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A novel finite strain poro-viscoplastic phenomenological model for cold compacted materials is proposed. 

The model relies on the three-stage density evolution paradigm and describes the material evolution from 

loose to solid state. This model accounts for rate dependence, elasto-plastic coupling, pressure sensitiv- 

ity, and transition to full solid state. The model has been implemented, verified, and validated against 

experimental data available in the literature for copper powder compounds. 
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. Introduction 

Modeling granular materials is an important and challenging

ask, which is needed for several applications. These include appli-

ations in the pharmaceutical industry ( Muzzio et al., 2002 ), pow-

er metallurgy ( German, 2005 ), ceramics ( Glass and Ewsuk, 1997 ),

oil mechanics ( Iwashita and Oda, 1999 ), and many others. Over-

ll (effective) chemical and mechanical properties arise from mi-

rostructural processes, which occur at the particles scale. Pro-

essing options permit selective placement of phases or pores to

chieve targeted effective properties. For instance, mixing two or

ore metal or ceramic powders and exposing them to specific

ressure and temperature conditions may lead to material synthe-

is. An example of this is the use of high energy ball milling to

btain reactive metallic composites (i.e. Shuck et al., 2016 ). 

In this work, we focus mainly on metal/ceramic powders. Com-

onents made with metal/ceramic powders are produced by cold

r hot compaction (see Cocks, 2001 ) for a detailed description

f the manufacturing process). During the compaction, the ap-

lied pressure controls the change in the material’s elastic and

trength properties. It is commonly accepted that the transition

rom loose state to full solid state is defined by three stages (eg.

iccolroaz et al., 2006a ): stage I corresponds to granule sliding and

earrangement, stage II is characterized by granule deformation,
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nd stage III is dominated by granule densification and hardening

see Fig. 1 ). 

In order to capture the behavior described above, both

icroscopic and macroscopic approaches have been proposed

 Bier et al., 2007 ). In the microscopic approach, the grains are of-

en modeled as spherical with different assum ptions concerning

he contact between them ( Arzt, 1982; Cocks and Sinka, 2007 ).

n the work of Fleck, Cocks, and co-workers ( Fleck et al., 1992;

leck, 1995; Ogbonna and Fleck, 1995; Fleck et al., 1997; Srid-

ar and Fleck, 20 0 0; Cocks, 20 01; Cocks and Sinka, 20 07; Sinka

nd Cocks, 2007 ), several plastic and viscoplastic compaction mod-

ls have been built based on an ensemble of spherical particles.

eyliger and McMeeking (2001) modeled the material as a net-

ork of axial forces rotated in space and predicted the overall rate

ndependent stress-strain behavior under cold compaction. Micro-

echanical approaches provide insights on the complex physics of

old compaction. For example, numerical simulations in represen-

ative unit cells, as in Yi et al. (2005) , highlighted the role of inter-

article friction and particle failure during compaction. However,

hese methods at this stage are unsuitable to simulate large prob-

ems of industrial interest due to their excessive computational

omplexity. 

Phenomenological approaches at a macroscopic scale can cover

 larger range of relative densities. A vast amount of literature

as been proposed to this aim, based on the concept of a pres-

ure dependent yield function ( Bigoni and Piccolroaz, 2004 ), con-

eptually similar to the well known Cam–Clay ( Schofield and

roth, 1968 ) and Drucker–Prager ( Drucker and Prager, 1952 )

https://doi.org/10.1016/j.ijsolstr.2017.11.027
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Fig. 1. Illustration of the material density evolution as a function of the consolidation pressure. Stage I - granule sliding and rearrangement. Stage II - granule deformation. 

Stage III - granule densification and hardening. p 0 and ρ0 are the initial pressure and initial density, respectively. p cb is the forming pressure corresponding to the transition 

from the stage I to stage II. p ∞ c is the pressure needed to reach the full solid state. 

Fig. 2. Reference, current and intermediate configurations. 

Fig. 3. Illustration of c ( p c ) and d ( p c ) as a function of p c . 
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models in soil mechanics. Near the full dense state, yield func-

tions such as the Gurson’s ( Gurson, 1977 ) are often used. Spe-

cific yield functions for metal powders have been developed by

Kuhn and Downey (1971) and Shima and Oyane (1976) . In or-

der to capture the complex and variable evolution of the yield

surface with the confining pressure, two approaches are mainly

used ( Bier and Hartmann, 2006 ): the Cap-yield functions and

shape flexible yield functions. Cap-yield functions (e.g. Watson
nd Wert, 1993; Coube and Riedel, 20 0 0; Gu et al., 20 01; Khoei

nd Azami, 2005; Bier and Hartmann, 2006 ) employ an in-

erpolation of two or more recognized yield functions to con-

truct yield surfaces with complex shape. Rather than combin-

ng different expressions, shape flexible yield functions make use

f a single map, usually defined in Lode coordinates, whose

volution in time is governed by internal variables. Examples

f flexible shape yield functions are given in Ehlers (1995) ,
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Fig. 4. Illustration of μ( p c ) and K ( p c ) as a function of p c . 

Fig. 5. Illustration of the Cam–Clay yield surface in ( π , ˆ τ ) plane. Here we illustrate 

the construction of hardening functions g π and g ˆ τ . 
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Fig. 6. Die compaction test to calibrate the material data in Table 1 . 
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u et al. (2001) , Bigoni and Piccolroaz (2004) , Aubertin and

i (2004) , Piccolroaz and Bigoni (2009) and Bennett et al. (2016) .

enerally, they require several additional material parameters. 

Endochronic models for cold compacted materials also exist

 Häggblad, 1991; Khoei et al., 20 02; Bakhshiani et al., 20 04 ). This

heory does not employ a yield function to model inelastic behav-

ors. It has been developed initially in the realm of plastic behavior

f metals ( Valanis, 1971 ) and extended to the inelastic behavior of

oncrete and soils (eg. Bažant et al., 1976 ). 

Several approaches mentioned above are formulated under the

ssumption of small strains. Additionally, they generally only focus

n modeling the pressure dependence of the material. Moreover,

he rate dependence is generally ignored, except when the mate-

ial is heated (i.e. in hot-pressing of metal powders). Under cold

ompaction, rate sensitivity is generally neglected. Depending on

he grain material and/or the manufacturing processes (e.g. use of

ubrication), the material response may exhibit a rate dependence

uring or after compaction (e.g. Wei and Anand, 2007 ). In addition,

he transition to the full solid state is generally unaccounted for. 

In this work, we propose a new phenomenological finite strain

acroscopic model, which couples pressure sensitivity and rate
ependence of cold compacted materials. It allows modeling of the

hange in the material elastic properties. The progressive transition

rom loose powder to full solid state is modeled by a compaction

unction. As the state approaches the full solid state, the material

ecomes less sensitive to pressure and irreversible volumetric de-

ormations become very small. The proposed flow rule is expressed

sing the Kirchhoff stress state similarly to existing large defor-

ations viscoplastic and viscoelastic formulations (e.g. Matouš and

aniatty, 2004; Wei and Anand, 2007; Areias and Matouš, 2008 ).

areful model calibration and independent validation studies are

rovided. 

The paper is organized as follows. The constitutive theory is de-

ailed in Section 2 , the numerical integration algorithm is given

n Section 3 , and Section 4 contains parameter calibration, exper-

mental validations, and numerical simulations that highlight the

odel features and capabilities. Finally, conclusions are given in

ection 5 . 

. Constitutive theory 

In this work, the description of the transformation from a ref-

rence configuration, B r , to a deformed configuration, B, is given

y a motion φ( X , t ). Here X ∈ R 

3 designates the position of a par-

icle in the reference configuration and t ∈ R 

+ is the time. Let

 ( X , t) = ∇ φ( X , t) be the total deformation gradient at X and t ,

here symbol ∇ denotes the gradient with respect to X . An inter-

ediate or relaxed configuration, ˆ B , (see Fig. 2 ) is introduced in
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Fig. 7. (a) Plastic volumetric strain as a function of the forming pressure p c . (b) TMD as a function of p c . Experimental data are taken from Bier et al. (2007) . 

Fig. 8. Evolution of K as a function of TMD and p c . Experimental data are from Carnavas and Page (1998) . 

Fig. 9. Evolution of the shear modulus as a function of TMD and p c . Experimental data are from Carnavas and Page (1998) . 
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order to decompose the deformation gradient F into its elastic e F

and plastic p F parts, ( Kröner, 1959 and Lee, 1969 ): 

F = 

e F p F . (1)

The total C , plastic p C , and elastic e C right Cauchy-Green tensors

are defined as: 

 = F T F , p C = 

p F T p F , e C = 

e F T e F . (2)

The volumetric strains used in the formulation are 

J = det F , p J = det p F , e J = det e F , (3)
ith J = 

e J p J. The densities in the current ( ρ), intermediate ( ̂  ρ), and

eference ( ρ0 ) configurations are linked by the following identities:

= 

ρ0 

J 
= 

ˆ ρ
e J 

, ˆ ρ = 

ρ0 

p J 
. (4)

.1. Free energy density function 

In order to capture the complicated physics presented in

he introduction, we propose a modification of the free en-
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Fig. 10. Yield surfaces for different values of forming pressure p c . Experimental data 

are taken from Carnavas (1996) . 
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rgy density introduced by Piccolroaz et al. (20 06a) , 20 06b ) and

tupkiewicz et al. (2015) . The modified expression, which connotes

n isotropic material behavior, reads 

W ( e C , p c ) = 

ˆ W ( e C , p c ) + U ( e J, p c ) , (5) 

here ˆ W ( e C , p c ) denotes the volume preserving part of the energy

nd U ( e J , p c ) represents the volumetric part. Here, p c is a monotoni-

ally increasing internal state variable, physically interpreted as the

orming pressure at which the powder was compacted until cur-

ent time. The isochoric behavior is described by the function 

ˆ 
 ( e C , p c ) = 

1 

2 

μ( p c ) 
[

e J −2 / 3 tr ( e C ) − 3 

]
, (6) 

hich corresponds to the classical neo-Hookean model with the

hear modulus μ as a function of p c . The expression of the shear

odulus μ( p c ) reads 

( p c ) = μ0 + c ( p c ) 

[
d ( p c ) − 1 

d ( p c ) 

]
μ1 , (7) 

here μ0 , μ1 are constant material parameters. In our work, cohe-

ion, c ( p c ), identifies the tensile strength of the powder. The cohe-

ion c and the transition function d depend on the forming pres-

ure p c through the following expressions 

 ( p c ) = c ∞ 

[ 1 − exp ( −�〈 p c − p cb 〉 ) ] , (8) 
ig. 11. Axial, σ a , and radial, σ r , Cauchy stress under monotonic loading rate ˙ λ = 5 . 10 −4 s

n Eq. (27) . 
 ( p c ) = 1 + B 〈 p c − p cb 〉 , (9) 

here c ∞ 

, �, p cb and B are additional material parameters. c ∞ 

is the

aturation value of the cohesion and p cb is the value of p c corre-

ponding to the transition from stage I to stage II (see Fig. 3 (a)).

he symbol 〈 • 〉 denotes the Macaulay brackets. Function d is a

easure of the granule deformation and densification. It holds

nity at forming pressure less than p cb , whereas at complete com-

action d � 1 (see Fig. 3 (b)). 

The volumetric part of the free energy, U ( e J , p c ), is a function

f p c by means of the cohesion, c , and of the bulk modulus like

ariable, K : 

 ( e J, p c ) = 

1 

2 

K ( p c ) ( 
e J − 1 ) ln ( e J ) + 

{ 

c ln ( e J ) + [ p 0 + c ] 

×
(

c ∞ 

c ∞ 

− c 

)n 

κexp 

(
− ln ( e J ) 

κ

(
c ∞ 

− c 

c ∞ 

)n 
)} 

. (10) 

he expression of K ( p c ) reads 

 ( p c ) = [ p 0 + c ( p c ) ] 

[
d ( p c ) − 1 

d ( p c ) 

]
1 

κ
. (11) 

ere, p 0 is the initial pressure and κ is the logarithmic bulk mod-

lus. Figs. 3 and 4 give an illustration of μ, K , c , and d as a func-

ion of the forming pressure p c . The first contribution in Eq. (10) is

tandard ( Doll and Schweizerhof, 20 0 0 ): it models accurately the

ate stage II, and stage III when the material approaches a full

olid. The term between curly brackets in Eq. (10) allows for mod-

ling the material behavior in stage I and at the beginning of stage

I, when the contribution of the cohesion dominates U ( e J , p c ). In

iccolroaz et al. (2006a ) a similar term inspired from the Cam–Clay

odel was present. Unfortunately, this introduced a nonlinear in-

rease of elastic bulk modulus with mean pressure, a feature which

s unrealistic during the late phase II of deformation. Such an is-

ue does not arise using the volumetric part of the free energy in

q. (10) . In our work, we propose a new term that employs the co-

esion as the controlling parameter. As the cohesion increases, the

ressure related to the exponential term decreases and approaches

 0 for c → c ∞ 

. The parameter n in Eq. (10) controls the rate of de-

ay of this part of the pressure response. 

.2. Visco-plastic flow rule 

The plastic flow is assumed to be irrotational, and accordingly

he evolution equation of p F is expressed as 

p ˙ F = 

p D 

p F . (12) 
 

−1 . Experimental data are taken from Bier et al. (2007) and λ is the strain measure 
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Fig. 12. Axial, σ a , Cauchy stress under monotonic loading rates ˙ λ = 5 . 10 −4 s −1 and ˙ λ = 5 . 10 −3 s −1 . Experimental data are taken from Bier et al. (2007) and λ is the strain 

measure in Eq. (27) . 

Fig. 13. Axial, σ a , Cauchy stress under loading-unloading at rate ˙ λ = ±5 . 10 −4 s −1 . Experimental data are taken from Bier et al. (2007) . 
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The plastic stretching p D is decomposed into its deviatoric and vol-

umetric parts as in Wei and Anand (2007) 

p D = 

p ˆ D + 

1 

3 

tr ( p D ) 1 , (13)

where the deviatoric part, p ˆ D , reads 

p ˆ D = ˙ γd dev [ S ] / ‖ 

dev [ S ] ‖ F 

. (14)

Here ˙ γd = 

∥∥p ˆ D 

∥∥
F 

is the equivalent plastic shear strain rate, and

it is equal to the Frobenius norm 

1 of p ˆ D . The second Piola–

Kirchhoff stress tensor, S , is defined in the intermediate configu-

ration (see Gurtin et al., 2010 ) 

S = 2 

∂W 

∂ e C 
= 2 

∂ ˆ W 

∂ e C 
− e J p e C −1 

, (15)

with p = −∂U 

∂ e J 
being the Cauchy pressure. The Cauchy stress, σ ,

and the Kirchoff stress, τ , are related to S by 

σ = 

1 

e J 
e F S e F T , τ = J σ. (16)

The volumetric part of p D evolves as 

tr ( p D ) = βD ˙ γd − βC ˙ γv , (17)

where ˙ γv is an equivalent plastic volumetric strain rate. βC ≥ 0 is

the compaction function and β ≥ 0 the shear-induced dilatancy
D 

1 The Frobenius norm of a tensor is defined as ‖ A ‖ F 

= 

√ 

A : A . 

r  

π  

t  
unction. In particular, βC controls the rate of compaction and van-

shes when the material state is close to the full solid. We propose

he following linear expression for βC as a function of p c 

C = g 0 

(
1 − p c 

p ∞ 

c 

)
, (18)

here g 0 ≥ 0 is a material parameter and p ∞ 

c corresponds to the

alue of p c at the full solid state. The shear-induced dilatancy func-

ion, βD , is neglected in this work. An example for the dilatancy

unction may be found in Wei and Anand (2007) . 

The equivalent plastic strain rates ˙ γd and ˙ γv are specified by the

ower laws 

˙ v = 

{ 

˙ γ0 

(
π − πm 

g π

)1 /m 

if π > πm 

0 otherwise , 
(19)

nd 

˙ d = ˙ γ0 

(
1 − 1 

d 

)(
ˆ τ

g ˆ τ

)1 /m 

, (20)

here ˙ γ0 is a reference plastic strain rate and m is the strain-rate

ensitivity parameter. In our work, both parameters are assumed to

e constant in time, as typical in the literature. Nevertheless, rate

ependent laws incorporating this assumption can cover a large

ange of strain rates, see for instance Beaudoin and Acharya (2001) .

is the Kirchhoff pressure, ˆ τ is the Frobenius norm of the devia-

oric part of the Kirchhoff stress, and πm 

, g π and g ˆ τ are functions



A. Krairi et al. / International Journal of Solids and Structures 135 (2018) 289–300 295 

Fig. 14. Uniaxial constrained loading for different loading rates, until the full solid state, (a) Axial stress, (b) Radial stress. 

Fig. 15. Uniaxial constrained loading for different loading rates, until the full solid state. (a) Kirchhoff pressure, (b) The Frobenius norm of the deviatoric part of the Kirchhoff

stress ( ̂ τ ). 

Fig. 16. Pressure in the copper powder under bi-axial compression test, TMD 0 = 0 . 405 . Experimental data are taken from Park, (2007) . 

o  

a  

t

(

H  

a  

w  

y  

t  

a  

γd 
f p c and play the role of hardening laws. These plastic strain rates

re inspired by the modified Cam–Clay yield function expressed in

he Kirchhoff stresses space (see Fig. 5 ): 

π − πm 

g π

)2 

+ 

(
ˆ τ

g ˆ τ

)2 

= 1 . (21) 

ere g π (p c ) = a (p c ) b, g ˆ τ (p c ) = 

√ 

3 
2 a (p c ) M, πm 

(p c ) =
( a (p c ) − c(p c ) ) and 

 (p c ) = 

p c + c(p c ) 

1 + α
, b = 

{
α if π ≥ πm 

1 if π < πm 

, 
(22)

here M and α are material parameters. Although the Cam–Clay

ield function inspired some parameters (see Fig. 5 ), we note

hat our formulation does not use the yield function. Instead, we

dopted a power-law evolution of the equivalent plastic strain rates

˙ and ˙ γv as in Wei and Anand (2007) . 
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Fig. 17. Pressure in the copper powder under tri-axial compression test, TMD 0 = 0 . 427 for coarse water-atomized Cu powder. Experimental data are taken from 

Park et al. (1999) . 

Fig. 18. λC and λS versus time for case 1. 
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2.3. Hardening law for p c 

The evolution of the internal variable p c has been deter-

mined from the micromechanical model proposed by Cooper and

Eaton (1962) (see also Piccolroaz et al., 2006a ). It reads 

ln ( p J ) = −a 1 exp 

(
−Λ1 

p c 

)
− a 2 exp 

(
−Λ2 

p c 

)
, (23)

where a 1 , Λ1 , a 2 and Λ2 are material parameters. 

2.4. Theoretical Maximum Density (TMD) 

A relationship can be established between the initial Theoreti-

cal Maximum Density, TMD , and the forming pressure required to
0 

Fig. 19. p c versus time (on the left) and the volumetric strains J , e J ,
each the full solid state, p ∞ 

c . We denote with TMD the ratio be-

ween the density ˆ ρ in the intermediate configuration, Eq. (4) , and

he density of the full solid material denoted henceforth with ρs 

i.e., a material constant): 

MD = 

ˆ ρ

ρs 
. (24)

he former varies with the confining pressure, whereas the latter

s taken constant. Assuming that the rise in densification begins

t forming pressure p c = p cb , we have T MD 0 = T MD | p cb 
. Similarly,

he full solid state is reached when ˆ ρ = ρs at p c = p ∞ 

c (see Fig. 1 ).

hus, we conclude that T MD | p ∞ 

c 
= 1 and 

p J = 

p J| p ∞ 

c 
. From the mass

alance equation, we can derive: 

MD 0 = 

ρ0 

ρs 
= 

ˆ ρ

ρs 

p J = 

p J TMD = 

p J| p ∞ c 
. (25)

ubstituting (25) into Eq. (23) , one has: 

n [ T MD 0 ] = −a 1 exp 

(
−Λ1 

p ∞ 

c 

)
− a 2 exp 

(
−Λ2 

p ∞ 

c 

)
. (26)

ccordingly, the material parameters p ∞ 

c , Λ1 , Λ2 , a 2 , and a 2 are

ot independent and must satisfy the constraint (26) . 

. Numerical algorithm 

In this section, we develop a simple numerical explicit integra-

ion algorithm for the proposed model (see Algorithm 1 ). Given the

tate of the system at time t n and the increment of the total defor-

ation �F , the state at time t n +1 = t n + �t is computed using the

orward Euler method. The algorithm is summarized as follows: 
 

p J versus time (on the right) for the complex loading case 1. 
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Fig. 20. The components of the Cauchy stresses as a function of the time for the complex loading case 1. 

Fig. 21. λC and λS versus time for case 2. 

Algorithm 1 - Explicit integration algorithm. 

• Compute the equivalent strain rates ˙ γv and ˙ γd at time t n by Eqs. 

(19) and (20) 
• Compute p D using ˙ γv , ˙ γd , S n , and p c n by Eq. (13) 
• Compute p F n +1 using p D by Eq. (12) 
• Compute e F n +1 using F n +1 and p F n +1 by Eq. (1) 
• Compute p c n +1 

using p F n +1 by Eq. (23) 
• Update μ, K, d, and c using Eqs. (7), (9), (8) and (11) 
• Compute the stress S n +1 using e F n +1 and p c n +1 

by Eq. (15) 
• Compute the Kirchoff stress τn +1 in Eq. (16) 

4

 

o  

P  

P

Table 1 

Summary of material parameters. 

Material parameters defining the hardening rule for p c , 

Eq. (23) 

a 1 , a 2 , Λ1 , Λ2 

Material parameters defining μ, Eq. (7) μ0 , μ1 

Material parameters defining K , Eq. (11) p 0 , κ

Material parameters defining the transition variable d , 

Eq. (9) 

B , p cb 

Material parameters defining the cohesion c , Eq. (8) c ∞ , �
Power law exponent, Eq. (10) n 

Material parameters for the flow rule, Eqs. (19) and 

(20) 

˙ γ0 , m , M , α

Material parameters for the compaction function 

Eq. (18) 

g 0 , p ∞ c 
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E  
. Numerical simulations 

Simulations are compared against experimental investigations

n cold compacted copper powders, published by Carnavas and

age (1998) , Bier et al. (20 07) , Bier (20 08) , Park et al. (1999) , and

ark (2007) . 
Fig. 22. p c versus time (on the left) and the volumetric strains J , e J ,
The calibration of material parameters is carried out in

ection 4.1 . In all sections that follow 4.1 , we do not further cal-

brate any material parameters. Those simulations validate the ca-

ability of the model against different fields of interest. 

.1. Material parameters calibration 

The material parameters that must be identified are summa-

ized in the Table 1 . 

An experimental test generally employed to characterize the be-

avior of powders is the so-called die compaction test. It is a uni-

xial constrained compression test (see Fig. 6 ), whose detailed de-

cription can be found in Cocks (2001) and in Bier (2008) . 

Bier et al. (2007) measured the axial and radial stresses for cop-

er powder compounds at several loading rates. The axial stress

s obtained as a function of the vertical displacement of the pis-

on, after taking into account the deformation of the piston. Us-

ng their experimental results of the loading-unloading compaction

est, the material parameters a 1 , a 2 , Λ1 and Λ2 were identified.

ig. 7 (a) shows the least squares fit between experimental data and

q. (23) . Fig. 7 (b) displays TMD as function of p c . The change from
 

p J versus time (on the right) for the complex loading case 2. 
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Table 2 

Material parameters calibrated for the copper powder. 

Material parameters defining the hardening rule: ln ( p J ) = f ( p c ) 

a 1 = 0 . 62 , a 2 = 0 . 37 , Λ1 = 77 . 22 MPa , Λ2 = 13 . 01 MPa 

Material parameters defining μ: μ0 = 30 MPa , μ1 = 60 [ −] 

Material parameters defining K : p 0 = 0 . 063 MPa , κ = 0 . 008 [ −] 

Material parameters defining the transition variable d : B = 0 . 20 MPa −1 
, 

p cb = 5 . 8 MPa 

Material parameters defining the cohesion c : c ∞ = 15 MPa , 

� = 0 . 01 MPa −1 

Power law exponent: n = 2 

Material parameters for the flow rule: γ0 = 0 . 0 0 05 s −1 , m = 0 . 15 , 

M = 1 . 0 , α = 1 . 1 

Material parameters for the compaction function: g 0 = 1 , 

p ∞ c = 290 MPa 
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phase I to phase II is marked by the ‘break-point pressure’ p cb . The

value of p ∞ 

c corresponds to the value of p c when TMD is equal to

100% and satisfies Eq. (26) . 

Initial TMD is taken from Bier et al. (2007) , TMD 0 = 0.435.

Next, we used least squares fit to calibrate μ( p c ) and K ( p c ) us-

ing Eq. (7) and Eq. (11) , respectively, from experimental data taken

from Carnavas and Page (1998) . Figs. 8 and 9 show K and μ as

functions of TMD and p c , respectively. The parameters for the co-

hesion c and for the transition parameter d are also identified us-

ing this data. The material parameters for the cohesion law should

ideally be identified using direct experiments that allow evaluating

the tensile strength as a function of the compaction state, such as

the equi-biaxial flexure test (e.g. Bosi et al., 2014 ). 

The parameters M and α of the Cam–Clay model ( Eq. (21) ),

which are used in our hardening functions, g π and g ˆ τ , are

identified using the data from Carnavas (1996) , as shown in

Fig. 10 . The conversion of the data from the Cauchy stresses

to Kirchhoff stresses is obtained using experimental data from

Bier et al. (2007) . The remaining parameters for the flow rule ˙ γ0 

and m , are identified using the die compaction test at different

strain rates. 

4.2. Simulation of the die compaction test 

First, the die compaction test is simulated using material pa-

rameters listed in Table 2 to confirm their validity. The deforma-

tion gradient is assumed to be a known function of time 

F (t) = 

[ 

1 − λ(t) 0 0 

0 1 0 

0 0 1 

] 

. (27)

Two loading rates have been studied, i.e. ˙ λ = 5 . 10 −4 s −1 and 

˙ λ =
5 . 10 −3 s −1 . Good comparison is found between the simulations and

the experimental data provided in Bier et al. (2007) , as plotted in

Figs. 11 and 12 . 

The model captures the axial stress under a loading/unloading

test with good accuracy, as seen in Fig. 13 . The same figure shows

that the hyperelastic behavior during unloading/reloading is cap-

tured well, which in turn validates the evolution of the material

properties with the confining pressure p c . 

In order to predict the response once the material reaches the

full solid state, we increased the deformation using several loading

rates. Fig. 14 (a) and (b) reveal that the axial and radial stresses in-

crease considerably. This behavior is related mainly due to the rise

of pressure within the material, as shown in Fig. 15 (a). We note

that for slow loading rates, the pressure rise is delayed compared

to fast loading rates. However, all loading curves approach pres-

sure insensitive (“limit”) behavior as p c → p ∞ 

c for λ≈ 0.58. For a

high applied pressure loading, the forming pressure (i.e., an inter-

nal variable) cannot overcome p ∞ 

c . Thus, in view of Eq. (18) βC = 0

once p c = p ∞ 

c and the plastic flow becomes purely deviatoric (i.e.,
ressure independent). This implies that p J remains constant and

o does p c (see Eq. (23) ). As a consequence, neither the shear

or the bulk modulus increase further (see Eqs. (7) and (11) ).

herefore, the shear stress magnitude in Eq. (16) , ˆ τ = || dev [ τ] || F 

,

hanges its trend and becomes almost constant when p c reaches

p ∞ 

c (see Fig. 15 (b)). Due to the material viscosity, the higher the

train rate, the higher the value of ˆ τ . 

.3. Simulation of tri-axial and bi-axial compression tests 

Using the same set of parameters listed in Table 2 , the model

redicts the material response in the case of a bi-axial compres-

ion (see Fig. 16 ) and tri-axial compression tests (see Fig. 17 ). The

eformation gradients are given by: 

 B 

(t) = 

[ 

1 − λ(t) 0 0 

0 1 − λ(t) 0 

0 0 1 

] 

, 

F T 

(t) = 

[ 

1 − λ(t) 0 0 

0 1 − λ(t) 0 

0 0 1 − λ(t) 

] 

. 

omputations are compared to the work of Park et al. (1999) and

ark (2007) , who performed uniaxial strain, plain strain, and hy-

rostatic compression tests on copper powders. The loading rate

s assumed to be very low in order to limit the effect of viscosity.

xperimental results and model predictions are in good agreement.

.4. Combined compression and shear test 

A tri-axial compaction is applied to the copper powder com-

ounds followed by a simple shear deformation. Two loading cases

re studied: (1) The density after compaction is below the full solid

tate. (2) The density equals the full solid material density at the

nd of the compaction. The amount of p c distinguishes the two

ases. The applied deformation gradient reads: 

 (t) = 

[ 

1 − λC (t) λS (t) 0 

0 1 − λC (t) 0 

0 0 1 − λC (t) 

] 

. 

.4.1. Case of material density after compaction below the full solid 

tate 

The loading variables λC and λS are plotted as a function of

he time in Fig. 18 for case (1). The compaction terminates at

 = 40 s . The final forming pressure p c is below p ∞ 

c (see Fig. 19 ).

herefore, the TMD is below 100%. After 40 s, p c and 

p J remain al-

ost constant, as shown in Fig. 19 . In terms of Cauchy stresses,

 decrease in the values of components ( σ 11 , σ 22 , σ 33 ) is shown

n Fig. 20 , caused by the stress relaxation. The component σ 12 in-

reased, reaching the shear strength gained during the compaction

rocess. A perfectly plastic like behavior has been obtained. 

.4.2. Case of material density after compaction equal to the full 

ense state 

The loading variables λC and λS are plotted as a function of

he time in Fig. 21 for case (2). Fig. 22 shows that the value of p c 
eached p ∞ 

c before the end of the compression phase at t = 60 s .

fter the full solid density is obtained, the value of p J does not de-

rease further, as discussed in the simulation of the die compaction

est in Section 4.2 . Instead, e J continues to decrease until the end

f the compression stage (i.e. hyper-elastic compression between

0 and 60 s). This leads to high stress buildup in Fig. 23 (left). In

erms of Cauchy stress, the values of components ( σ 11 , σ 22 , σ 33 )

ave no relaxation at the end of compression at t = 60 s , as shown

n Fig. 23 and are high due to the elastic compression as men-

ioned above. The component σ 12 increases with λS until a satu-

ation value corresponding to the final shear viscoplastic limit. The
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Fig. 23. The components of the Cauchy stress as a function of the time for the complex loading case 2. 

Fig. 24. TMD versus time for case 2. 
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teep slope of shear stress corresponds to a high shear modulus of

 fully dense solid. Again, perfectly plastic like behavior has been

btained. Fig. 24 shows the evolution of the TMD versus time ac-

ording to Eq. (26) . 100% TMD is reached for p c = p ∞ 

c . 

. Conclusions 

A novel phenomenological constitutive model for cold com-

acted materials has been developed. The transition of the material

tate from loose powder to full solid is described by three stages:

ranule sliding and rearrangement, granule deformation, and gran-

le densification and hardening. The cohesion between the grains

s well as the elastic properties are monotonically increasing as

 function of an internal variable related to the forming pressure,

hich evolves with the irreversible volumetric change of the mate-

ial. The model is expressed within the framework of large defor-

ations, stemming from the multiplicative decomposition of the

otal deformation gradient into elastic and plastic parts. It couples

ressure dependence and viscoplasticity under arbitrary loadings. 

The proposed Helmholtz free energy resembles the classical

eo-Hookean one. However, the elastic properties evolve with an

nternal variable, which corresponds to the exerted forming pres-

ure (phenomena known as the elasto-plastic coupling ). The plastic

volution is governed by rate-dependent, power-law flow rules for

he volumetric and isochoric parts of the strain. The evolution of

he forming pressure is related to the plastic deformation, which

as a micro-mechanical nature. 

An explicit numerical algorithm has been developed and imple-

ented. Detailed model calibration has been described. Next, nu-

erical predictions have been validated against experimental tests

vailable in the literature on copper powders. Good agreement be-

ween model predictions and experimental results has been found,

hus emphasizing the potential of the proposed model. 
Simulations under complex loading histories, coupling triaxial

ressure and shear, have shown the response of the model when

he material density after compaction equals to that of a solid. In

uch a case, the final shear viscoplastic limit is reached and the

old-compacted powder behaves like a full solid material with a

erfectly plastic response. A similar behavior in shear has been ob-

erved when compacting below the full solid state, namely a per-

ectly plastic like response at a shear stress level equal to the shear

trength gained during the compaction process. 

Complex micromechanical features such as grain crushing or

articles densification have not been explicitly included in the

odel. Investigating those phenomena could enrich our phe-

omenological model, which is tailored for large industrial appli-

ations. 
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