves are visibly decreasing), 
while the 5% volume fraction case is still growing. Although M1 is still growing, a transition 
towards the steady-state is slowly beginning for the 5% volume fraction mixture. This contin-
ued increase of damaged volume supports our earlier assertion that the 5% line would lie to 
the right of the 10% line in figure 18(a) at complete failure (∥ ∥=t 00 ). In general, the approach 
to a steady-state value of M1 indicates the formation of a connected crack or cracks span-
ning the entire microstructure. Once such a critical crack pattern is formed, additional crack 
formation is stopped and ω increases within the existing cracks until failure (ω→ 1). While a 

dominant crack is clearly visible for the 5% case in figure 17(b), neither M1 or µl  have reached 

a steady state (figure 19) and the microstructure allows the crack thickness to increase before 
complete failure is reached.

Figure 19(b) shows evolution of the average effective crack thickness, µl . For all cases, there is 
rapid growth of the crack thickness as damage is nucleated around particles ( ≈ −u 4 70∥[[ ]]∥  µm).  
Due to the rapid transition from a virgin to damaged state and variations between the RUC 
realizations, there are large standard deviations in this region. In the 20% volume fraction case 
(dot-dashed line with squares), there are three easily identifiable growth rate zones exclud-
ing the nucleation region. The first zone shows a slow growth in thickness as cracks propa-
gate around and between closely-packed particles. The second zone shows a rapid increase in 
crack thickness, indicating that the cracks are freely growing in regions with fewer obstacles. 
Note that the regions with fewest obstacles are near the top and bottom surfaces. Thus, this 
rapid growth in crack thickness is associated with the transition to adhesive failure (see fig-
ure 17(d)). The third zone is the approach to the steady state crack thickness at the end of the 

Figure 19. Evolution of damage metrics with respect to ∥ [[ ]] ∥u0  in RUCs with 
increasing particle volume fraction. Error bars show one standard deviation for five 
realizations of each RUC at the marked points. (a) Evolution of M1 for ω = 1/2. (b) 

Evolution of µl  as given in equation (34).

cp = 20%
cp = 10%
cp = 5%

M
1
| ω

=
1/

2
[¹

m
]

0u [¹m]

3 4 5 6 7 8 9 10
0.00

0.03

0.06

0.09

0.12

cp = 20%
cp = 10%
cp = 5%

l µ
[¹

m
]

0u [¹m]

3 4 5 6 7 8 9 10
0.0

0.5

1.0

1.5

2.0

2.5

(a) (b)

Table 8. Microstructure and average mesh characteristics for the particle diameter 
study.

d [μm] Dimensions [μm3] # particles # nodes # elements # DOFs

5 × ×64.982 64.982 200 1292 1696 876 9836 031 5072 218
10 × ×99.883 99.883 200 381 1420 119 8272 851 4242 575
20 × ×139.569 139.569 200 93 2103 957 12 317 628 6280 495
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load history. As with M1, the approach to a steady state value indicates the development of 
a dominant crack/cracks in which all further failure occurs (i.e. no new cracks are formed).

These three transition zones, after the nucleation period, are also recognizable in the 10% 
volume fraction case (solid line with circles) in figure 19(b). However, in this case these three 
transition zones are more subtle. Zone one shows faster thickness growth than in the 20% 
case as cracks propagate around and between particles that are farther apart. In the 10% case, 
there is a smooth transition into zone two, where cracks propagate through the less reinforced 
binder yet are still being deflected and slowed by particles. In this case, the cracks are not 
pushed close to the adherends, and the slower growth rate of crack thickness indicates cohe-
sive failure. Finally, the crack thickness approaches the steady-state value in zone three as a 
network of connected cracks is formed across the microstructure. In the 5% volume fraction 
case (dashed line with triangles), the sparsely-packed particles allow cracks to propagate with 
few obstacles. Thus, a nearly constant growth rate in crack thickness is observed after the 
nucleation period. The crack thickness grows faster, as in the 20% case, since there are fewer 
obstacles. However, in the 5% case the cracks remain within the material layer and are not 
repelled to the matrix-rich zones close to the adherends as in the 20% case. At the end of the 
load history for the 5% case, there is a slight decrease in the growth rate as a dominant crack 
is being formed.

4.4. Effects of particle diameter

The effects of particle diameter on the macroscopic failure response and microscale failure 
processes are examined in this section. Five realizations each of RUCs containing 10% vol-
ume fraction of 5, 10, and 20 μm diameter particles are reconstructed as described in section 3 
using the conjecture that ≈l lRUC stat for these particulate composites. The RUC dimensions, 
number of particles, and average mesh characteristics for each mixture are outlined in table 8.

Figure 20 shows the macroscopic traction-separation relations for each adhesive layer. 
Again, we extrapolate the traction-separation relations as described in section 4.2 (light gray 
lines with filled symbols in figure 20). As observed in figure 20, the particle diameter does 
not affect the hyperelastic response. This has also been observed experimentally for micron 

Figure 20. Comparison of traction-separation relations for RUCs with 10% volume 
fraction of different sized particles. Error bars show one standard deviation of the 
response for five realizations of each RUC. The light gray lines with filled symbols 
represent average extrapolated simulation data. (a) Normal component of the mixed-
mode response. (b) Shear component of the mixed-mode response.
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sized particles [9, 33]. The 5 μm particle mixture shows rapid softening response, particularly 
in shear, due to the transition to adhesive failure (see figure 22(a)). Figure 21 compares the 
strength and fracture toughness of the different mixtures. The fracture toughness is computed 
using equation (29) with [[ ]] [[ ]]= = ∞u un f s f

0 0 . There is a monotonic decrease in the strength 
with increasing particle diameter, which is often observed in experiments [33, 34]. However, 
the fracture toughness with relation to particle diameter is non-monotonic and attains a maxi-
mum for 10 μm diameter particles. This non-monotonic trend is also observed in experiments 
for fixed volume fractions [10, 35], and our work shows the ability to capture this particle size 
effect. We note that the particle size effect is captured because we have sufficiently resolved 
discretizations ( =h 0.073min  μm and ⩽h 1.50avg  μm), and the value of the damage viscosity, 

Figure 21. Comparison of strength and fracture toughness for RUCs with 10% volume 
fraction of different sized particles. Error bars show one standard deviation of response 
for five RUCs at each marked point. (a) Comparison of strength. (b) Comparison of 
fracture toughness. The percentages represent the contribution of extrapolated data to 
the mean toughness.
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Figure 22. Comparison of the damage pattern at the final computed point for RUCs 
containing 10% volume fraction of particles with different diameter, d. Only one 
realization of each RUC is shown. (a) d   =   5 μm. (b) d   =   10 μm. (c) d   =   20 μm.
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μ, is within the range of realistic material properties. Previous numerical studies using a simi-
lar damage model were not able to capture the particle size effect due to the highly viscous 
damage behavior (with thick cracks often on the order of inclusion size) and under resolved 
computations [27]. Again, note the small standard deviations over five cell realizations in fig-
ures 20 and 21. This reinforces our proposition that ≈l lRUC stat is a good choice for our studies. 
The percentage of fracture toughness obtained using the extrapolated data is less than 4.3% 
(see figure 21(b)).

The damage pattern at the final simulation point for the RUCs with different diameter par-
ticles is depicted in figure 22. The 5 μm particle RUC (figure 22(a)) has very small arrested 
cracks around the particles. The damage localizes at the matrix-rich top and bottom surfaces, 
leading to adhesive failure. The mixture with 10 μm particles (figure 22(b)) has a well distrib-
uted network of thin interconnecting cracks, leading to cohesive failure with multiple domi-
nant cracks. This multiplicity of dominant cracks is very important for increasing fracture 
toughness. The 20 μm particle mixtures exhibit predominately cohesive failure with fewer 
dominant cracks.

Figure 23 shows the Frobenius norm of the Almansi strain in the binder for the different 
RUCs at the inflection point of the softening branch of the load history (see figure 20). As can 
be seen, the material undergoes large strains (∼50% strains) as it progressively degrades dur-
ing the damage process (see also the higher strain rate response leading to large failure strains 
in figure 6). This result shows the importance of the finite strain analysis for damage modeling 
with progressive softening.

The small volume fraction of damage for the mixture containing 5 μm particles can be 
observed in figure  24(a). Moreover, there is slightly higher volume fraction of damage in 
mixtures containing 10 μm particles when compared to the 20 μm mixture. Consistent with 
the findings in the particle volume fraction study (section 4.3), there is a correlation between 
increased M1 at failure and increased fracture toughness (see figure 21(b)).

The effective crack thickness decreases for composites with smaller particles while keep-
ing the volume fraction of particles fixed (see figure 24(b)). As described in section 4.3, the 
reduction in crack thickness is due to the short inter-particle distance and the increase in thin 

Figure 23. Comparison of the magnitude of the Almansi strain in the different RUCs 
at the softening inflection point of their respective load histories in figure 20. (a) d   =   5 
μm. (b) d   =   10 μm. (c) d   =   20 μm.
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damage zones around particles, mimicking debonding. Examining figure 24, the small vol-
ume fraction of very thin cracks in the 5 μm particle mixture is indicative of strong damage 
localization, such as in the adhesive failure shown in figure 22(a). The 10 μm particle mixture 
has the highest volume fraction of thin cracks (see figure 24), suggesting that it has the most-
distributed damage pattern (see figure 22(b)). Moreover, a large portion of those cracks are 
dominant and dissipate a large amount of energy.

The inset in figure 25(a) shows that RUCs containing larger particles accumulate higher vol-
ume fractions of damage, M1, in the early stages after nucleation. This higher amount of dam-
age accounts for the reduction in strength for larger particle diameters (figure 21(a)). Note that 
while the larger particle RUCs accumulate more damage earlier, the growth rate of M1 is higher 
for smaller particle RUCs after the initial damage period (see figure 25(a), ∥[[ ]]∥>u 7.40  μm).  
As seen in figure 25(a), RUCs with 5 μm particles have the fastest growth rate and quickly 
reach a steady-state value of M1. This rapid growth and approach to a steady-state is indicative 

Figure 24. Comparison of damage metrics at the final computed point for RUCs 
containing 10% volume fraction of different diameter particles. Error bars shown at all 
marked points represent one standard deviation for five realizations of each RUC. (a) 
Comparison of M1. (b) Comparison of µl .
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10% of different sized particles. Error bars shown at each marked point represent one 
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of strong damage localization as in adhesive failure (see figure 22(a)). The 10 μm mixture has 
a slightly faster growth rate and a slower approach to the steady-state value of M1 than the 20 
μm particle mixture. The faster growth and slower approach to the steady-state value of M1, 
in the 10 μm case, suggests that more cracks are being propagated rather than coalescing into 
a dominant crack.

The distinct evolutions of crack thickness for RUCs containing different sized particles are 
displayed in figure 25(b). RUCs with smaller particles initiate cracks earlier due to the large 
number of nucleation sites per unit volume. After this initiation zone, the growth rate for 5 
μm particle cells is nearly constant and is the slowest for all mixtures. This is due to the very 
high density of obstacles that slow crack propagation and force crack formation close to the 
adherends in relatively matrix-rich regions. In figure 25(b), the 10 μm case shows a three-part 

evolution of µl  after the initiation zone ( u 60∥[[ ]]∥�  μm). After initiation, the damage zones 
mimicking debonding around particles slowly thicken. At ≈u 6.80∥[[ ]]∥  μm, there is another 
rapid growth in crack thickness as cracks propagate into the binder. After this secondary 
increase, the growth rate is again reduced as cracks propagate between particles. The slow and 

nearly constant growth rate of µl  at the end of loading shows that cracks are continually being 
thinned and deflected by the closely packed particles. This process of thinning and deflect-
ing cracks requires constant energy flux, and thus, the 10 μm system has the highest fracture 
toughness (see figure 21(b)). Figure 25(b) also displays that RUCs containing 20 μm diameter 
particles quickly initiate and propagate thick cracks. For the larger particle RUCs, the crack 
thickness growth rate is faster throughout the loading history since fewer particles deflect 
and slow the crack formation. Moreover, the 20 μm particles deflect cracks farther from their 
natural propagation directions (due to the larger particle diameter) and cause larger variations 
in the crack thickness (see figure 22(c)). When compared to the volume fraction study (figure 
19(b)), we see two similar trends in the crack thickness growth rate after nucleation: (i) The 
density of obstacles (particles) dictates the crack thickness growth rate, with closer-packed 
systems generally slowing the crack thickness growth. (ii) When the failure pattern is simple, 
such as with a single dominant crack or adhesive failure, the crack thickness growth rate 
remains nearly constant.

5. Conclusions

A 3D high-performance finite strain multiscale cohesive framework is used to study fail-
ure processes occurring at the microscale in heterogeneous adhesives, and their effect on the 
macroscopic homogenized cohesive response. An emphasis is placed on data-driven (image-
based) modeling that resolves the wide range of spatial scales ( →µl lRUC). This wide range of 
spatial scales, consisting of tens of millions of computational cells and millions of highly non-
linear equations, necessitates an efficient solution strategy. We employ parallel computing and 
execute our framework on up to 1024 computing cores. The large amount of data generated 
during these simulations requires data-mining and analysis tools to understand the damage 
patterns and their evolution. Therefore, we propose two damage metrics (i.e. volume fraction 
of damage and effective crack thickness) that allow us to quantify the damage extent and its 
evolution. The proposed damage metrics can also serve to catalog materials since they relate 
the microstructure to overall failure characteristics, such as adhesive versus cohesive failure, 
strength, and fracture toughness.

In addition, we construct statistically Representative Unit Cells of heterogeneous layers, 
and their representativeness is studied in terms of hyperelastic response, strength (limit trac-
tion), fracture toughness, and softening response (shape of the cohesive relation). The unit 
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cell reconstruction procedure takes advantage of in-plane isotropic first- and second-order 
probability functions that are obtained from an image-based source. We show that statistically 
optimal unit cells yield statistically improved material representation in the L2 sense than 
material-blind packing algorithms such as random sequential addition. This leads to smaller 
standard deviations for physical quantities as compared to previous studies.

Finally, we perform detailed computational studies to understand the effect of volume frac-
tion and particle diameter on micro- and macro-failure characteristics. Our results are statis-
tical in nature, and we present both the means and standard deviations over each set of five 
material realizations. We capture traditional trends that are observed in experiments, such as 
the stiffening effect due to the higher particle volume fraction. Additionally, we capture an 
elusive non-monotonic size-effect in fracture toughness as a function of particle diameter.

Well resolved and verified microscale simulations presented in this work, can be the first 
step towards virtual materials testing. However, for simulations of this kind to reach their true 
predictive potential, careful model calibration at the microscale, and detailed model validation 
both at the micro- and macro-scale must be performed. Moreover, more complex constitu-
tive models (i.e. anisotropic damage) and added physics (e.g. particle-matrix decohesion) are 
required. Thus, research in co-designed simulations and experiments is the natural next step.
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Appendix A. Finite element implementation

In our work, the continuum equations are solved using the displacement-based finite element 
method. We implement the finite element method in a highly parallel computing environment. 
We use our in-house parallel multiscale code, PGFem3D, that has been extensively verified 
and validated for a variety of problems [50, 66, 67]. The microscale domain is discretized into 
1Ne convex non-overlapping elements R⊂Θe 3. The microscale displacement field and its 
gradient are approximated within each element as

˜ ˜∑ ∑= ∇ =
∈Θ ∈Θ
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In equation (A.1), nn is the number of nodes in the element, and ua
1  are microscale dis-

placements at node a. Ña
1  are the shape functions associated with node a satisfying the parti-

tion of unity, and B̃a
1  is the discrete gradient operator associated with node a. In this work, we 

use linear tetrahedral elements.
The discrete weak form of the microscale equilibrium (equation (11)) is given by

∣ ∣
[ ]∫=

Θ
Θ =

= Θ
AR S F B

l
0: : ˜ d ,

e

Ne
c

0 1

1 T1 sym

e

1

 (A.2)

where A is the global matrix/vector assembly operator. The discrete form of the traction clo-
sure (equation (14)) is given by
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The finite element formulation contains both geometric and material nonlinearity. The solu-
tion to the resulting system of nonlinear equations is obtained using Newton’s method which 
requires the discrete tangent operator for optimal iterative convergence. Note that more com-
plex solution paths, such as snap-through and/or snap-back, will require the use of an arc-
length method [67, 80]. The convergence criterion in this work is given by ∥ ∥ ∥ ∥ ⩽ −R R/ 100

5, 
where ( )= =R R t 00  from equation  (A.2). The discrete tangent is obtained by linearizing 
equation (A.2) with respect to ∆ u1 , and reads

∫ ∫=
Θ

Θ+ Θ
= Θ Θ

⎧
⎨
⎩

⎫
⎬
⎭AK S B B F B F B

l
:

~ ~
d

~
: :

~
d .

e

Ne
c

0 1

1 1 T1 sym T1 sym 1 T1 sym
1

0 0∣ ∣
[ ] [ ] [ ]L

 

(A.4)

In equation  (A.4), L1  is the consistent tangent modulus at the microscale, L = ∂ ∂S C2 /1 1 .  
The form of the material tangent modulus for the isotropic damage model is derived in  
appendix B.

In order to efficiently solve and analyze large computational domains, we have developed a 
parallel computation and visualization/post-processing framework using the Message Passing 
Interface (MPI). First, we decompose the mesh generated by T3D [72] into domains using a 
graph partitioning algorithm (METIS [81]). Then, within PGFem3D, we assign displacement 
DOFs with both local (domain-specific) and global (solution-specific) identifiers to each node. 
Next, we construct efficient local-to-global and global-to-local DOF mappings. The mappings 
are used to define efficient point-to-point non-blocking communication structures for assem-
bling the global system of equations (equations (A.2) and (A.4)) and distributing the updated 
solution vector. The global system of equations  is solved using the HYPRE parallel solver 
library [82]. The error tolerance for the iterative solution (using the generalized minimal resid-
ual method) of the linear algebraic equations is 10−5. The simulations produce a large amount 
of data (O( )100  GB for a single RUC load history in compressed binary format), and efficient 
post-processing and visualization must also be performed in parallel. We use ParaView [83], 
for parallel visualization and batch data-processing.

Appendix B.  Computational damage model

In order to maintain optimal convergence of Newton’s algorithm, we derive the instantaneous 
material tangent, L1 , from the discrete evolution equations. In this work, a fully implicit inte-
gration algorithm is employed and the discrete damage evolution equations are derived from 
the first-order Taylor series expansion of equation (22). Assuming g  >  0 (see equation (19)), 
the discrete evolution equations are given by
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where ∆ = −+t t tn n1  is the time increment. The stress update reads
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The instantaneous material tangent, L = ∂ ∂S C2 /1 1 , is derived by taking the derivative of 
equation (B.2), which by the chain rule (recalling that =Y W1 ) yields
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where S C CW2 / 4 /1 1 2 1 2= ∂ ∂ = ∂ ∂L  is the hyperelastic material tangent. The damage inte-
gration scheme is executed after every linear solve in a nonlinear iterative solution proce-
dure. The accuracy of time integration of the rate-dependent damage model is maintained by 
an adaptive time stepping procedure described in appendix C. Upon successful convergence 
of the loading step, the damage and internal state variables are updated as ω ω← +n n 1 and 
χ χ← +n n 1 for all integration points.

Appendix C.  Adaptive damage model integration scheme

In order to accurately integrate the rate-dependent damage model, equation  (22) and 
equation (B.1) in discrete form, an adaptive time-stepping scheme is employed as in [27, 
45] and described in algorithm 1. The scheme is based on the desired ratio of damage, 
ω ω∆ ∆ →/ 1max d , where ω∆ d is a prescribed optimal (desired) change in ω for accurate 

integration of the damage model and ( ( ))ω ω∆ = ∆∈Θ YmaxYmax 0
. In this work, we use 

ω∆ = 0.05d . Upon convergence of the nonlinear solution, algorithm 1 is executed to deter-
mine if the current step should be recomputed with a smaller time increment or computa-
tions should proceed with a new optimal time increment. In both cases, the prescribed load 
is modified to maintain a constant loading rate. In algorithm 1, α > 1r  is the prescribed 
maximum value of α to allow the computation to continue to the next step and β< 1 is an 
acceleration parameter given by any acceleration scheme. Note that for α> 1, the algorithm 
will automatically decelerate step n   +   1.

Algorithm 1. Adaptive time integration for accurate integration of the damage 
model.

Given: ∆tn, ω∆ max, ω∆ d, α > 1r

Compute α ω ω= ∆ ∆/max d

if α αr⩾  them
 Recompute step n with α∆ = ∆t t /n n

else
 switch α do
  case α 0.5⩽
   Compute acceleration parameter β< 1.
   Compute β∆ = ∆+t t /n n1

  case α<0.5 0.8⩽
   Compute ∆ = ∆+t t /0.8n n1

  case α<0.8
   Compute α∆ = ∆+t t /n n1

  end switch
end if
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