1. (20pt) Multiple Choice, Short Answer. For (a) to (f) use as reference the following NFA:

(a) _______________ What is Σ?

(b) _______________ What is $\delta(4, 0)$?

(c) _______________ What is $\delta(2, 1)$?

(d) _______________ What is $E(4)$?

(e) _______________ What is $E(1)$?

(f) _______________ Is the input string 0011 accepted?
 In any case, write the sequence of states traversed.

(g) _______________ Write the regex for the language over \{0, 1\} where the 3rd and 2nd from the right end are 1 followed by 0.

(h) _______________ True/False: all computer programming languages can be described by regular expressions.

(i) _______________ How many elements are in the set $P(\{w, x, y, z\})$?

(j) _______________ True/False: if L is a regular language, is the language $L' = \{w | w$ is not in $L\}$ always regular?
Solutions:

(a) $\Sigma = \{0, 1\}$
(b) $\{3\}$ - need the set brackets
(c) $\{2, 4\}$
(d) $\{4\}$
(e) $\{1, 3, 2\}$
(f) Yes: $1 \rightarrow 3 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 2 \rightarrow 4$
(g) $(0U1)^*10(0U1)$
(h) False
(i) 16
(j) Yes

Note: 2pts per question
2. (20pt) Define \(L_1 = \{ w | w = a_1b_1...a_nb_n, n \geq 1, \Sigma = \{0,1\} \) where both bit strings \(a_1a_2...a_n \) and \(b_1b_2...b_n \) are binary numbers with the least significant digit to the left rather than right, and where the value represented by \(b_1b_2...b_n \) is one more than \(a_1a_2...a_n \).

This is essentially a representation of binary incrementation done a bit at a time. As an example, the normal binary equivalent of 13 is 1011 so this reversed representation is \(a_1a_2a_3a_4 = 1101 \). Likewise the normal representation of 14 is 0111 so this reversed representation is \(b_1b_2b_3b_4 = 1110 \). Since 14 is one more than 13, the string from \(L_1 \) that interleaves these two strings is \(a_1b_1a_2b_2a_3b_3a_4b_4 = 10110111 \). Note also that only the first n digits of the result are represented in b.

(a) (Not graded) For your own benefit, write out all strings in \(L_1 \) of length 4 or less, and then a few of length 6 and 8 until you see the pattern. Is \(\varepsilon \) in the language?

(b) (10pt) Describe a regular expression that defines \(L_1 \). It may help with grading to describe various terms in your answer in English a bit.

(c) (10pt) Develop a FA that accepts \(L_1 \). Either a state diagram or transition table is ok. Hint: there is a simple 7 state DFA solution.

The latter two questions can be done in any order, and independently of each other (you are free to do one and convert that answer into the other, but that’s more work).

Solution:

The first few members of \(L_1 = \{ 01, 10, 0100, 0111, 1001, 1010, ... \} \). \(\varepsilon \) is not in it.

One form of the regex is \(01(00 \cup 11)^* \cup 10(10)^* \cup 10(10)^*01(00 \cup 11)^* \). The first term takes care of when \(x_1 \) is a 0, and thus no carry beyond (each \(x_i \) is duplicated). The second term is the case where a is all 1’s; the third case is where \(a_1 \) thru some \(a_i \) is 1 and the rest are 0s.

Scoring notes:

(b)

- +1 answer is a regular expression that can be read
- +3 for each part of the regular expression (the three elements seen above could be combined)

(c)
• +1 answer is an FA (state table or diagram) that can be read
• +2 for start state and a complete diagram (diagram represents a complete thought)
• +2 for correct accept states, +1 for any right accept states that did not also accept
 wrong strings along the minimal path to get to the accept state
• +5 all correct transitions, +4 near perfect (1-2 mistakes), +3 some missing/incorrect
 transitions, +2 many mistakes, +1 a couple okay transitions with an understanding
 that input should be handled in pairs
3. (20pt) Show using Pumping Lemma both of the following languages are non-regular.

(a) (10pt) $L_2 = \{W | w = a_1a_2...a_nb_1b_2...b_n, n \geq 1, \Sigma = \{0,1\} \}$ and as in L_1 the string $b_1b_2...b_n$ represents a reversed binary number that is one more than $a_1a_2...a_n$. For example the string 1101110 is in L_2 as it represents 13 and 14. Likewise the string 1^n0^n is in L_2 as we only show n bits of the b result. Note any string must be even in length, with equal halves for the a’s and b’s.

(b) (10pt) P is the language over $\Sigma = \{(,\}\}$ of matching parenthesis, i.e. $P = \{w | w = w_1...w_i...w_{2n}, n \geq 0 \}$ (the empty string ϵ is included) where in any prefix substring $w_1...w_i$ there are never more “)” than “(”, and in the whole string the numbers of “) and “)” are equal.

Solution:

Scoring comments:

- The strings proposed to demo non-pumping MUST be from Σ
- It must be clear what are the possible options for y

(a) Assume L_2 is regular. Choose string 1^n0^n.

Now xy must be in the substring of all 1s. Two cases.

- y is odd. Forming xy^0z leaves an odd number of characters and thus cannot be in L_2
- y is even, say $y = 1^{2k}$ for some k.

 If we look at xy^2z we now have $1^{n+2k}0^n$. Since we have to look at the two halves we have $a = 1^{n+k}$ and $b = 1^k0^n$ b is no longer 1+a so this too fails

(b) Assume P is regular. Choose string $(p)^p$.

Now xy must be all “)”s, with y having at least one (. Either case will prove non-regular:

- If $i = 0$ there are now fewer “)” than “(”.
- If $i \geq 2$ there are now more “)” than “(”
4. (20pt) Use the construction process in the proof of Theorem 1.54 to convert the following regular expression to a NFA:

$$a^*aba^* \cup (ab)^*(aa)^*$$

Show your NFA as a state diagram. You need not show each step of the constructions, i.e. you need not be totally faithful to putting all the ε edges and intermediate states in, but your diagram should still reflect a solid understanding of the construction process. This may best be shown by annotating which parts of the diagram come from which major terms of the regex.

Solution: A reasonable form - this doesn’t accept the string ε. Refer to the lower NFA.
5. (20pt) Determine what regular expression the following NFA is equivalent to, using the GNFA approach. In this figure, $\Sigma = \{0, 1, -, .\}$, where the last two symbols are the minus sign and a decimal point. Show each step. To simplify grading, remove states in order A, B, C, D, E. It is strongly recommended that you use variables like $R_1 = \ldots$ to simplify your edge labels. You can use the blank sheet following this if you need more room. Feel free to add stuff to the figure below for your first step.
• 3 points per step,
• 2 points for final expression,
• 0.5 points off for
• Typically 1 point taken off for first occurrence of an error, but rest of problem then graded as if error was correct. Typical errors:
 – Writing εx instead of just x. (0.5 points)
 – Not following the order of state removal: A,B,C,D,E
 – Dropping an edge
 – Listing a path thru states as union, not concatenation
 – Not handling self-loops properly
 – Not removing accepting state status from initial accepting states
 – Not adding new start or accept state

Solution: First modify to a GNFA by adding a new start and accept state, and edges from each old accept to new one.

Then remove A and add edge from start to C with $R_1 = - \cup \varepsilon$.

Then remove B and add edges from D to E (with “.”, no “ε”) and C to E (with “0.”), Combine 2 edges from C to E with $R_2 = 1 \cup 0$.
Then remove C and add edges from start to D (with $R_3 = R_1$), and from start to E
(with $R_4 = R_1 R_2$)

Then remove D, with edge from start to E that is paired with R_4 (with $R_5 = (R_3(0 \cup 1)^* \cup R_4)$ and an edge from start to accept (with $R_6 = R_3(0 \cup 1)^*$ - note concatenating ε adds nothing to string)

Then remove E, with an edge from start to accept (with $R_7 = R_5(0 \cup 1)^*$, again no concatenation with ε needs be listed). Also pair this new edge up with the prior edge from start to accept with $R_8 = R_6 \cup R_7$

Final Answer: $R_8 =$

- $R_6 \cup R_7$
- $(R_3(0 \cup 1)^* \cup (R_5(0 \cup 1)^*)$
- $(R_1(0 \cup 1)^* \cup ((R_3(0 \cup 1)^* \cup R_1 R_2)(0 \cup 1)^*)$
\[\bullet = \left((0 \cup 1)^* \right) \cup \left(\left((R_1 1(0 \cup 1)^*) \cup (- \cup \varepsilon (1 \cup 0)) \right) (0 \cup 1)^* \right) \]

\[\bullet = \left((0 \cup 1)^* \right) \cup \left(\left((R_1 1(0 \cup 1)^*) \cup (- \cup \varepsilon (1 \cup 0)) \right) (0 \cup 1)^* \right) \]