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In this paper, we present a systematic approach for characterization and reconstruction of statistically
optimal representative unit cells of polydisperse particulate composites. Microtomography is used to gather
rich three-dimensional data of a packed glass bead system. First-, second-, and third-order probability functions
are used to characterize the morphology of the material, and the parallel augmented simulated annealing
algorithm is employed for reconstruction of the statistically equivalent medium. Both the fully resolved prob-
ability spectrum and the geometrically exact particle shapes are considered in this study, rendering the opti-
mization problem multidimensional with a highly complex objective function. A ten-phase particulate com-
posite composed of packed glass beads in a cylindrical specimen is investigated, and a unit cell is reconstructed
on massively parallel computers. Further, rigorous error analysis of the statistical descriptors �probability
functions� is presented and a detailed comparison between statistics of the voxel-derived pack and the repre-
sentative cell is made.
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I. INTRODUCTION

Computational methods based on particulate packs are
commonly used in variety of scientific disciplines. For ex-
ample, particulate packs have been used in modeling of het-
erogeneous materials, such as solid propellants �1,2�, granu-
lar media �3�, protein folding �4�, and low-temperature
phases of matter such as liquids, crystals, and glasses �5�.
Moreover, packing problems are common in information
theory �6� and many different branches of pure mathematics
�7�. A study of these systems in a computational framework
usually starts with a model of the morphology, such as a
packing algorithm. Therefore, a packing algorithm to guide
these models has been in the forefront of mathematical and
scientific investigations for many decades, and this fascina-
tion led to development of several packing codes that are
capable of producing high-quality polydisperse heteroge-
neous packs �8–10�.

Recently, new developments in three-dimensional �3D�
imaging using microtomography �micro-CT� have also ush-
ered in the rapid expansion of statistical modeling techniques
that investigate the morphology and the microstructure char-
acterization of widely used material systems, such as propel-
lants �11,12�, glass beads �13�, paper �14�, and engineered
cementitious composites �15�, just to name a few. An ex-
ample of the complicated microstructures obtained from the
micro-CT can be seen in Fig. 1.

The subsequent statistical characterization is usually per-
formed, for both computationally and/or tomographically ob-
tained packs, in order to understand the internal structure of
these systems. The need for such understanding and impor-
tance of the higher-order statistics start with early work of
Bernal �16� who investigated the geometrical structure of
liquids using the radial distribution function. Significance of

statistical description galvanized several research communi-
ties in condensed matter physics and far beyond, with appli-
cations in non-Gaussian noise as a tool to study disordered
materials �17�, and application of Minkowski functionals in
analysis of background cosmic radiation �18�, just to name a
few. Moreover, the analysis of higher-order statistics, in the
guise of the analysis of x-ray speckle, is increasingly gaining
attention among condensed matter physicists �19�.

Unfortunately, both computationally and/or tomographi-
cally derived packs are often too large to be uniformly re-
solved in practical numerical simulations of combustion phe-
nomena �1�, nonlinear viscoelastic response of a binder �20�,
or damage evolution along the particle-matrix interface �21�.
Therefore, many researchers have devoted their attention to
finding a statistically optimal unit cell. Povirk �22� proposed
a method for determining periodic microstructures in two
dimensions that are statistically similar to more complex,
random, two-phase microstructures by using a certain statis-
tical descriptor function. Yeong and Torquato �23,24� pro-
posed a method for the reconstruction of random media
based on two-point probability functions using simulated an-
nealing �SA� and two-dimensional material slices. Bochenek
and Pyrz �25� also used the simulated annealing procedure in
conjunction with a pair correlation function and a stress in-
teraction parameter to reconstruct a unit cell in three dimen-
sions. However, the simple pair correlation function used in
their work did not represent the disparate particle modes, and
thus, the probability spectrum optimized in �25� was re-
stricted. Zeman and Šejnoha �26� examined three consider-
ably different material systems, a fiber composite, a woven
composite, and a masonry, to demonstrate the reconstruction
using two-point probability functions and the lineal path
function, yet again, only two-dimensional images of micro-
structures have been employed.

Recently, Jiao et al. �27,28� reconstructed a three-
dimensional realization of Fontainebleau sandstone and a
boron-carbide or aluminum composite from two-dimensional*Corresponding author; kmatous@nd.edu
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tomographic images using second-order statistics and a
“lattice-point” algorithm. In their work, a lattice or a voxel-
based reconstruction is used for a two-phase medium in con-
junction with a basis function approximation of the correla-
tion functions for a faster probability function evaluation.
Fullwood et al. �29� also used a voxel-based phase-recovery
algorithm for reconstruction of three-dimensional polycrys-
tals. Their method is based on a fast discrete Fourier trans-
form, and thus, its parallelization is cumbersome and the
domain analyzed in the paper is relatively small, as pointed
out later. Although relatively simple, the pixel or voxel-based
representation of microstructure simplifies the geometrical
considerations since any geometrical object, such as a
sphere, a rhombus, etc., is approximated by a cluster of vox-
els, and thus, the resolution is highly pixel or voxel depen-
dent. Moreover, for many physical phenomena, such as a
particle decohesion, the voxel-based representation is inap-
propriate due to the steplike interface representation.

Similar to our approach described hereafter is the work of
Seidler et al. �30�. In their paper, granules are first mapped to
spheres, as in our work, and several statistical measures, such
as cylindrical density, radial distribution function, and bond
orientational correlation function, are computed. However,
only limited micro-CT data of an almost ideally monodis-
perse system �glass spheres with d=63 �m and �95% hav-
ing polydispersivity of �4 �m� were used in their work
with only 2000 granules in the system and only 359 granules
used for statistics evaluation. In our work, we scan 19 892
polydisperse particles and statistically characterize 19 123 of
them. We also show that a statistically optimal and thus the
smallest possible unit cell consists of 1082 spheres. There-
fore, it is unlikely that 359 inclusions can be used for de-
tailed morphology characterization even though the mono-
disperse system likely requires fewer particles in the cell
compared to our polydisperse one. Moreover, the selected
statistical descriptors in �30� are limited to spherical geom-
etries, whereas our concept based on n-order probability
functions is general and easily applicable to general non-
spherical shapes, such as crystals.

Different from the sampling based methods described
above is the analysis based on Minkowski functionals
�31,32�. In three dimensions the functionals are related to the
familiar measures of volume fraction, surface area, integral
mean curvature, and Euler characteristic, such as connectiv-

ity of pores. The heterogeneous material is represented by a
Boolean model, where overlapping grains of various shape
and sizes are used to reconstruct a material morphology. Al-
though mathematically elegant, Minkowski functionals are
better suited for two-phase porous media, such as soils or
sedimentary rocks, due to the overlapping nature of the al-
gorithm, and this elegance would be lost if a constraint on
the particle interpenetration were to be introduced.

Another approach introduced by Sundararaghavan and
Zabaras �33� employs support vector machines for three-
dimensional reconstruction of microstructures using limited
statistical information available from planar images. Quinta-
nilla and Max Jones used convex quadratic programming to
model random media with Gaussian random fields �34�.

In this work, we reconstruct a fully three-dimensional
polydisperse medium, such as a heterogeneous solid propel-
lant �Fig. 1�a��, from three-dimensional tomographic data.
We make no assumptions about the probability functions and
discretize them numerically with high detail. The full prob-
ability spectrum, not just a single function, and the geometri-
cally exact shape of particles, not just a voxel simplification,
are used in our approach, yielding a multidimensional opti-
mization problem with a highly complex objective function.
Therefore, we perform the reconstruction on massively par-
allel computers. The present paper is an extension on our
earlier work �35,36�, where two-dimensional periodic cells
of trimodal fibrous composites and three-dimensional trimo-
dal particulate composites were reconstructed, emphasizing
the discrete nature of the entire probability spectrum and the
proper geometrical particle shape representation. Here, we
advance this methodology to the reconstruction of polydis-
perse particulate systems from rich three-dimensional to-
mographic data. Moreover, we compute the third-order prob-
ability functions, comment on their basic features, and
compare their characteristics for the tomographic data and
our statistically equivalent cells. �Analysis of higher-order
statistics was often omitted in the papers mentioned above.�
Our codes, STAT3D and RECON3D, compute the statistics and
reconstruct a representative unit cell �RUC� in parallel using
message passing interface, allowing for large domains to be
efficiently evaluated ��66�106 voxels�, higher statistical
moments to be computed accurately, and the optimal compu-
tational domains to be generated quickly. Their parallel lin-
ear scalability has been shown in �36�.

(b)(a) (c)

FIG. 1. �Color online� Typical members of the micro-CT based ensemble. �a� Heterogeneous propellant. �b� Glass beads system. �c� Table
sugar.
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The remainder of the paper is organized as follows. In
Sec. II, we discuss the sample preparation, the tomographic
imaging, and the image processing. For clarity of presenta-
tion, Sec. III describes the basic concepts of the probability
functions and details the morphology of the glass bead sys-
tem to mimic a complex heterogeneous solid propellant �Fig.
1�a��. In Sec. IV, we comment on the reconstruction proce-
dure and compare the statistically representative unit cell and
its statistics to the original tomographically observed me-
dium with the statistical functions described in Sec. III. Fi-
nally, some conclusions are drawn in Sec. V.

II. SAMPLE PREPARATION, MICRO-CT SCANNING, AND
IMAGE PROCESSING

We prepare a sample pack of spherical glass beads with
average diameter of 44 �m in a 2.052 mm diameter scan-
ning tube with one end blocked with epoxy �Fig. 2�. The
glass beads were manufactured by Crystal Mark, Inc., and
98% of the beads by weight are of diameters between 35 and
58 �m. In order to prepare as uniform sample as possible,
the beads were filtered in two steps. First, to remove hollow
particles, the beads were submerged in a water bath and
stirred. The hollow beads floating on the water surface were
removed and the remaining ones were completely dried. Sec-
ond, the nonspherical particles were removed by rolling them

down on an inclined plane and removing beads that would
not roll. After this preparation, we poured the filtered beads
slowly into the tilted tube where a piece of thread was placed
in the middle of the container before pouring. The thread was
pulled out slowly. A similar method to randomize a pack by
pulling a stick out was previously used by Aste et al. �13�.
The tube was tapped on the side, the bottom and the top. The
beads were slightly compressed from above during the tap-
ping procedure.

The final sample is scanned by an Xradia micro-CT ma-
chine. The resulting resolution for this scan is 2.818 �m per
voxel. The three-dimensional image reconstruction is shown
in Fig. 2�b�. The 64-bit quantification pack for AMIRA 5.2 is
used to gather the information specific to each particle, i.e.,
the position of the particle center and the individual particle
volume. To characterize this random medium, we first ac-
quire a block �1445.372�1287.892�789.106 �m3� from
the core of the 3D scanned image in Fig. 2. This represents
513�457�280=65 643 680 voxels, which is 29.89 times
higher resolution to that used by Fullwood et al. �29�, where
only 130�130�130=2 197 000 voxels were analyzed.

The particles in contact are identified and separated
through the separation procedure in AMIRA. This leads to a
small volume removal. In the present case, the packing frac-
tions from the original voxel pack are 0.574 before the sepa-
ration and 0.553 after the separation, and thus we have 2.1%
loss of the packing volume due to the separation. It is known
that the packing fraction for a stable conglomeration of poly-
disperse spheres ranges from 0.55 to 0.64 and even up to
0.74 in the crystalline state �37�. Considering the role of the
interparticle forces such as friction �38,39�, the packing frac-
tion of our pack is well ranged. In Fig. 3�b�, most of the
particles are now clearly separated from each other. At the
final stage of the process 19 892 particles are identified in the
region of observation.

Despite the physical filtering to remove extra small or
hollow particles, we observe debris of very small sizes form-
ing a peak around 4 �m diameter in Fig. 3�a�. However, the
volume fraction of these particles is very small and can be
neglected. Here we remove the beads with diameters less
than 7 �m. The remaining particles are separated into nine
discrete bins as depicted in Fig. 3�a�. Next, a pack based on
the sizes and the locations of the individual beads is gener-

(b)(a)

FIG. 2. �Color online� �a� Plastic tube used in scanning experi-
ments. �b� Polydisperse glass bead system.
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FIG. 3. �Color online� �a� Probability density function and a new binning of the particle sizes. Nine discrete bins are used to capture the
original distribution. Note the debris for d�7 �m. �b� Two-dimensional slice through the voxel pack. Particle separation is done in AMIRA.
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ated and used to obtain the statistical properties of the actual
material. In generating the pack, we replace all the beads
with spheres, which causes 0.05% overall particle overlap.
The overlap is calculated as Vo /Vp�100, where Vo is the
volume of overlap between particles and Vp is the total vol-
ume of the particles. The final pack has 19 123 spherical
particles. We note that the tomographic pack after the image
processing is called the “voxel pack” and the pack generated
based on the voxel data by replacing the inclusions with
spheres is called the “pack” hereafter.

III. STATISTICAL MORPHOLOGY OF COMPOSITES

It is generally accepted that the effective properties of a
heterogeneous material do not depend only on the properties
of each phase but also on the interactions between the mate-
rial phases. In a statistical sense, both the volume fraction of
each phase and various correlation functions between the
phases are fundamental in determining the material proper-
ties �40,41�. In this section, we discuss one-, two-, and three-
point probability functions to characterize the morphology of
a heterogeneous medium �41,42�.

A. Probability functions

To describe the probability functions, we consider a phase
indicator function at a position x in a sample � of an en-
semble space E,

	r�x;�� = �1 if x in phase r

0 otherwise.
� �1�

The ensemble average is given by

	r�x� = �
E

	r�x;��p���d� , �2�

where p��� is a probability density function. The n-point
probability function, Sr1r2. . .rn

�x1 ,x2 , . . . ,xn�, is defined as

Srs. . .q�x1,x2, . . . ,xn� = 	r�x1�	s�x2� . . . 	rq
�xn� , �3�

and it represents the probability of finding phases r ,s , . . . ,q
at points x1 ,x2 , . . . ,xn simultaneously.

The probability functions for a heterogeneous material are
spatially complex in general. If the material satisfies ergod-
icity, statistical homogeneity, and isotropy, the ensemble av-
erage can be replaced by the volume average and the prob-
ability functions are translation and direction invariant �42�.
With these three simplifications, the one-point probability
function is reduced to the volume fraction, and the higher-
order probability functions depend on the distance only,

Sr�x� = cr,

Srs�x,x�� = Srs�	x − x�	� ,

Srsq�x,x�,x�� = Srsq�	x − x�	, 	x − x�	� , �4�

where cr is the volume fraction of the phase r. We also ob-
serve the limit cases of the two- and three-point probability
functions which can be expressed as

Srs�x,x�� → �cr
rs if 	x − x�	 → 0

crcs if 	x − x�	 → � ,
� �5�

Srsq�x,x�,x�� → 
cr
rs
rq if 	x − x�	, 	x − x�	 → 0

Srq�x,x�� if 	x − x�	 → 0

crcscq if 	x − x�	, 	x − x�	 → � ,
�
�6�

where 
rs is the Kronecker delta.

B. Morphology of a pack

To obtain the statistical properties of the pack that is
based on the voxel pack as discussed in Sec. II, we discretize
the probability space. The probability functions are numeri-
cally sampled through a Monte Carlo–like method. A spheri-
cal sampling template depicted in Fig. 4 is used. This tem-
plate is especially advantageous for isotropic cases as
pointed out in �43�. The probability functions described in

FIG. 4. Three-dimensional sampling template with 5 radial
points and 20 circumferential points for illustration.
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FIG. 5. �Color online� �a� Polydisperse pack
obtained from the voxel pack by replacing voxel-
based inclusions with spheres. Each color of par-
ticle in the pack belongs to a different mode ac-
cording to pdf shown in Fig. 3�a�. �b� The
corresponding one-point probabilities �volume
fractions�.
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Sec. III A are computed by our parallel code, STAT3D, allow-
ing for a large domain to be efficiently evaluated �36�. For
the present pack, we sample the one- and two-point probabil-
ity functions by throwing a sampling template with 1000
radial points and 20 circumferential points 500 000 times.
These sampling parameters have been selected after a con-
vergence study to assure the spatial convergence.

The one-point probabilities �volume fractions� of the pack
are shown in Fig. 5�b�. The nine bins are based on those of
the probability density function plotted in Fig. 3�a� and each
bin is assigned a different mode number �1–9�. For the total
volume to be conserved, one has �1

N ci=1, where N repre-
sents the total number of phases. In our case, N=10 includ-
ing the matrix �m� �voids in the prepared pack�. We evaluate
cm=0.46 numerically for our particulate medium, which is
different from 1−�1

Np ci by 0.2%, where Np is the number of
the particle modes �Np=N−1�. However, considering the im-
age resolution �2.818 �m voxel� and the error due to the
separation procedure �2.1% in the total packing fraction�, the
volume conservation error is well controlled.

Figure 6�a� shows the two-point probability function, Smm,
zoomed at the core in the four-dimensional space. The col-
ored sphere shows the probability of finding the phase m
�matrix� when its center lies in the matrix as well. We find
that the two-point probability functions of the pack satisfy
isotropy with the standard deviation, �Srs

, remaining less
than 1% of the magnitude of the actual probability function,
shown in Fig. 6�b�. The exponential behavior of the devia-
tion at the large radii can be attributed to the wall effect,
which produces a significantly different packing structure

near the boundary of the container as pointed out in �9,44�.
Based on the observation of isotropy, we can average the
two-point probability functions over all the possible orienta-
tions since it is direction invariant. Statistical homogeneity
and ergodicity of the particulate composites under consider-
ation have been verified in �45�. In Fig. 7, the isotropic two-
point probability functions and their gradients are shown. We
note that the isotropic two-point probability functions satu-
rate when the radius is greater than 200 �m, which provides
a characteristic material length scale, i.e., the optimal size of
a unit cell: twice the radius or 400 �m. Note that there are
100 two-point probability functions in our computations
since we have ten different phases �the nine particle modes
and the matrix�. Figure 7 shows only five selected second-
order probability functions. However, the trends are the same
for the other second-order probability functions.

To validate the probability functions evaluated on the
pack, we use the limit cases of the second-order probability
functions in Eq. �5�, i.e., the two-point probability functions
are examined for convergence to one-point probability func-
tions in the limit cases and for numerical error due to sam-
pling. In order to quantify the physical errors for the pack,
we define two error functions for two-point probabilities,

Srs�0,0� = 	Srs�0,0� − cr
rs	 , �7�

Srs�0,�� = 	Srs�0,�� − crcs	 . �8�

In our analysis, we have maximum errors of 0.001 and 0.004
over the 100 two-point probability functions, measured by
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FIG. 6. �Color online� �a� Full two-point
probability function Smm. Observe the sphericity
of Smm with the value at the origin converging to
the volume fraction and value at infinity converg-
ing to cm

2 . �b� The corresponding standard devia-
tion of isotropy, �Srs

, for selected second-order
probability functions. Although the standard de-
viation is small over the whole x range, observe
the increase of �Srs

due to the wall effect.
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FIG. 7. �Color online� �a� Isotropic two-point probability functions Srs computed by radial averaging of complete probability functions
in Fig. 6�a�. Only selected Srs functions are shown for clarity. Note that probability functions are plotted for radius�400 �m to make their
behavior close to the origin more visible. However, full probability functions are computed for radius 723 �m �one-half of the longest edge
of the pack in Fig. 5�a��. Detailed structure of Srs governed by spatial interactions of particles and their corresponding diameters can be seen.
�b� Gradients of Srs. The gradients of the two-point probability functions show where the functions reach the asymptotic values. This distance
provides a characteristic material length scale of the second order, and we use it to construct the size of the RUC.
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expressions �7� and �8�, respectively. Given that Srs�0,0� and
Srs�0,�� range in �0,1�, these errors are negligible. The nu-
merical error is calculated by

Ssr	Srs
=

Srs − SsrL2
D

�
r=1

N

�
s=1

N

SrsL2
D/N2

, �9�

where  · L2
D is the discrete L2 norm and N represents the

number of phases. Since Srs and Ssr are symmetric, Ssr	Srs
represents a relative numerical error. For the current pack,
the maximum value of the error based on Eq. �9� is 0.035
and the mean is 0.006. This error criterion provides confi-
dence in the spatial convergence of our analysis.

For many physical processes, the higher-order statistics
play an important role in capturing the interactions between
particles, such as a case where a small particle lies between
two big particles. For example, such a scenario helps to pro-
mote decohesion. Therefore, we also investigate three-point
probability functions. As expected, the three-point probabil-
ity functions tend to be more sensitive to the geometrical
properties of a pack than the two-point probability functions.
We recall that the three-point probability functions depend
on two vectors in general. Thus, the function Srsq�x−x� ,x
−x�� is defined in a seven-dimensional space, considering
two vectors in three dimensions and the function value itself.
Since the numerical evaluation of the full
three-point probability function is computationally expen-
sive, we use a semi-isotropic assumption in terms of the
orientation of a plane determined by the two randomly gen-

erated vectors. This assumption reduces the space dimen-
sionality from seven to four since Srsq�x−x� ,x−x�� becomes
Srsq�	x−x�	 , 	x−x�	 ,��, where � is the angle between the two
vectors x−x� and x−x�. We again use the sampling template,
shown in Fig. 4, and average on planes generated by discrete
rays �semi-isotropy�. Note that for the perfectly statistically
isotropic material, the three-point probability functions are
angle independent except when they degenerate to the lower-
order probability functions,

Srsq → 
Srs
rq on r1 axis

Srq
rs on r2 axis

Srs
sq on r1 = r2,
� �10�

where r1= 	x−x�	 and r2= 	x−x�	.
There are 1000 different three-point probability functions

for a ten-phase medium. However, due to the symmetries,
Srs=Ssr, Srsq=Srqs, etc., several functions can be omitted. In
this work, we do not investigate all third-order probabilities
and rather focus on the generic findings that are typical for
the third-order statistics. Thus, we present symmetric and
unsymmetric types of the three-point probability functions.
To compute the third-order statistics of the pack, we use
50 000 throws of a template with 1000 radial and 20 circum-
ferential points. Sampling accuracy is again determined by
the limit cases in Eq. �10�. Figure 8 shows the different ar-
rangements of the three randomly generated points in phases
r, s, and q for Srsq at the three different angles, 0°, 72°, and
180°, for instance. For a symmetric case, S355 is selected to
represent the Srss type of three-point probability functions.
Figure 9 shows S355 at the three angles mentioned above.

(b)(a) (c)

FIG. 8. �Color online� Alignments of three points in phases r, s, and q. �a� �=0°. �b� �=72°. �c� �=180°.
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FIG. 9. �Color online� Three-point probability function S355 of the pack depicted in Fig. 5�a�. A diagram of Srsq computation is shown in
Fig. 8. We use a semi-isotropic assumption in evaluation of Srsq. �a� S355 for �=0°. Note the symmetric degeneracy of S355→S35 on
r1=r2 ray for �=0°. �b� S355 for �=72°. �c� S355 for �=180°. A certain degree of anisotropy in third-order statistics can be observed for �b�
and �c� since for a perfectly isotropic medium Srsq�	x−x�	 , 	x−x�	� is an angle � independent except for degenerate cases �Eq. �10�� as shown
in �a�.
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Since s and q are the same in this case, S355 comes to zero on
both r1 and r2 axes, while it degenerates to S35 for r1�r2
�Eq. �10��. Figure 10 shows an unsymmetric three-point
probability function S775 which goes to zero on r1 axis and
r1�r2 while it converges to S75 on r2 axis. In Figs. 9 and 10,
the widths of the three characteristic bands at �=0° depend
on the sizes of the particles in the bins r, s, and q of Srsq.
Even though the present pack is almost isotropic based on
the two-point probability functions, the three-point probabil-
ity still captures some anisotropic aspects of the pack, show-
ing some dependency on angles. We will return to elaborate
on the anisotropy and on the degeneracy of the third-order
statistics in Sec. IV B.

IV. RECONSTRUCTION OF A REPRESENTATIVE UNIT
CELL

In this section, we proceed to construct the RUC that
retains the statistical characteristics of the pack shown in Fig.
5�a�. The two main steps in the reconstruction are to find the
length scale of the RUC and to optimally locate the particles
with a minimum �or no� particle overlap. Finally, the statis-
tical results of the cell are compared with those of the pack.

A. Numerical method

First, let us recall the two-point probability functions in
Fig. 7. The two-point probability functions depend only on
the distance since the material satisfies both the statistical
isotropy and homogeneity assumptions. We also observe that
the functions start to reach the asymptotic values at 200 �m

which is a good candidate for the size of the unit cell �h0�.
With this initial guess on the length scale of the cell, we

minimize two objective functions which reflect the differ-
ences of the one- and two-point probability functions be-
tween the pack and the cell. For 0�h�h0, the first objective
function is defined as

F1�h� =��
i=1

Np

�ci
p − ci

c�2 =��
i=1

Np �ci
p −

4�ri
3ni

3h3 �2

, �11�

where ci
p, ci

c, ri, and ni are the volume fraction of the pack,
the volume fraction of the cell, the particle radius, and the
total number of particles in phase i, respectively. By finding
the local minimum of the first objective function, we can
determine the optimal length scale �hc� of the cell as

dF1�h�
dh

= 0 ⇒ hc =� 4� �
i=1

Np

ni
2ri

6

3 �
i=1

Np

ci
pNiri

3�
1/3

. �12�

To construct the second objective function, we first con-
sider a functional which represents the difference of the two-
point probability functions between the pack and the cell,

F2�xn� = �
r=1

N

�
s=1

N

Srs
p − Srs

c L2
D, �13�

where xn is the position vector of all particle centers xi. To
avoid the overlap between particles, we impose a constraint
on Eq. �13�,

TABLE I. Comparison of the raw fitness F2 in Eq. �13� before and after performing the genetic algorithm
for the five reconstructed cells. The number of GA iterations for convergence and the overall particle overlap
are also shown.

Pack No.

F2 before GA F2 after GA

No. of iteration OverlapMin Mean Max Min Mean Max

Run 1 4.035 7.253 10.963 0.520 0.606 0.839 578 0.000%

Run 2 4.202 7.600 11.348 0.581 0.774 1.163 942 0.001%

Run 3 3.993 7.537 11.179 0.590 0.773 1.253 807 0.002%

Run 4 3.989 7.335 10.801 0.587 0.652 0.793 1452 0.000%

Run 5 4.075 7.420 11.128 0.535 0.574 0.699 1726 0.000%
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FIG. 10. �Color online� Three-point probability function S775 of the pack depicted in Fig. 5�a�. �a� S775 for �=0°. Note the nonsymmetric
degeneracy of S775→S75 on r2 axis for �=0°. �b� S775 for �=72°. �c� S775 for �=180°.

THREE-DIMENSIONAL RECONSTRUCTION OF… PHYSICAL REVIEW E 80, 061301 �2009�

061301-7



��xi − x j�2 � ri + rj, ∀ i = 1, . . . ,n − 1, ∀ j = i

+ 1, . . . ,n , �14�

where n is the total number of particles in the cell
�n=�i=1

Np ni� and ri and rj are the radii of ith and jth particles,
respectively. The number of particles in the cell is calculated
based on the ratio of the volume of the pack and that of the
cell from the initial guess. Note that only a whole particle,

not its fraction, can be added into a particular particle mode
in the cell.

The raw objective function and the constraint can be com-
bined to construct an overall objective function or a fitness
function, F, which yields

F =

�
r=1

N

�
s=1

N

Srs
p − Srs

c L2
D

max
P0

�
r=1

N

�
s=1

N

Srs
p − Srs

c L2
D

+ p . �15�

The denominator in the first term of Eq. �15� represents the
value of the objective function F2 of the worst sample pack
in the initial population P0 and p is a penalty function in the
range �0,1� that is used to enforce the constraint �Eq. �14��.
We also use the mass-spring dynamic mutation operator to
eliminate the overlap as discussed in �36�. This fitness func-
tion is multimodal with multiple local minima. To minimize
this function, we use the augmented simulated annealing
technique, a stochastic optimization method based on the
principle of evolution, such as genetic algorithms �GAs�
combined with SA, introduced in �46�. The genetic algorithm
is briefly described in Algorithm 1.

Algorithm 1: Principle of genetic algorithm.
1 g=0

2 generate and evaluate population Pg of size Ni

3 while �not termination-condition� �
4 select m individuals to Mg from Pg �apply sampling mechanism�
5 alter Mg �apply genetic operators�
6 create and evaluate Pg+1 from Mg �insert m new individuals into Pg+1�
7 g=g+1

8 �

(b)(a)

FIG. 11. �Color online� �a� The pack contains 19 123 particles in
1445.372�1287.892�789.106 �m3. �b� The reconstructed cell is
composed of 1082 particles in 399.632�399.632�399.632 �m3.

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

diameter (µm)

vo
lu

m
e

fr
ac

tio
n

voxel pack
pack
cell

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

diameter (µm)

er
ro

r
(%

)

pack
cell

(b)(a)

FIG. 12. �a� Volume fractions of each bin for the voxel pack, the pack, and the cell. The voxel pack values are computed directly from
voxels, whereas the pack and cell values are computed by statistical sampling. �b� Relative error in volume fraction for each bin as given by
Eq. �16�. Errors in volume fractions between the voxel pack and the pack, which are the consequence of mapping voxel-based inclusions to
spheres, are smaller than those between the voxel pack and the cell since the cell is geometrically smallest possible object for a given finite
number of whole particles.
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For our optimization problem, the population Pg in the
Algorithm 1 becomes a family of possible cell configurations
with particles of fixed diameters, which are distributed ac-
cording to the rebinned pdf �Fig. 3� placed inside the cell.
The unknowns are positions of the particle centers xi �see Eq.
�13�� in the Algorithm 1. These methods were previously
implemented into our code, RECON3D, which reconstructs the
unit cell in parallel, preserving the end-to-end parallelism
and allowing for the optimal computational domain to be
generated quickly �36� �see �35,36� for more details on the
optimization process�.

B. Comparison of statistical properties between pack and cell

To establish the robustness of the proposed reconstruction
method, we run RECON3D on 2048 CPUs and reconstruct five
different statistically optimal cells. We note now that peri-
odic conditions are enforced on the cell boundary, i.e., all
particles intersected by the bounding box have periodic rep-
licas �two if a particle is on a face, four if a particles in on an
edge, and eight if a particle sits in a corner�. Periodic bound-
ary conditions are extensively used in computational studies
due to their simplicity, reasonable physical relevance, and
deep mathematical foundation �47�. Thus, a nonperiodic
voxel medium is mapped to a statistically equivalent periodic
RUC. All the runs consist of a population of Ni=512 indi-

viduals and there are m=16 individuals in the mating pool,
M �pool where genetic operators are applied �see Algorithm
1��. During the initialization of the genetic algorithm, one-
half of the individuals in the population is generated ran-
domly, i.e., all particles with fixed diameters are placed in the
cell of dimensions hc without overlap considerations. The
other half is generated using ballistic deposition, i.e., a ran-
domly deposited particle is checked for overlap and this pro-
cess is repeated until all particles are placed successfully,
allowing only a certain degree of overlap. Each reconstruc-
tion simulation is stopped when the maximum number of
iterations �10 000� is reached or when the best individual set
is not improved for 300 generations. In Table I, we compare
the raw fitness F2 before and after running the genetic algo-
rithm. As one can see, a large improvement in the fitness
after optimization has been obtained. The fitness after the
genetic algorithm was improved by 91% on average. The
final number of iterations needed for convergence and the
overall particle overlap are also shown.

Figure 11 shows the comparison of the dimensions of the
pack and one particular RUC. The pack includes 19 123 par-
ticles in 1445.372�1287.892�789.106 �m3 as mentioned
previously, while the unit cell has 1082 particles in
399.632�399.632�399.632 �m3. These numbers high-
light the substantial reduction of the computational space.

We now assess the quality of the reconstruction for both
the first- and the second-order probability functions. First,
we average the one-point probability functions over the five
cells. The averaged one-point probabilities of the five cells
are compared with those of the voxel pack and the pack in
Fig. 12�a�. The maximum standard deviation for the sampled
volume fractions is less than 0.003 �bin 9� and is not dis-
played. The corresponding relative error �i

q� of the volume
fraction in the ith bin between the voxel pack and the pack
and/or the cell is calculated by

i
q�%� =

	ci
v − ci

q	

�
i=1

Np

ci
v

� 100, �16�

where ci
v is the ith bin’s volume fraction of the voxel pack

and q is either p �pack� or c �cell�. As seen in Fig. 12�b�, the
error is less than 0.8% for both the pack and the cell.
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FIG. 13. �Color online� Comparison of the averaged two-point
probability functions between the pack �dotted lines� and the cell
�solid lines�. Average values are computed from five optimization
runs as given in Table I. Note the very small error bars. Only se-
lected probability functions are plotted.
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FIG. 14. �Color online� The difference, 	S355
p −S355

c 	, between the pack and the cell for several angles �. �a� The difference for �=0°. �b�
The difference for �=72°. �c� The difference for �=180°. Note that the saturation value for S355 is �0.01 on r1=r2 ray at �=0°, and thus,
the errors depicted above are of �28%. Also note that the largest errors are obtained at the unit cell boundaries for r1→hc and r2→hc, where
hc is the size of the RUC. The degenerate case for S355 is depicted in Fig. 16.
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Next, we focus on the second-order statistics. One of the
error measures is provided directly by the objective function
F2 itself �Eq. �13��. Note that we optimized the full probabil-
ity spectrum composed of 100 second-order probability func-
tions for this example. The comparison of the isotropic two-
point probability functions between the pack and the cell is
presented in Fig. 13. The error bars in Fig. 13 represent the
standard deviations of the two-point probability functions
computed on the five cells. Note that the error bars contain
both the numerical �sampling� and the physical �statistics of
five cells� error components. To assess the relative error, the
difference of the two-point probability functions between the
pack and the cell is calculated by

E�%� =

�
r=1

N

�
s=1

N

Srs
p − Srs

c L2
D

�
r=1

N

�
s=1

N

�Srs
p L2

D + Srs
c L2

D�/2
� 100, �17�

where Srs
c is the averaged isotropic two-point probability

function over the five cells. In the present case we have
excellent agreement with only 0.0387% error. Assuming the
uniform distribution of the error for all 100 second-order
probability functions, the error measure �Eq. �13�� yields a
very small inaccuracy of �0.006 between Srs

p of the pack and
Srs

c of the cell over the length of �200 �m. This is a remark-
able resolution for the full second-order probability spec-
trum, manifested by almost coincident lines in Fig. 13, and

this would hold for all the other second-order probability
functions as well.

Even though the unit cell is reconstructed based on the
one- and two-point probability functions, we also investigate
the three-point probability functions. The three-point prob-
ability function of the cell, Srsq

c , is compared with that of the
pack, Srsq

p , by calculating the difference, 	S355
p −S355

c 	, for
�r ,s ,q�= �3,5 ,5� , �7,7 ,5� corresponding to Figs. 9 and 10.
Figures 14 and 15 show the differences at the three different
angles, 0°, 72°, and 180°, depicted in Fig. 8 for these two
cases, respectively. The difference of the three-point prob-
ability between the pack and the cell is noticeable in com-
parison to the good agreement of the lower-order probability
functions, which indicates that optimization of the three-
point probability functions would be desirable.

In Figs. 16 and 17, we further compare the three-point
probability functions, S355 and S775, with the two-point prob-
ability functions S35 and S75. We recall the convergence of
the three-point probability function at the second limit case
in Eq. �6�, which states that the third-order function degen-
erates to the second-order one at the angle 0°, where r1=r2
for S355 and r1=0 for S775.

The two- and the three-point probability results produced
for the pack do not come to agreement, whereas those for the
cell do. This discrepancy can be attributed not only to the
periodicity imposed on the cell boundary and lack thereof in
the case of the pack, but also to the strict enforcement of the
statistical isotropy, given by Eq. �13�, in the cell reconstruc-
tion, which is not enforced for the pack statistics. To inves-
tigate this discrepancy further, let us recall that we compute
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FIG. 15. �Color online� The difference, 	S775
p −S775

c 	, between the pack and the cell for several angles �. �a� The difference for �=0°. �b�
The difference for �=72°. �c� The difference for �=180°. Note that the saturation value for S755 is �0.012 on r1=0 ray at �=0°, and thus,
the errors depicted above are of �23%. Also note that the largest errors are obtained at the unit cell boundaries for r1=0 and r2→hc, where
hc is the size of the RUC. The degenerate case for S775 is depicted in Fig. 17.
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FIG. 16. Comparison between the two-point probability function S35 �solid line� and the degenerated S355 �dashed line� on r1=r2 ray at
�=0°. �a� Comparison computed for the pack. �b� Comparison computed for the cell. Note that S35 is computed to be statistically isotropic,
whereas S335 is not. Thus, for the pack �a� we observe an anisotropy in the third order, whereas the RUC �b� is fairly isotropic.
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Srsq by assuming the semi-isotropic assumption leaving � as
an extra variable to account for anisotropy, while Srs is av-
eraged over all possible orientations in the cell reconstruc-
tion. Figures 16�a� and 17�a� indicate that the pack is aniso-
tropic �see also Figs. 9 and 10� in third-order statistics since
the degenerate cases are not recovered for the numerically
converged solution. On the other hand, the degenerate cases
for the cell �Figs. 16�b� and 17�b�� are well established. This
finding suggests that the cell structure is less ordered than
that of the pack, which has some third-order directional vari-
ance �anisotropy� �see also Figs. 9 and 10�. The reasons for
more randomness in the cell morphology as contrasted to the
pack one are our objective function �Eq. �13�� that strictly
enforces the statistical isotropy �directional invariance� and
the periodic boundary conditions that mimic an infinite me-
dium as opposed to a closed pack with wall effects. Note that
the characteristic material length scale, hc, established in this
work is of the second-order only and that the third-order
bound would possibly require a larger window of observa-
tion.

V. CONCLUSIONS

The paper describes a reconstruction procedure for statis-
tically optimal representative unit cells from rich three-
dimensional tomographic data. The particulate composite un-
der investigation consists of glass beads packed in a
cylindrical container. High resolution microtomography is
employed to gather the material data, and the image recog-
nition software AMIRA is used for data processing. The first-,
second-, and third-order probability functions are used to
characterize a polydisperse particulate medium. Error mea-
sures are established to assess the quality of the statistical
characterization. A fully represented probability spectrum is
optimized without distortion of the particle shape and with a
constraint on the particle overlap, furnishing the resulting
minimization problem highly complex with several local
minima. Therefore, the parallel augmented simulated anneal-
ing technique is employed to solve the optimization problem
on massively parallel computers. Presented results show

good repeatability of the reconstruction procedure. Excellent
agreement is obtained for statistics of the voxel-based pack
and statistics of the reconstructed unit cell.

Investigation of the higher-order probability functions re-
veals disagreement in the third-order probabilities between
the pack and the cell even though the first- and second-order
functions are well optimized. Thus, potential extension of
this work is in expansion of the fitness function for the third-
order statistics. Also, optimization of polydisperse compos-
ites with different inclusion shapes, such as ellipsoids,
rhombi, etc., is of interest.

It is important to note that the reconstructed unit cells are
only representative from a geometrical statistics point of
view and that the representativity of the unit cell must also
account for the physical processes of interest, such as me-
chanical or transport properties. However, the construction of
a geometrically equivalent representative unit cell is an im-
portant first step in describing behavior of complex hetero-
geneous materials, and both computational and experimental
evidences suggest that a statistical approach adopted in this
work accounts for the most important interactions �48,49�.
Moreover, advances in parallel computing are making fully
resolved simulations of complex physical phenomena, such
as combustion �50�, on cells presented in this work a reality.
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probability function S75 �solid line� and the de-
generated S775 �dashed line� on r2 axis at �=0°.
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