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In this paper, a systematic method is presented for developing microstructure-statistics-property relations of
anisotropic polydisperse particulate composites using microcomputer tomography (micro-CT). Micro-CT is used
to obtain a detailed three-dimensional representation of polydisperse microstructures, and an image processing
pipeline is developed for identifying particles. In this work, particles are modeled as idealized shapes in order
to guide the image processing steps and to provide a description of the discrete micro-CT data set in continuous
Euclidean space. n-point probability functions used to describe the morphology of mixtures are calculated directly
from real microstructures. The statistical descriptors are employed in the Hashin-Shtrikman variational principle
to compute overall anisotropic bounds and self-consistent estimates of the thermal-conductivity tensor. We make
no assumptions of statistical isotropy nor ellipsoidal symmetry, and the statistical description is obtained directly
from micro-CT data. Various mixtures consisting of polydisperse ellipsoidal and spherical particles are prepared
and studied to show how the morphology impacts the overall anisotropic thermal-conductivity tensor.
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I. INTRODUCTION

Understanding the packing of various particulate systems
is critical to a variety of scientific fields including biology,
material science, geophysics, chemistry, and engineering with
applications including but not limited to amorphous solids
[1], heterogeneous materials [2,3], geological formations
[4], protein configurations [5], pharmaceutical powders [6],
and agricultural products [7]. Much of the work related to
characterizing and modeling these systems has been dedicated
to idealized isotropic packs composed most often of spheres.
However, for many of these systems, rarely are the particles
spherical and the morphologies isotropic, and the physical
implications of these assumptions are not fully understood. In
the study of the glass transition state for the formation of amor-
phous (glassy) solids, the ideal sphere model, where molecules
are modeled as monodisperse spheres, is well understood.
However, as pointed out in the review by Liu and Nagel [8], an
ideal sphere model likely resembles real glass forming systems
the least as molecules are not spherical. The particle shape
also plays a key role in the flow, compaction, and mechanical
loading of granular systems, e.g., sand, soil, etc. In the work
of Cleary and Sawley [9], discrete element simulations show
that grain shape has a substantial impact on the overall flow
rates and local flow behavior of particles in hoppers. However,
assumptions are made about the distribution of particle sizes
and shapes without justification based on real morphologies.
Experimental analysis of the compaction process through
tapping shows that nonspherical shapes have a tendency
to align, illustrating that manufacturing steps of particulate
materials, for example, can result in anisotropic configurations.
Fu et al. [10] studied the changing morphology of a system of
rods in compaction experiments and revealed larger degrees
of rod alignment with increased tapping times. An additional
experimental study of granular systems by Ribièri et al. [11]
revealed that the tapping acceleration used for compacting
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systems of basmati rice (polydisperse nonspherical particles)
plays a critical role in the types of convective flows that
develop, thereby affecting the final structures that form. Such
granular flows and compaction phenomena are critical among
other applications to modeling manufacturing procedures.
For example, an uneven burning profile is observed in solid
propellants due to particle alignment across the propellant
grain, which is attributed to the casting process [12].

From studying diffusion of nutrients and drugs in brain
tissue [13] to the overall elasticity of structural materials
[14], the macroscopic behavior is dependent on an accu-
rate characterization of the microstructure. In the study of
heterogeneous materials, which is the physical application
considered in this work, much effort has been dedicated to
developing theories that predict macroscopic behavior, e.g.,
effective material constants such as thermal conductivity,
elastic moduli, and fluid permeability, based on knowledge of
the microstructure. However, careful consideration of effective
properties of noncrystalline microstructures that do not follow
traditional microstructural assumptions such as statistical
isotropy or alignment of inclusions has been limited. To
overcome limitations of the morphological assumptions used
in modeling randomly configured systems, microcomputer
tomography (micro-CT) has become a popular method for
obtaining a description of real microstructures including solid
propellants [15,16], glass beads [17–20], and Fontainebleau
sandstone [21], just to name a few. In particular, this paper
applies tomographic characterization methods of polydisperse
mixtures of ellipsoidal and spherical particles and develops
microstructure-statistics-property relations (thermal conduc-
tion is explored in this paper) of real anisotropic material
systems (when particles do not arrange isotropically or with
ellipsoidal symmetry).

Particulate systems are often described by statistical charac-
terization methods. Bernal [22] first motivated the importance
of higher-order statistics using the radial distribution function
to describe the structures of liquids. The significance of the
statistical description has also been shown in several other
fields of physics [23,24]. Frisch and Stillinger [25] introduced
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n-point probability functions, which are used in this work, to
describe radiation scattering in packs of monodisperse spheres.
While these statistical descriptors have been used for decades,
accurately obtaining higher-order statistical information of real
systems in three dimensions has proved difficult to this day. For
example, Coker and Torquato [26] and Yeong and Torquato
[27] computed two-point probability functions of a two-
phase material, yet considered only two-dimensional slices
and assumed rotational and translational invariance of the
functions. Fullwood et al. [28] computed n-point probability
functions of three-dimensional two-phase materials, but their
computations were limited to relatively small systems. In
our prior work [20], one-, two-, and three-point probability
functions were calculated for a three-dimensional system of
polydisperse spheres from micro-CT data. As multiphase
polydisperse systems are considered in three dimensions, large
packs must be used, resulting in even larger data sets.

Linking the morphology to the overall material response is
a longstanding problem. In the material science community,
the seminal multiscale techniques proposed by Hashin and
Shtrikman [29], Willis [30], Bensoussan et al. [31], Hill [32],
and Torquato [33] deserve attention, and many others have
also contributed [34–39]. The work of Willis is of particular
importance as it established a direct link between the statistical
description and properties [30]. However, in [30] results
were only obtained for simple morphologies with statistically
isotropic or ellipsoidal symmetric statistics. This limitation
is due to challenges in integrating complex integral kernels
that are products of the second derivative of Green’s function
and two-point probability functions. In the work of Torquato
and Sen [40], only statistically isotropic microstructures and
those composed of aligned arbitrarily shaped inclusions were
discussed. Among others, Ponte Castañeda [41] and Talbot and
Willis [42] have proposed third-order models for nonlinear
materials, yet once again only simple microstructures were
considered due to the difficulty in obtaining real probability
functions and integrating over them.

In order to accurately describe the microstructure, an
image processing pipeline is presented to properly identify
individual particles. State of the art in micro-CT analysis
of highly packed particulate systems has been limited, to
the best of our knowledge, to nearly monodisperse packs
[17,19,43], and these works do not discuss in detail image
processing steps. However, image processing steps can pollute
predictions of physical properties. Following the identification
of particles in the system through image processing, we present
an algorithm that maps a voxel data set to a Euclidean,
R3, representation (implemented in the SHAPE3D software
package). A description in continuous Euclidean space sim-
plifies analysis of such systems, reduces their data set size,
improves their understanding, and aids in the development of
new material formulations. Moreover, data set size reduction
becomes increasingly important as more complicated systems
are studied, and larger voxel data sets must be considered in
order to resolve all important morphological features.

Next, we compute overall anisotropic properties of real
granular mixtures without traditional assumptions on the com-
plexity of the microstructure (statistically isotropic, aligned
inclusions, etc.) using our PROP3D software package [44]. We
show that for systems of polydisperse unaligned ellipsoidal

inclusions, the importance of eliminating these assumptions
is critical. The n-point probability functions are computed
directly from three-dimensional micro-CT images using our
statistical sampling code, STAT3D [20]. We show that the sta-
tistical functions of our polydisperse systems are not isotropic
nor possess ellipsoidal or any other material symmetry. Thus
closed-form solutions of overall properties are unachievable.

II. SAMPLE PREPARATION, MICRO-CT SCANNING,
AND PARTICLE CHARACTERIZATION

This section describes methods to mix and pack polydis-
perse systems, to acquire data using micro-CT, to process data
sets using image processing algorithms, and to model particles
as ideal shapes. In this work, a surrogate system of rice grains
and mustard seeds is used for their ellipsoidal and spherical
shape, respectively. In our discussion, we label the mustard
seeds as spheres due to their low eccentricities. However, all
particles are modeled as ellipsoids.

A. Packing of polydisperse particulate mixtures

Packing methods presented here were developed and
implemented to create homogeneous mixtures of particles
with no long-range order while obtaining repeatable results.
In order to satisfy these criteria, a manual packing procedure
was developed similar to ones used in other works [19,45,46].
Note that packing in a more controlled environment, e.g., use of
an electromechanical shaker as in [10,17,18,46], can produce
more densely packed systems and could also be used as long as
it satisfies criteria listed above. An important phenomenon to
consider when creating these granular mixtures is segregation
that can occur due to electrostatic effects and due to ease with
which particles can roll. Moreover, the shape of the container
and boundary effects were considered.

The first method is used for packing homogeneous poly-
disperse mixtures of ellipsoids and spheres while limiting
boundary effects and segregation. Granular packs mixed using
this method will be referred to as randomized packs. The
container, as seen in Fig. 1, was designed to eliminate boundary
effects and fill the entire viewing area within the micro-CT
scanner. The container has a diameter of 62 mm and height of
65 mm, and hemispherical beads (3 mm radius) are attached
to the boundary in order to minimize boundary effects.
The randomized packs are prepared in the following steps:
(I) Amount of each constituent (e.g., spheres, ellipsoids, etc.)
is weighed with a high precision scale with 0.001 g accuracy.
(II) Constituents are mixed together in a large bowl through
manual stirring. (III) Mixture is poured into scanning con-
tainer. (IV) Scanning container is manually shaken vigorously
in all directions. (V) Container is tapped gently (manually)
to allow particles to settle. This tapping is done on a leveled
laboratory table until the observed level of particles (height) in
the container stops descending. Let us note that steps (II) and
(IV) are repeated until the mixtures are visually homogeneous.
The vigorous manual shaking [step (IV)] is essential for
eliminating segregation. Note that the gentle tapping and
rough container walls were motivated by packing procedures
reported in the work of Aste et al. [19].
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FIG. 1. (Color online) Scanning container filled with 50% weight
of spheres to ellipsoids. The hemispherical beads (3 mm radius) on
the boundary of the container are used to minimize boundary effects.
The container is 65 mm in height and 62 mm in diameter.

The second method was developed to pack random ho-
mogeneous systems of particles with an increased amount
of anisotropy. Granular packs created with this method are
referred to as semiordered packs as particles have a stronger
probability of aligning. Note that this method is only used
to create packs of ellipsoidal particles, and thus segregation
is not an issue. To prepare semiordered packs of aligned
particles, a sequential addition procedure with manual shaking,
as introduced by Baker and Kudroli [46], is implemented.
The same sized cylindrical container was used, but no
hemispherical beads were attached to the boundary of the
container in order to prevent the irregular boundary from
randomizing the sample. The semiordered packs are prepared
in the following steps. (I) A thin layer of particles is poured
into container. (II) On a leveled laboratory table, the container
is oscillated manually back and forth 20 times in the same
direction. (III) Container is tapped gently five times. These
steps are applied to thin layers so that the particles on top
of the pack can move freely. We repeat these steps until the
container is full. Oscillating the container in the same direction
allows particles to align, and manual tapping is again done to
allow the particles to settle.

B. Data set acquisition

Once packs are prepared, all samples are scanned using
a Skyscan 1172 micro-CT machine. This particular scanner
has the ability to produce data sets that capture features that
are ∼0.7 μm. A convergence study was done on a pack of
polydisperse spheres to show that the particle volume fraction
of a sample is maintained for resolutions of 69.4, 34.7, 17.4,
and 8.7 μm per pixel. The standard deviation in volume
fraction for all of these scans was 0.0055, which is less than
1% of the mean volume fraction. A resolution of 69.4 μm per
pixel was selected for all compositions described in this work.

FIG. 2. (Color online) Surrogate system of ellipsoids and spheres
with 50% weight fraction of constituents. Observe the hemispherical
beads at the boundary that are used to randomize the packs and limit
boundary effects. The brightest particles correspond to the ellipsoidal
particles, while the darker ones correspond to spherical ones.

All data sets are on the order of 108 voxels (voxel = 3D pixel).
The average diameter of the spherical particles, the smallest
sized inclusion in our mixtures, is ∼2 mm. With a resolution
of 69.4 μm, this is ∼30 voxels in diameter, which is a good
resolution for the statistical characterization that follows.

The three-dimensional voxel data set of the 50% weight
fraction of spherical to ellipsoidal particles is shown in Fig. 2.
This data set will be used to describe steps for characterizing
the microstructure. This cylindrical data set has a diameter of
D = 57.67 mm (831 pixels) and a height of H = 48.51 mm
(699 pixels), which corresponds to 3.79 × 108 voxels.

C. Image processing

Once the three-dimensional voxel data set is obtained,
image processing algorithms are used to identify particles, and
these voxel particles are then modeled as idealized shapes.
The purpose of characterizing particles as idealized shapes
is to understand the influence of different particle types on
the macroscopic behavior and to provide a description of
the microstructure in continuous Euclidean space, R3. This
compact representation can be beneficial for design of new
material formulations, for example. Image processing routines
for identifying particles in a voxel data set are well established
[47]. For a system of convex-shaped objects with no hollow
regions, a typical image processing pipeline is to eliminate
noise in the data set by using an edge-preserving smoothing
algorithm, to identify the particulate material by thresholding,
and to segment the data set such that individual particles are
represented by connected groups of voxels. Two common
segmentation algorithms are watershed-based segmentation
and the opening algorithm (erosion followed by dilation).
Unfortunately, a watershed-based algorithm is limited as it
only properly separates data sets of convex-shaped objects,
while the opening algorithm distorts shapes for nonspherical
objects. For polydisperse systems with nonconvex features,
which is common for real materials, these standard image
processing steps will result in improperly segmented data
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FIG. 3. (Color online) Illustration of image processing steps (i)–(iii). (a) Gray scale image after applying smoothing algorithm.
(b) Distribution of voxel gray scale values. The dashed line indicates the cutoff value between material and void space. (c) Image slice
after thresholding and filling voids within particles.

sets [47]. Because the particles of our surrogate system have
internal voids and nonconvex surfaces, this traditional pro-
cessing pipeline requires enhancement to accurately capture
the microstructure. Note that in general all segmentation
algorithms lead to some volume removal.

In order to limit and control the errors in the image
processing pipeline, we propose a strategy based on interplay
between voxel analysis and analysis in R3. The following
image processing steps were developed using Visage Imaging
Inc.’s Amira [48] in conjunction with Skyscan’s CTAn [49] and
the SHAPE3D software developed in this work. (i) The voxel
data set is smoothed using the Kuwahara edge-preserving
median filter algorithm [50] in order to eliminate noise. A
resulting two-dimensional slice of the data set after smoothing
is presented in Fig. 3(a). (ii) The particulate phases are
thresholded based on the gray scale distribution of particles
[Fig. 3(b)]. In this distribution, the three peaks on the right
are related to the average gray scale values of the ellipsoids,
spheres, and the container, and the left peak is considered
void space. The threshold cutoff (red dashed line), which
distinguishes between void space and material, is chosen
to be the local minimum value between the two leftmost
peaks and is 60 for this data set. (iii) Voids within the
particles are filled. The resulting data set slice after this step
is presented in Fig. 3(c). Notice how many of these particles
are joined. (iv) A watershed segmentation algorithm is used
to separate individual particles. (v) To eliminate boundary
effects due to the hemispherical beads that are fixed to the
scanning container, a volume of interest (VOI) is defined. The
VOI [the circular blue region in Fig. 4(a)] is chosen such
that the boundary effects on the statistical characteristics are
minimized or eliminated. The VOI is determined by decreasing
the cylindrical volume’s diameter and height by increments
of 10 voxels until the particle volume fraction saturates to
within 1%. The resulting VOI has a diameter of DVOI = 46.57
mm and a height of HVOI = 37.4 mm (63.70 cm3). (vi)
Geometric quantities of individual particles including volume,
surface area, moments of inertia, the mean gray scale value
and centroid coordinates are computed. (vii) It is determined
which particles are still connected due to the inefficiency of
the segmentation algorithm, and these particles are marked
[Fig. 4(b)]. To determine which particles were not separated

in step (iv), one can analyze certain geometric quantities of
the voxel particles to see if they match the parameters of the
shapes expected in the sample, i.e., if some voxel particles
are larger than the known distribution of particles, they
should be segmented further. Because this system is composed
of particles closely resembling ellipsoids, a voxel particle
not matching an ellipsoid is marked for additional image
segmentation steps. The method for modeling a voxel particle
as an ellipsoid is described in Sec. II D. (viii) A combination
of the opening algorithm with watershed segmentation is used
to separate the marked particles identified in step (vii) using
SHAPE3D (see Sec. II D). (ix) For newly separated particles,
geometric quantities are computed. (x) The phase of each
particle is determined based on the mean gray scale value.
The average gray scale value of each particle is described
in Figs. 5(a) and 5(b), where d is the representative sphere
diameter computed as d = 3

√
6Vct/π and Vct is the volume of

the voxel particle. Here and in what follows pdf is used as an
abbreviation for the probability density function. Considering
the local minimum in Fig. 5(a) and the distribution of particle
sizes in Fig. 5(b), the average gray scale cutoff value for the
50% weight fraction of spheres is 136.

FIG. 4. (Color online) Illustration of image processing steps (iv)–
(vii). (a) A data set slice after image segmentation in step (iv). The
shaded circular section indicates the volume of interest (VOI). (b) A
section of (a) that illustrates particles remaining connected after step
(vi) (filled particle).
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FIG. 5. (Color online) Illustration of image processing step (x).
(a) Distribution of mean gray scale value for particles in the system
depicted in Fig. 2. (b) Scatter plot of particle size, d , versus mean gray
scale value. The red dashed line in (a) and (b) indicates the average
gray scale cutoff value.

Figure 6 shows the resulting data set after image processing,
where the spherical and ellipsoidal particles are colored blue
(dark gray) and green (light gray), respectively. Packs of voxel
particles will be referred to as voxel packs. An error measure
is introduced to quantify the volume loss due to the image
segmentation steps,

0 � εIP =
∣∣cv,B

p − cv,A
p

∣∣
c
v,B
p

× 100 � 100[%], (1)

where cv,B
p and cv,A

p are the total particle volume fractions
of a voxel pack before and after image segmentation steps,
respectively. For the 50% weight spherical particle pack,
cv,B
p = 0.6770 and cv,A

p = 0.6594, which represents a volume
loss of εIP = 2.60% as a result of the image segmentation
algorithms used. Note that respective phases (mustard and
rice) can only be identified after all image segmentation
steps, and cv

e and cv
s will refer to the volume fractions of

ellipsoids and spheres in the voxel pack (cv,A
p = cv

e + cv
s ),

respectively. For this pack, cv
e = 0.2701 and cv

s = 0.3893.
Relevant information including the volume fractions and
other morphological characteristics of all mixtures studied are
presented in Tables I and II.

FIG. 6. (Color online) Voxel pack of 50% weight of constituent
mixture. A voxel pack is the voxel data set after image processing.
The spherical and ellipsoidal particles are colored blue (dark gray)
and green (light gray), respectively.

TABLE I. Description of randomized packs, where W is the
weight of each particulate phase (e or s), and D and H are the diameter
and height, respectively, of the data set or VOI. εIP denotes the volume
error due to image segmentation. The subscripts e and s refer to the
ellipsoidal and spherical particulate constituents, respectively.

Pack [wt %] 0 25 50 75 100

We [g] 100.001 74.998 50.003 25.007 0.000
Ws [g] 0.000 24.997 50.003 75.002 100.000

D [mm] ——————- 57.67 ——————-
DVOI [mm] ——————- 46.57 ——————-

Higher volume fraction packs
H [mm] 41.43 42.74 48.51 50.04 51.42
HVOI [mm] 30.33 31.64 37.41 38.93 40.32

εIP [%] 2.23 2.85 2.60 2.72 3.66

Lower volume fraction packs
H [mm] 41.22 43.10 46.22 49.62 49.76
HVOI [mm] 30.12 31.99 35.12 38.52 38.66

εIP [%] 2.22 2.72 2.46 2.66 3.52

D. Modeling voxel pack as pack of idealized shapes

Taking into consideration knowledge about the microstruc-
ture, all voxel particles are modeled as ellipsoids in R3. Voxel
particles are fitted to idealized shapes by optimizing two fitness
functions that best characterize a particle’s volume, surface
area, and orientation. The first function minimized is

�1(k) = ω
|k3Vpa − Vct |

|Vct | + (1 − ω)
|k2Spa − Sct |

|Sct | , (2)

where Vct and Sct are the volume and surface area calculated
for a particle in the voxel pack, Vpa and Spa are the volume
and surface area of the ideal shape being optimized, and ω is
a weight factor between a particle’s volume to surface area.
The weight factor was chosen to be ω = 0.8 in our work. The

TABLE II. Summary of volume, �V , surface area, �S, and
orientation, ��2, errors between voxel particles and ellipsoids. The
unit of all values is %. Less than 0.1% of all particles considered in
these mixtures have ��2 > 5%, and less than 14.3% of all particles
have �S > 5%.

Pack [wt %] 0 25 50 75 100

Higher volume fraction packs
�V (mean) 0.65 0.50 0.41 0.33 0.41
�V (max) 3.63 3.29 3.29 3.27 3.69

�S (mean) 4.11 3.16 2.56 2.03 2.62
�S (max) 34.22 28.55 28.62 28.15 35.28

��2 (mean) 1.09 0.56 0.38 0.22 0.21
��2 (max) 14.17 8.41 8.37 5.68 18.69

Lower volume fraction packs
�V (mean) 0.63 0.52 0.35 0.32 0.40
�V (max) 3.69 3.52 3.50 3.22 3.54

�S (mean) 3.99 3.31 2.17 2.04 2.50
�S (max) 35.81 32.26 26.05 27.56 32.71

��2 (mean) 1.05 0.57 0.36 0.22 0.21
��2 (max) 6.47 12.79 11.43 4.97 10.09
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FIG. 7. (Color online) (a) Idealized pack of 50% weight of constituent mixture. There are 2276 ellipsoidal and 8344 spherical particles in
this granular pack. Comparing Figs. 6 and 7(a) shows qualitatively that the idealized pack in Euclidean R3 space is an accurate representation
of the voxel pack. (b) Particle distribution of voxel pack from Fig. 6. d is the representative sphere diameter and e [Eq. (6)] is the measure of
eccentricity.

scaling factor k determines the scale of the final semiaxes as⎛
⎜⎝

a

b

c

⎞
⎟⎠ = k

⎛
⎜⎝

a∗

b∗

c∗

⎞
⎟⎠ , (3)

where a, b, and c are the final semiaxes lengths of the ideal
shape with a > b > c. The semiaxes lengths a∗, b∗, and c∗
are computed from the inertia tensor of the voxel particle, I ct ,
assuming that the particle is an ellipsoid. The use of a scaling
factor k ensures that the ratios between a∗, b∗, and c∗ and a, b,
and c are preserved so that the idealized particle better mimics
the overall shape.

A second fitness function, �2(α,β,γ ), is defined to adjust
the orientation of the idealized shape to best mimic the voxel
particle as

�2(α,β,γ ) = ||R(α,β,γ )Ipa R(α,β,γ )−1 − I ct ||F
||Ict ||F

, (4)

where Ipa is the inertia tensor of the ideal shape that
is being optimized. α, β, and γ are angles by which
the orthogonal rotation matrix R adjusts Ipa . Also,
A = R A∗ R−1 = [η1,η2,η3]T gives the final orientation
vectors η1, η2, and η3 that correspond to the directions of a,
b, and c, respectively. Here, || • ||F represents the Frobenius
norm. Note that we place the ellipsoid’s origin at the centroid
(Xc,Yc,Zc) of the voxel object, and the density of all particles
is assumed constant in this step.

The resulting errors between voxel and ideal particles
are considered by looking at differences in the volume,
surface area, and inertia tensors after optimizing the objective
functions. The first metric, �V , quantifies the difference in
volume (as a percentage) between a voxel particle and its
corresponding ellipsoid:

0 � �V = |Vpa − Vct |
|Vct | × 100 � 100[%]. (5)

The second metric, �S, quantifies the difference in surface
area (as a percentage) in the same manner as �V [see Eq. (5)].
The third metric, ��2 = �2 × 100[%], quantifies differences
in orientation. Particles with ��2 > 5% are marked in image
processing step (vii) for additional segmentation in step (viii)
[see orange (gray) particle in Fig. 4 and description in
Sec. II C].

The corresponding idealized pack and distribution of
particles for the voxel pack are presented in Fig. 7, where e is
a measure of eccentricity defined as

e = 1

3

(√
a∗2 − b∗2

a∗ +
√

b∗2 − c∗2

b∗ +
√

a2∗ − c∗2

a∗

)
. (6)

Higher values of e correspond to more eccentric particles,
and a perfect sphere corresponds to e = 0. The distribution
outlined in black corresponds to the spheres [blue (dark gray)
particles], while the distribution outlined in gray corresponds
to ellipsoids [green (light gray) particles]. As can be seen in
Fig. 7, the average eccentricity of the mustard seeds is small.
Thus they are referred to as spherical. Note that a substantial
reduction of the data set size from ∼3.79 × 108 voxels to
10 620 ellipsoids was achieved. Considering that an ellipsoid
is described by its centroid (Xc,Yc,Zc), semiaxes lengths
(a,b,c), and three angles (α, β, and γ ), we need nine numbers
to characterize an ellipsoidal particle. Thus 95 580 numbers are
needed to describe this pack. Compared to the 3.79 × 108 vox-
els, this data set is compressed by approximately 4000 times.

The distributions of errors in volume, surface area, and
inertia tensor for all particles in the pack are shown in Fig. 8.
All average errors are below 3%. Note that the maximum error
in surface area, �S, is large relative to �V , because the weight
factor, ω, favors matching the volume of the particle over the
surface area. Furthermore, it is well known that the voxel repre-
sentation of a surface is inaccurate and cannot be improved by
increasing the voxel resolution [51]. Capturing the surface area
of a voxel object accurately is nontrivial and requires fitting
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(a) (b) (c)

FIG. 8. (Color online) Distributions of errors in modeling voxel particles as ellipsoids for 50% weight mixture shown in Figs. 6 (voxel
pack) and 7(a) (idealized pack). (a) Distribution of the particles’ errors in volume, �V . (b) Distribution of the particles’ errors in surface area,
�S. (c) Distributions of particles’ errors in inertia tensors, ��2.

a smooth surface to a stepwise boundary [51,52]. Because a
sophisticated surface representation was not considered in this
work, ω was chosen to be 0.8. Nevertheless, only 3.99% of
particles in this pack have �S > 5%. In addition, note that
while �2 is used to optimize the orientation of the idealized
shape, this value is also a measure of how well an idealized
shape fits a voxel particle in an overall sense. For this pack,
only 0.03% of particles have orientation errors of ��2 > 5%.
Note that using a traditional watershed-based segmentation
algorithm without our R3 mapping [system before step (vii)]
would result in ��2(max) = 16.04%, and 0.34% of particles
having ��2 > 5%. This shows that a substantial improvement
was achieved [��2(max) was improved 2× and ��2 > 5%
was improved 10×].

E. Pack analysis

Using the microstructure characterization procedures de-
scribed above, five randomized compositions and one
semiordered pack of ellipsoids are characterized. These data
sets provide a foundational data set for analyzing the mi-
crostructure’s effect on overall material properties that will
be presented in Sec. V.

1. Semiordered pack of ellipsoids

The voxel pack representation after image processing with
the associated distribution of particles is presented in Fig. 9,

where the size of the cylindrical domain has a diameter
of D = 59.44 mm and a height of H = 47.16 mm. This
pack had a particle volume fraction of cv,B

p = 0.6841 before
particle segmentation and was reduced to cv,A

p = 0.6655 after
image segmentation steps, corresponding to a volume loss of
εIP = 2.71%. The VOI for this sample is DVOI = 45.24 mm
and HVOI = 33.03 mm. When modeling the voxel particles as
ellipsoids, the mean errors of �V , �S, and ��2 are 0.70%,
4.48%, and 2.20%, respectively. The maximum errors in �V ,
�S, and ��2 are 2.69%, 20.98%, and 11.65%, and 24.91%
and 0.69% of all particles have �S > 5% and ��2 > 5%.

In Fig. 9(a), it can be seen that particles are aligned in
the y direction. The orientation of an ellipsoidal particle is
described by two angles with respect to the basis vector
of the longest semiaxis, η1: the azimuthal angle (projected
orientation onto the xy plane) and the altitude angle (with
respect to the z axis). These angles are referred to as θa

and φa (see Fig. 10) and are found from the orientation
of an idealized shape. The distributions of the azimuthal
and altitude angles for the semiordered pack are presented
in Fig. 11. The distribution of φa shows that ellipsoids are
more likely to lie horizontally (φa = 0◦) than in the unstable
vertical position (φa = 90◦), while the distribution of θa shows
that ellipsoids are preferentially aligned in the y direction
(θa = −90◦ = 90◦), which can also be observed in Fig. 9(a).
This anisotropic morphology has a critical impact on the
overall thermal-conductivity estimates presented in Sec. V.

FIG. 9. (Color online) (a) Voxel pack of semiordered sample. There are 6536 ellipsoidal particles in this pack. (b) Distribution of particles
for semiordered voxel pack shown in (a). d is the representative sphere diameter and e [Eq. (6)] is the measure of eccentricity.
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FIG. 10. Definition of ellipsoid’s orientation in Cartesian coordi-
nate system with respect to the largest semiaxis, η1. φa is a particle’s
elevation angle and θz is a particle’s azimuthal angle, θa .

2. Randomized mixtures

Five compositions at 0%, 25%, 50%, 75%, and 100%
weight of spheres to ellipsoids are considered. These five
compositions are created by weighing an appropriate amount
of each constituent and are then packed and tomographically
characterized two times to confirm the repeatability of the
steps described in this section (we refer to these two scans as
higher and lower volume fraction packs depending on their
packing density). Table I shows information about each voxel
pack including the weight of each constituent, sizes of the
data sets, and the error introduced in the image segmentation
steps. The largest volume losses, εIP , occur for the spherical
particle packs. However, all volume losses are less than
3.66%. Note that the height of the volume analyzed, H ,
increases with increasing wt % of spherical particles, because
the spherical particles are less dense than the ellipsoidal
ones. This can be also observed in Fig. 2, since darker gray
corresponds to less dense material. The resulting volume
fractions of all randomized compositions before and after
image segmentation, cv,B

p and cv,A
p , are presented in Fig. 12(a).

Figure 12(b) shows the volume fraction of each constituent
for the corresponding composition. In these two figures, the
two samples for each composition are represented by two data
points, and the lines are the means. All differences in the total

0 10 20 30 40 50 60 70 80 90
0

0.01

0.02

0.03

0.04

0.05

pd
f

φa

(a)

−90 −45 0 45 90
0

1

2

3

4

5

6
x 10

−3

pd
f

θa

(b)

FIG. 11. (Color online) (a) Distribution of particles’ elevation
angles, φa , for semiordered pack shown in Fig. 9(a). (b) Distribution
of particles’ azimuthal angles, θz, for semiordered pack shown in
Fig. 9(a).

particle volume fractions after segmentation, between the two
packs of each composition analyzed (higher and lower volume
fraction packs), are below 0.008 [maximum difference is
for 25% mixture; see Fig. 12(a)]. The maximum differences
between the phase volume fractions, cv

e and cv
s , are 0.0191 and

0.0156, respectively, for the 50% mixture [see Fig. 12(b)].
Recall that cv,A

p = cv
e + cv

s . As the particle volume fractions,
cv,B
p , can theoretically be in the range [0,1], these differences

between the two data points at each composition are small. The
number of particles per volume is plotted for each of the packs
in Fig. 13, where Np is the number of particles in the VOI. The
number of total particles increases with increasing wt % of
spherical particles, because the volume of a spherical particle
is smaller than the volume of an ellipsoidal particle as evident
in the distribution of particles for the 50% pack in Fig. 7(b).
The mean and max errors between voxel particles and their
corresponding ideal ellipsoidal representation are presented
in Table II. All mean errors for each pack are below 5%. As
discussed earlier, noticeable maximum errors in the surface
area are related to errors in representing the surface of voxel
particles. Moreover, noticeable maximum errors for �2 exist
for a small number of particles that do not match an ellipsoid
well. Overall, the low errors achieved throughout the mi-
crostructure characterization process show that sample prepa-
ration, data acquisition, and image processing steps produce
scientifically sound and repeatable results with well controlled
errors.

The mixture of randomized ellipsoids (0 wt % spherical
particles) has a volume fraction consistent with packing
simulations of monodisperse ellipsoids reaching a maximally
random jammed state [53]. For the average size ellipsoidal
particle (a = 3.04 mm, b = 1.11 mm, and c = 0.83 mm), a
maximum packing volume fraction can be extrapolated to be
0.68 from the work of Chaikin et al. [53] (cv,B

p = 0.66 in
this work). It is expected that this volume fraction should be
similar as the ellipsoidal particles have a small range in size
as seen in Fig. 7. The volume fraction of maximally jammed
monodisperse spheres in the work of Chaikin et al. [53] is
0.64, and the volume fractions for the compositions with 100%
spheres considered in this work is higher (cv,B

p = 0.70 from
Fig. 12) due to the polydispersity as evidenced by the range
in sizes in Fig. 7 (distribution outlined in black). Note that
this volume fraction falls below 0.74, the assumed maximum
achievable volume fraction of monodisperse spheres first
proposed by Keplar and supported by many thereafter [54].
When considering all of the randomized compositions, there
is an increasing trend in volume fraction, cv

p. It is known
that when the scales of two inclusions are significantly
different, the mixtures will have higher volume fractions than
the maximum volume fractions of a single constituent for
monomodal spheres [55]. However, as the smallest semiaxes of
the ellipsoids are similar to the average radius of the spherical
particles, no such effect is observed.

The distributions of particle orientations for the randomized
pack with 100% weight of ellipsoids is shown in Fig. 14. Notice
that there is no preference of the randomized pack’s ellipsoids
azimuthal angle, θa (compare with Fig. 11 for semiordered
pack). Moreover, there is a low probability that particles
are suspended in the unstable vertical position, φa = 0◦.
This randomness in the azimuthal angle, θa , confirms the
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FIG. 12. (Color online) (a) Volume fractions, cv
p , before and after image segmentation of randomized compositions described in Table I.

Note that two samples for each composition were studied and are referred to as higher volume fraction packs (top points) and lower volume
fraction packs (bottom points). (b) Volume fractions of each constituent, cv

r , for segmented data sets in (a) after segmentation (empty circles).

randomizing effects in the sample preparation steps. The
ellipsoidal particles in the other randomized packs exhibit
similar trends in their orientations and are not reported here.

When comparing the semiordered pack of ellipsoids to
the randomized one, the volume fraction of the semiordered
ellipsoid pack is higher. This is in agreement with studies of
ordered packs of monodisperse ellipsoids, as they are known
to have a maximum particle volume fraction of 0.74–0.77
[56]. When comparing the altitude angle, φa , distributions
between the semiordered and randomized pack, there is a
higher probability of the semiordered pack particles existing
in the xy plane (φa = 0◦) and a preferred direction for θa

(see Figs. 11 and 14).
Let us note that the microstructure characterization method

presented in this work can be used in a variety of applications
as well as in validation of packing simulations [57,58]. In this
work, the data sets provide a foundational set for considering
the microstructure’s effect on overall properties, and the effect
of these packing configurations on the overall anisotropic
thermal-conductivity tensor will be explored in the remainder
of this paper.
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FIG. 13. (Color online) Number of particles, Np , per cm3 as
a function of the wt % of spherical particles for randomized
compositions described in Table I and Fig. 12(b).

III. THEORETICAL OVERVIEW OF OVERALL
ANISOTROPIC PROPERTIES

Using the Hashin-Shtrikman variational principle and
assuming that particulate composites are homogeneous and
ergodic, Willis formulated a second-order approximation of
bounds on elastic and conductivity constants in which the
two-point probability functions are embedded within the
mathematical formulation directly [30]. In Willis’ work,
assumptions about the configuration of the particles were
made when computing overall properties. In this work, upper
and lower anisotropic bounds as well as anisotropic self-
consistent estimates are computed without assumptions of
statistical isotropy nor ellipsoidal or any other material symme-
try for complex tomographically characterized polydisperse
microstructures. A simple overview of theory is discussed next.

A. n-point probability functions

As described in [20,44], the n-point probability functions
are derived using a phase indicator function at a position x in
a sample α of an ensemble space E :

χr (x; α) =
{

1 if x in phase r,

0 otherwise.
(7)
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FIG. 14. (Color online) (a) Distribution of particles’ elevation
angles, φa , for the pack with 0% weight of spherical particles.
(b) Distribution of particles’ azimuthal angles, θz, for the pack with
0% weight of spherical particles.
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An ensemble is a collection of material samples being
considered. The ensemble average is given by

χr (x) =
∫
E
χr (x; α)p(α)dα, (8)

where p(α) is the probability density function of α in E . The n-
point probability function, Sr1r2···rn

(x1,x2, . . . ,xn), is defined
as

Srs···q(x1,x2, . . . ,xn) = χr (x1)χs(x2) · · · χq(xn). (9)

It represents the probability of phases r, s, . . . , q existing at
points x1, x2, . . . , xn, simultaneously. In general, the proba-
bility functions for a heterogeneous material are spatially com-
plex. In this work, a second-order model for computing bounds
on overall anisotropic thermal conductivity is considered.

For statistical homogeneous materials, where the prob-
ability functions are translationally invariant, the one-point
probability function attains a constant value, Sr (x) = c, and
the two-point function simplifies to Srs(x,x′) = Srs(x − x′).
For statistically homogeneous systems, it is meaningful to
define volume averages. When assuming ergodicity of homo-
geneous systems, ensemble averaging is equivalent to volume
averaging in the infinite volume limit,

Srs···q(x1,x2, . . . ,xn) = lim
→∞

1



∫


χr (x1 − l)χs(x2 − l)

· · · χq(xn − l)d, (10)

where l is a translation vector and  is the volume of
the domain. For homogeneous and ergodic systems, the
one-point probability function is equivalent to the volume
fraction of phase r [Sr (x) = cr ]. The two-point probability
functions of a statistically homogeneous and isotropic system
(rotationally and translationally invariant) are defined as
Srs(x,x′) = Srs(|x − x′|), where the function only depends
on the distance between two points. For homogeneous systems
with no long-range order, we observe two limit cases in the
pointwise sense of the two-point probability functions, which
can be expressed as

Srs(x − x′) →
{
crδrs as x − x′ → 0,

crcs as x − x′ → ∞,
(11)

where δrs is the Kronecker delta. More information on the
n-point probability functions can be found in work by Torquato
[2] and Beran [59]. In this work, statistically anisotropic
systems are considered, and n-point probability functions are
used when addressing the issues of material order.

B. Hashin-Shtrikman variational principle

The Hashin-Shtrikman variational principle is employed
to obtain bounds on thermo-mechanical properties of an
anisotropic material as described in [29,30]. It is assumed that
the material follows a constitutive relation of q = ∂w( Q)/∂ Q,
where w( Q) is an energy density function, q is the heat flux
vector, and Q = −∇T is the negative temperature gradient
for a temperature T at a point x. When the material obeys
Fourier’s law, q = κ · Q (linear constitutive relation), the
energy density function is defined as w( Q) = ( Q · κ · Q)/
2 � 0, where κ is the symmetric positive semidefinite second-
order thermal-conductivity tensor. This symmetric positive

FIG. 15. Body decomposition with prescribed Dirichlet and
Neumann boundary conditions, respectively, corresponding to the
lower bound (LB) and upper bound (UB) formulations.

semidefiniteness requirement is in agreement with Onsager’s
reciprocity theorem [60]. Thus the generally anisotropic
conductivity tensor computed in this work has six independent
components. A complementary energy density, w∗(q), can
also be defined, where w∗(q) + w( Q) = q · Q and Q =
∂w∗(q)/∂q. For a material following Fourier’s law, w∗ =
(q · ρ · q)/2 � 0, where ρ represents the symmetric positive
semidefinite second-order thermal-resistivity tensor. Note
that at the continuum ρ = κ−1. The internal energy and
complementary internal energy of the system are defined as
E = ∫


w d and E∗ = ∫


w∗ d, respectively.

Hashin and Shtrikman [29] proposed the body decompo-
sition, as shown in Fig. 15. The top half of this figure shows
the body decomposition with a prescribed temperature field on
the boundary, T̂ , which is used to compute the lower bound
(LB) of the overall κ . The bottom half of this figure shows
the decomposition for a body with a prescribed normal heat
flux, q̂n, and this formulation is used for computing the lower
bound of the overall ρ, corresponding to the upper bound (UB)
of κ . Note that quantities with •̄ denote an overall or volume
averaged quantity, •̄ = 1/

∫ • d. The governing equations
of these corresponding elliptic boundary-value problems are
given by

LB:

∇ · [κ0 · Q + p] = 0 in ,
(12)

p − [κ − κ0] · Q = 0 in ,

T ′ = 0 on ∂,

UB:

∇ · q = 0 in ,
(13)

t − [ρ − ρ0] · q = 0 in ,

q ′ · n = 0 on ∂,

where κ0 is the thermal-conductivity tensor of a comparison
medium and p is the heat flux polarization tensor. T0 and
T ′ represent the homogeneous and fluctuation temperature
fields, respectively. q ′ is the heat flux fluctuation field, ρ0 is
the comparison medium resistivity tensor, t is the temperature
gradient polarization field, qn = q · n is the normal heat flux,
and n is the unit normal vector. Note that this formulation is
similar to theory for computing overall linear elastic constants
[44].
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Formulations equivalent to the ones described by the strong
forms (12) and (13) can be obtained by minimizing the
functionals,

LB:

2F( p) =
∫



[
p · [κ − κ0]−1 · p + p ·

∫
x′

�(x,x′)

· [ p(x′) − p̄]dx ′ − 2 p · Q0

]
d (14)

and
UB:

2F∗(t) =
∫



[
t · [ρ − ρ0]−1 · t + t ·

∫
x′

U(x,x′)

· [t(x′) − t̄]dx ′ − 2t · q0

]
d, (15)

for the lower and upper bound formulations, respectively.
�(x,x′) is the second-order linear operator related to the
Green’s function solution. Q0 denotes the negative tem-
perature gradient in a homogeneous comparison medium
and q0 is the homogeneous heat flux. Note that the energy
functional is defined as F = E0 − E, where E0 is the internal
energy of the comparison medium. F∗ = E∗

o − E∗, where
E∗

0 is the complementary internal energy of the comparison
medium. For the upper bound formulation, U is the second-
order linear operator related to the Green’s function solution
(U = κ − κ · � · κ).

To find second-order estimates to the stationary point of
Eqs. (14) and (15), trial fields of p and t are assumed
piecewise constant in each phase r ( p∗ = ∑n

r=0 χr pr and
t∗ = ∑n

r=0 χr tr for a system of n particulate phases and a
matrix corresponding to r = 0). The following systems of
algebraic equations are obtained after discretization of the
polarization fields, p and t , averaging over the ensemble space
E and using the calculus of variations

LB:

cr (κ r − κ0)−1 · qr +
n∑

s=0

∫
x′
�∞(x − x′)[Srs(x − x′) − crcs]

· qs dx′ = −cr Q (16)

and

UB:

cr (ρr − ρ0)−1 · tr +
n∑

s=0

∫
x′

U∞(x − x′)[Srs(x − x′) − crcs]

· ts dx′ = −cr q. (17)

Here cr and cs are the volume fractions of phase r and s,
respectively, κ r is the thermal-conductivity tensor of phase r ,
while Q is the overall negative temperature gradient. �∞ and
U∞ are related to the Green’s function solution for an infinite
body. For the upper bound formulation, ρr is the resistivity
tensor of phase r , while q̄ is the overall heat flux.

These systems of equations are solved for the piecewise-
constant fields, pr and tr , to find the mean polarization fields,
p = ∑n

r=0 cr pr and t = ∑n
r=0 cr tr . The volume averaged

constitutive relations,

LB: UB:
q = κ · Q = κ0 · Q + p, Q = ρ · q = ρ0 · q + t, (18)

are used to calculate the overall κ and ρ, respectively. When
κ r − κ0 is the smallest positive semidefinite matrix for all
phases r in the lower bound formulation, the resulting κ

is the second-order lower bound of the conductivity tensor.
Meanwhile, when ρr − ρ0 is the smallest positive semidefinite
matrix for all phases r in the upper bound formulation, the
second-order lower bound of the resistivity tensor is obtained
(upper bound of the conductivity tensor, κ = ρ−1).

Another widely used model for computing overall material
properties is the self-consistent estimate (SC). As described in
Willis’ work [30], self-consistent estimates are calculated by
minimizing the volume averaged energy and complementary
energy functionals |F | = |E0 − E| and |F∗| = |E∗

0 − E
∗|.

This leads to E = E0 (κ = κ0) and E
∗ = E∗

0 (ρ = ρ0). With
this in mind, the following objective functions are minimized
in order to compute self-consistent estimates,

SC-L: SC-U:
�L

SC = ||κ0 − κ ||F �U
SC = ||ρ0 − ρ||F . (19)

The integrals presented in Eqs. (16) and (17) and conse-
quently in (19), which are products of the tensors related to the
Green’s function solution, �∞ and U∞, and the second-order
probability function, are strenuous especially near the origin
due to the singularity of �∞ and U∞. Note that, for statistically
isotropic systems and systems with aligned ellipsoids, these
integrals can be calculated analytically leading to a closed-
form solution of the overall conductivity tensor. Closed-form
solutions using these assumptions have been presented in work
by Willis [30] and Weng [61], just to name a few. This work is
not limited by these assumptions, and the integral kernels are
calculated numerically using the adaptive sparse-grid Smolyak
integration method with hierarchical basis that was developed
in our previous work [44].

IV. STATISTICAL CHARACTERIZATION

After the voxel data is processed, the packs are statistically
characterized by computing one- and two-point probability
functions directly from the voxel data using our parallel
statistical sampling code, STAT3D [20]. Note that sampling
in R3 on idealized packs as done in [20] is also possible
and would result in nearly identical results as shown in
[26]. We do not present this verification here. This section
presents the statistical functions for compositions described
in Sec. II E. The semiordered pack and one realization of
each randomized composition [higher volume fraction packs
as shown in Fig. 12(a)] are statistically characterized.

As presented in [20], a spherical sampling template is used
to compute n-point probability functions. After a convergence
study, the sampling template was discretized with 2000 radial
points and 32 circumferential points and was randomly thrown
into the sample 10 million times. Note that this very high
sampling frequency is important for resolving all probability
functions. In order to quantify the errors in the statistical
functions, we consider the limit cases of the two-point
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probability functions as given by Eq. (11). The following error
measures at the origin and at a far distance are used,

0 � εSrs (0) =
∣∣Srs(0) − cv

r δrs

∣∣
cv
r

× 100[%], (20)

0 � εSrs (∞) = std
[
Srs(∞) − cv

r c
v
s

]
cv
r c

v
s

× 100[%], (21)

where std(•) is the standard deviation.
If a pack is perfectly isotropic, the standard deviations

in the two-point probability functions at |x − x′| are zero
(std[Srs(x − x′)||x−x′|] = 0 ∀x). For random statistically ho-
mogeneous mixtures, short-range statistical anisotropy can
exist due to both the shape of the particles and/or the configu-
ration of the particles, and no long-range order is expected for
randomized systems. A specific case of statistically anisotropic
systems, considered in previous works [29,30], is when the
two-point probability functions exhibit ellipsoidal symmetry,
which is known to occur for ordered packs of randomly
positioned and uniformly aligned monodisperse ellipsoids.
Ellipsoidal symmetry means that the function values of
Srs(x − x′) are constant on contours of an ellipsoid,

(x − x′)T B−1(x − x′), (22)

where B is a positive-definite matrix whose eigenvalues are
squares of an ellipsoid’s semiaxes. It will be shown that the sta-
tistical descriptors of the polydisperse packs in this work do not
exhibit ellipsoidal symmetry. When ellipsoidal symmetry does
not exist, closed-form solutions of the overall properties as pre-
sented in [30] and many papers thereafter cannot be obtained.

A. Semiordered pack

In what follows, the subscripts m, s, and e are used to
refer to the matrix, spherical particles (mustard seeds), and
ellipsoidal particles (rice grains), respectively. The one-point
probability functions for the semiordered mixture of ellipsoids
(see Fig. 9) are cm = 0.3345 and ce = 0.6655. The mean
and standard deviations of the two-point probability functions

are presented in Fig. 16. The maximum errors, as defined
by Eqs. (20) and (21) for all two-point probability functions
of this mixture are εSrs (0) = 0.0059% and εSrs (∞) = 0.304%,
respectively. As can be seen in Fig. 16(a), the mean two-point
probability values reach local extrema near the average semi-
axis, (a + b + c)/3 = 1.66 mm (vertical gray dotted line), and
the largest semiaxis (vertical black dashed line). Note that
the average semiaxes of ellipsoids in this work are a = 3.04
mm, b = 1.111 mm, and c = 0.83 mm. Considering the mean
function values and the standard deviations as (x − x′) → ∞
(Fig. 16), the functions are considered converged when |x −
x′| = 8 mm, resulting in a characteristic material length scale
of 16 mm (twice the radius). The characteristic material length
scale can be considered as the optimal size of a representative
unit cell (RUC) [20]. This length scale is ∼20× the smallest
semiaxis and ∼5× the largest semiaxis. The characteristic
material length scale is important in this work, as the saturation
of the probability functions guarantees convergence of the
integrals in Eqs. (16), (17), and (19) as (x − x′) → ∞ [30].
Also of interest in Fig. 16(b) is where the maximum standard
deviations occur, since the std(Srs) represents how anisotropic
the system is. The largest peak occurs near a distance from
the origin of the smallest semiaxis (c = 0.83 mm), the second
peak near the average semiaxis (dotted gray line), and the
deviations diminish after the distance near the largest semiaxis
(dashed black line). Note that these deviations are related to a
combination of the particle shape, the polydispersity, and the
configuration. While these deviations are less than 6% of the
function values, this statistical anisotropy will lead to large
macroscopic anisotropy of the thermal-conductivity tensor,
because the anisotropy in morphology is amplified by the local
anisotropic material constants.

One of the two-point probability functions, See, is visualized
in Fig. 17. Notice again that local minima exist near distances
from the origin to the average semiaxis and the largest
semiaxis lengths. The anisotropic nature of the two-point
probability function in the xy and yz plane [Figs. 17(c)
and 17(d), respectively] is due to the preferred alignment
of the particles in the y direction (see Fig. 11). While the

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

radius [mm]

S
rs

S
mm

S
me

S
ee

(a)

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

radius [mm]

st
d(

S
rs

)

S
mm

S
me

S
ee

(b)

FIG. 16. (a) Mean of two-point probability functions, Srs , for semiordered pack of ellipsoids from Fig. 9. (b) Standard deviation (std) of
Srs for semiordered pack of ellipsoids. In both (a) and (b), the vertical dotted gray line indicates the average semiaxis length [(a + b + c)/3 =
1.66 mm] of the ellipsoids in the pack, while the vertical dashed black line indicates the largest semiaxis length (c = 0.83 mm).
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FIG. 17. (Color online) (a) 3D representation of See(x − x ′) for semiordered pack of ellipsoids from Fig. 9. (b)–(d) show See(x − x ′) in the
xz, xy, and yz planes, respectively. Note that this function does not exhibit ellipsoidal symmetry. Note that the scale of the color bar is adjusted
to highlight where local minima of this function exist. The dotted gray line indicates the average semiaxis length of the ellipsoids in the pack
[(a + b + c)/3 = 1.66 mm], while the dashed black line indications the largest semiaxis length (c = 0.83 mm).

general shape of this statistical function is ellipsoidal, notice
that See does not exhibit complete ellipsoidal symmetry [given
by Eq. (22)], thus prohibiting the closed-form integration given
in [30]. Near spherical symmetry occurs only in the xz plane
[Fig. 17(b)], since the smallest semiaxes of the average size
ellipsoid are similar (b = 1.11 mm and c = 0.83 mm). Note
that for a semiordered pack (based on our packing method,
this means not randomly positioned and uniformly aligned
inclusions) of ellipsoids in which all semiaxes are significantly
different, ellipsoidal symmetry would not be present in any
plane.

B. Randomized packs

The mean and standard deviations of the two-point prob-
ability functions for selected randomized compositions are
considered in Figs. 18(a)–18(f). The maximum errors, as
defined by Eqs. (20) and (21), for all two-point probability
functions of the five randomized compositions are εSrs (0) =
0.104% and εSrs (∞) = 4.146%, respectively. Note that the
spike in the standard deviations at the origin in Fig. 18(f) (less
than 1% of the function value) occurs at the voxel resolution of
the data set, |x − x′| ≈ 0.07 mm. This is a numerical artifact

due to the discontinuities associated with the voxelization of
data. In Fig. 18(d), the standard deviations for the 50% pack
as (x − x′) → ∞ are not fully saturating for some functions.
This indicates that larger samples might be needed for better
resolution. Nevertheless, these functions are not significantly
misrepresenting the statistical anisotropy in the system, since
the standard deviations as (x − x′) → ∞ are on the same order
as the standard deviation peaks near the origin. For the 25% and
75% compositions, the standard deviations as (x − x′) → ∞
are similar to those for the 50% mixture. The general trend
shows that the maximum standard deviations for the two-point
probability functions of the mixtures decrease as the amount of
spheres in the system increases [Figs. 18(b), 18(e), and 18(f)],
indicating the spherical particles tend to organize randomly
(isotropically). For the 100% mixture of spheres, the deviations
are essentially zero [Fig. 18(f)], indicating the pack is nearly
isotropic. This trend in statistical anisotropy will be reflected in
the macroscopic anisotropy of the thermal-conductivity tensor.
Once more, individual local minima and corresponding high
standard deviations are due to both particle shape and spatial
organization.

Considering both the deviations as (x − x′) → ∞
and where the two-point probability functions saturate,
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FIG. 18. Mean and standard deviations of two-point probability functions, Srs , for randomized packs of 0% [(a) and (b)], 50% [(c) and (d)],
and 100% [(e) and (f)] weight of spherical particles from Table I.

characteristic material length scales are determined for the
mixtures. The mixtures with only one particulate phase (0%
and 100% weight of spherical particles) have a characteristic
material length scale around 16 mm, as the functions converge
at |x − x′| = 8 mm. This same length scale is attributed to the
similarity in the average semiaxis length of the ellipsoids,
(a + b + c)/3 = 1.66 mm, and the radius of the average
sphere, 0.94 mm. The three phase mixtures (25%, 50%,
and 75% weight of spherical particle packs) have larger
characteristic material length scales, 20 mm. This larger length
scale is expected, because more interactions must be captured
as polydispersity and the number of phases grow.

When comparing the probability functions of the ran-
domized pack of 100% ellipsoids to the semiordered pack
of ellipsoids, the amount of statistical anisotropy reflects
the differences in configuration. The maximum standard
deviation for the randomized pack of ellipsoids is std(Srs) =
0.0049 [see Fig. 18(b)], which is smaller than the maximum
standard deviation of the semiordered pack std(Srs) = 0.0072
[Fig. 16(b)], and indicates less statistical anisotropy. Also note
that there are only two maxima in the standard deviations
as compared to three for the semiordered pack [compare
Figs. 16(b) and 18(b)]. As there is no apparent alignment in
the xy plane for the randomized pack (Fig. 14), the two-point
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probability functions reflect this behavior and smooth out these
standard deviation peaks.

V. OVERALL ANISOTROPIC PROPERTY CALCULATIONS

In this work, it is assumed that the ellipsoidal parti-
cles exhibit transverse isotropic behavior ({κη1

e ,κ
η2
e ,κ

η3
e } =

{400,100,100} W/mK), while the matrix and spherical particle
phases are isotropic (κm = 10 W/mK; κs = 50 W/mK). A
volume averaged conductivity tensor for the ellipsoidal phase
is computed as

κe(x) = 1

e

∫
RT κη

e Rχe(x)d, (23)

where R is the rotation matrix associated with the orientation
of a particle and χe is the indicator function for the ellipsoidal
particles as defined in Eq. (7). For an isotropic distribution of
transverse isotropic ellipsoidal particles, the volume averaged
tensor would be isotropic with the mean thermal conductivity
κe = 200 W/mK. This was verified by considering uniformly
distributed rotation matrices for the given transverse isotropic
conductivity tensor [62]. However, for an anisotropic distri-
bution of particles, the volume averaged tensor can lead to a
symmetric anisotropic conductivity tensor.

As described in Sec. III B, the integrals present in Eqs. (16),
(17), and (19) are integrated numerically using the adaptive
sparse-grid Smolyak integration method with hierarchical
basis. As discussed in [44], the numerical accuracy depends
on three parameters, namely the quality of the interpolation
defined as ε̂, the quality of the integration defined as ε̃, and
on the convergence of the integral, EI . The quality of the
interpolation, ε̂, is the cutoff that determines which grid points
remain in the sparse grid. We use ε̂ = 1 × 10−8 and 1 × 10−4

for the lower and upper bound calculations, respectively. The
quality of the integration, ε̃, is related to the volume removed
in the integral due to the singularity and is denoted as∫

x′
�(x − x′)[Srs(x − x′) − crcs]dx′

≈ I =
∫

x′
�s[Srs(x − x′) − crcs]δ(x − x′)dx′

+
∫

x′ \v
�f (x − x′)[Srs(x − x′) − crcs]dx′ . (24)

Here, �s and �f denote the singular and formal terms of �,
and a discussion on the derivation of these terms is provided
in the Appendix. δ(x − x′) is the Dirac delta function and v

is the small volume close to the singularity of �f that we
remove. This volume v is a sphere of radius ε̃ removed around
the origin (x = x′). After a convergence study, we selected
ε̃ = 0.1 mm for all computations. All solutions are stopped
when the integrals converge within a certain tolerance,

EI = |Ih − Ih−1|/|Ih−1| � tol = 0.001, (25)

where the subscript h is the sparse grid integration level
(see [44] for more details). In order to quantify the overall
numerical error due to the numerical parameters mentioned
above, we define

en =
∣∣∣∣κSrs (|x−x′|) − κ s

∣∣∣∣
F

||κ s ||F × 100[%]. (26)

This definition takes advantage of a property of �f , where

lim
v→0

∫
x′ \v

�f (x − x′)f (x − x′)dx′ = 0 (27)

for any statistically isotropic function, f (x − x′). In Eq. (26),
κSrs (|x−x′|) is computed by numerically evaluating the integral
I with isotropic statistics, and κ s is obtained in a closed
form [30]. Considering Eq. (27), the overall numerical error
in Eq. (26) measures the accuracy of the numerical integration
of the kernel including �f [see Eq. (24)]. Note that κSrs (|x−x′|)
is not a physically meaningful quantity and is only used to
determine the numerical error of the calculations. All overall
thermal-conductivity tensor calculations presented hereafter
are computed with a numerical error en < 0.16%. Note that
we are using the material characteristic length scale to integrate
over x′ (see discussion in Secs. IV A and IV B), and a
convergence study has been performed to verify this far limit
of the integration.

When computing the self-consistent estimate, the NLOPT
library [63] (nonlinear optimization package) was used for
minimizing the objective functions [Eq. (19)]. For this work,
the objective function is considered converged when the
function value is less than 1 × 10−6. Note that the objective
function is approaching 0 as κ0 → κ . It has been confirmed
that the self-consistent estimates using both the upper and
lower formulations of κ [see Eq. (19)] yield identical results.
This is another verification test.

The resulting bounds and self-consistent estimate of
the overall anisotropic thermal-conductivity tensor for the
semiordered pack of ellipsoids are listed in Table III, where the
eigenvalues of the overall conductivity tensor are presented.
The eigenvalues of the conductivity tensor (κ1, κ2, and κ3)
correspond to the components of the conductivity tensor in the
principal coordinate frame, where the material behaves as an
orthotropic one. κ i (subscript i stands for isotropic) refers to
the assumption that the particles are isotropically distributed
(perfectly random), with κe = 200 W/mK, leading to a macro-
scopically isotropic conductivity tensor with one independent
component (κ1 = κ2 = κ3). κ i is calculated in a closed form.
κa is the anisotropic conductivity tensor (subscript a stands for
anisotropic), which considers both the anisotropic constituent

TABLE III. Overall thermal-conductivity tensor, κ , for
semiordered pack from Fig. 9. Note that the subscript i refers to
an assumed isotropic distribution of the particles, while the subscript
a refers to anisotropic morphology. The numeral subscripts (1, 2,
and 3) refer to the eigenvalues of the resulting thermal-conductivity
tensor in the principal coordinate frame.

κ1 [W/mK] κ2 [W/mK] κ3 [W/mK] Mean(κ1,κ2,κ3)

Isotropic distribution of particles
κ i (LB) ———————————50.55——————————–
κ i (SC) ——————————–108.85——————————–
κ i (UB) ——————————–119.47——————————–

Anisotropic model
κa (LB) 59.74 48.47 44.11 50.77
κa (SC) 141.45 99.65 85.27 108.79
κa (UB) 154.39 109.26 92.23 118.62
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FIG. 19. (Color online) Upper bound (UB) and lower bound
(LB) calculations of thermal conductivity, κ , for all randomized
compositions from Table I and semiordered pack of ellipsoids from
Fig. 9. Note that the subscript i refers to an assumed isotropic
distribution of the particles, while the subscript a refers to anisotropic
morphology. The superscripts min and max refer to the smallest and
largest eigenvalue of the thermal-conductivity tensor in the principal
coordinate frame, respectively.

and statistically anisotropic configuration. κa is calculated
numerically [44].

As can be seen in Table III, the components of the
anisotropic thermal-conductivity tensor vary significantly. For
example, in the upper bound of κa , the difference between
the minimum and maximum eigenvalue is 154.39 − 92.23 =
62.16 W/mK. For the lower bound of κa , we obtain 59.74 −
44.11 = 15.63 W/mK. While the standard deviations in
the statistical functions were moderate (see Fig. 16), these
deviations have a significant effect on the overall material
behavior as they are magnified by the anisotropy in κe [see
Eq. (23)]. Note that the mean of the eigenvalues of κa is nearly
identical to results for κ i for all three models (UB, LB, and
SC), which confirms numerical accuracy.

The resulting upper and lower bounds of the thermal-
conductivity tensor for the five randomized packs and the
semiordered pack are presented in Fig. 19. Here, κmax,min refers
to the maximum and minimum eigenvalue of the overall con-
ductivity tensor. These maximum and minimum conductivity
components (solid lines with triangles for LB and dashed lines
with triangles for UB) are compared to those assuming an
isotropic distribution of particles, κi (solid line with circles
for LB and dashed line with circles for UB). Note that κi

(UB) and κi (LB) were computed with κ2 = 200 W/mK. In
general, the spread of the bounds increases for packs with
more ellipsoidal particles, because the difference between the
conductivities of an ellipsoidal particle and the matrix is larger
than the difference between the conductivities of a sphere
and the matrix (see lines with circles in Fig. 19). Also note
that the spread in the minimum and maximum components of
κa for both bounds increases for packs with more ellipsoidal
particles due to the increasing amount of statistical anisotropy
present in the packs. Recall that the statistical anisotropy was
quantified based on the standard deviations in the two-point

probability functions [see Figs. 18(b), 18(d), and 18(f)]. The
spread in the components of the conductivity tensor for the
lower bound is smaller than the spread for the upper bound,
since the least conductive constituent (matrix) is isotropic and
the most conductive constituent (ellipsoids) is anisotropic.

When comparing the semiordered pack of ellipsoids (filled
markers on the left in Fig. 19) to the randomized pack
of ellipsoids, first note that the semiordered pack has a
larger κi than the randomized pack, because the semiordered
system has a higher packing fraction (see Sec. II E2). Also
note that the spread of the conductivity components is
larger for the semiordered pack due to the larger statisti-
cal anisotropy present in the semiordered pack [compare
Figs. 16(b) and 18(b)]. We will comment on the extent of
these differences when we introduce a measure of anisotropy
below.

The self-consistent estimates for the mixtures are presented
in Fig. 20. The same trends described for Fig. 19 are observed.
In order to compare the self-consistent estimates to the LB
and UB computations, we also show the isotropic LB and UB
behavior, respectively. Note that the self-consistent estimates
are closer to the upper bound calculations, since this second-
order model is strongly dependent on the volume fraction, and
all of the packs have volume fractions greater than 0.6. Also
note that there is no restriction on the self-consistent estimate
being between the lower and upper bounds.

In order to quantify the macroscopic anisotropy of the
thermal-conductivity tensor, a measure of anisotropy, MA, is
defined as

MA = max
(∣∣κmax

a − κi

∣∣,∣∣κmin
a − κi

∣∣)/κi × 100[%]. (28)
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FIG. 20. (Color online) Self-consistent (SC) estimates of thermal
conductivity, κ , for all randomized compositions from Table I and
semiordered pack of ellipsoids from Fig. 9. The results are compared
to the upper bound (UB) (dashed line with circles) and lower bound
(LB) (solid line with circles) isotropic calculations. Note that the
subscript i refers to an assumed isotropic distribution of the par-
ticles, while the subscript a refers to anisotropic morphology. The
superscripts min and max refer to the smallest and largest eigenvalue
of the thermal-conductivity tensor in the principal coordinate frame,
respectively.
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FIG. 21. (Color online) Measure of anisotropy, MA [Eq. (28)],
for lower bound (LB), upper bound (UB), and self-consistent (SC)
calculations of all compositions considered.

Computed measures of anisotropy for results in Figs. 19
and 20 are presented in Fig. 21. As alluded to above, the
measure of anisotropy increases as more ellipsoidal particles
are present due to the increasing statistical anisotropy in the
system. Let us consider the measure of anisotropy for the
upper bound (dashed black line in Fig. 21). Here MA = 0.08%
for the 100% mixture (all spheres) and increases up to
MA = 17.14% for the 0% mixture (all ellipsoids). For the
lower bound, MA grows from MA = 0.16% to MA = 5.82%.
The measures of anisotropy of the upper and lower bounds for
the 100% mixture (all spheres) are near the numerical error,
|MA(UB) − MA(LB)| = 0.08% (en = 0.16%). Note that the
anisotropic upper and lower bounds are rigorous bounds on
the overall anisotropic thermal-conductivity tensor. Therefore,
these upper and lower bounds also provide limits on the
measure of anisotropy. For example, the anisotropy of the 0%
mixture (all ellipsoids) falls between MA = 5.82% (LB) and
MA = 17.14% (UB).

The measures of anisotropy for the semiordered pack (filled
markers in Fig. 21) are significantly larger than the estimates
of the randomized packs and are bounded between MA =
18.19% (LB) and MA = 29.23% (UB). Let us consider the
upper bound results, where MA = 29.23% for the semiordered
pack [red (gray) filled square with black outline in Fig. 21]
as compared to MA = 17.14% for the randomized pack of
ellipsoids (dashed black line at 0 wt % spherical particles in
Fig. 21), and let us contrast those to std(Srs) = 0.0072 for the
semiordered pack and std(Srs) = 0.0049 for the randomized
pack [see Figs. 16(b) and 18(b) in Sec. IV]. Note that the
measure of anisotropy for the self-consistent estimates of the
0% and 25% mixtures (blue dotted dashed line) is higher than
the anisotropy in the upper bound (black dashed line). Just as
a self-consistent estimate is not guaranteed to be between the
upper and lower bounds, the measure of anisotropy associated
with this estimate is not expected to be between the upper and
lower bounds.

VI. CONCLUSIONS

In this work, we present a systematic microstructure
characterization procedure anchored in micro-CT data that is

used to establish microstructure-statistics-property relations
of polydisperse particulate mixtures. An image processing
pipeline is developed that accurately identifies particles while
maintaining low errors. Improvements in the image processing
pipeline are achieved when compared to a traditional tech-
nique. For all compositions considered, the volume losses
due to image segmentation are less than 4%. These low
errors indicate that scientifically sound and repeatable results
have been achieved. Next, we developed a description of
the polydisperse system in continuous Euclidean space. This
idealized representation provides a substantial reduction in
the data set size and enables easier data manipulation and
understanding.

After characterizing the microstructure, three-dimensional
n-point probability functions of real polydisperse mixtures are
calculated. We show that second-order probability functions
do not exhibit ellipsoidal nor any other material symmetry.
Therefore, assessment of overall material constants in a closed
form is unattainable.

The statistical description is then used to compute bounds
and self-consistent estimates of the anisotropic thermal-
conductivity tensor using the Hashin-Shtrikman variational
principle. The anisotropic second-order estimates of polydis-
perse composites are calculated without assumptions on an
inclusion’s shape, configuration, and/or material anisotropy.
The overall properties show increasing anisotropy in the
overall thermal-conductivity tensor for packs with more
transverse isotropic ellipsoidal inclusions. Moreover, the upper
and lower bounds provide limits on the anisotropy of the
mixtures. Due to the larger amounts of statistical anisotropy
for the semiordered mixture, the measure of anisotropy for the
overall conductivity tensor of this pack was significantly larger
than for the randomized one.

ACKNOWLEDGMENTS

The authors would like to acknowledge support from
IllinoisRocstar LLC under Contract No. FA9300-10-C-3003
(Edwards Air Force Base, SBIR Phase II project) by the Office
of the Secretary of Defense as a part of the Phase II SBIR
program.

APPENDIX: DISCUSSION ON �(x,x′)

The infinite homogeneous Green’s function for steady-state
heat conduction of an anisotropic material is

g(x − x′) = 1

(d − 2)(d)R
det(κ−1), (A1)

where det(•) stands for the determinant, R = [(x − x′) · κ ·
(x − x′)]1/2, d = 3 is the dimension, and (d) is the total solid
angle in a d-dimensional sphere [64,65]. Following the work
of Torquato [66], �(x − x′) is obtained by first considering a
temperature field defined as

T (x) = T0(x) −
∫

x′
∇g(x − x′) · p(x′)d. (A2)

After integrating this equation by parts, using the Gauss-
divergence theorem, and excluding a small spherical region
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around x = x′, one obtains

Q = Q0 −
∫

x′
�(x − x′) · p(x′)d. (A3)

The resulting �(x − x′) used in Eq. (16) is defined as

�(x − x′) = �f (x − x′) + �sδ(x − x′), (A4)

where

�s =
∫

|x−x′|=Rs

(g,i n̂j + g,j n̂i)d (A5)

and

�f (x − x′) = − ∂2g

∂xi∂xj

. (A6)

Here, the unit normal n̂ is the unit normal of the spherical
surface (|x − x′| = Rs) over which the integration occurs. For
an isotropic constituent, �s can be integrated analytically,
while obtaining an analytical solution becomes increasingly
difficult for an anisotropic one. In this work, the singular term
is computed numerically using an adaptive multidimensional
integration scheme provided as an extension to the GNU
Scientific Library (GSL). The singular term is calculated until
the relative error of the integral is less than 1 × 10−5. Note
that the integral of �f (x − x′) over the surface of a sphere is
zero, ∫

|x−x′|=Rs

�f (x − x′)d = 0. (A7)
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