
1

(Sec. 3.3 pp. 182-187, & 7.4 p299). Algorithms, Graphs, SAT

 Key distinction re TMs and languages

 TM T recognizes L if for all w in L T accepts w

 Says nothing about what if w not in L

 TM decides L if

 T recognizes L

 If w not in L, T always halts (in reject state)

 Hilbert’s 10th problem (1900): Can any algorithm tell if

a polynomial equation has any integer roots?

 Sample polynomial equation: 6x3yz2+3xy2-x3-10=0

 Example does at x=5, y=3, z=0

 Critical point: we want yes/no answer for any polynomial

 1970: no such algorithm exists

 Key starting point: what is an “algorithm”?

 Key Definition: 1936 Church-Turing Thesis

 Any function over the natural #s is computable by a

algorithm iff it is computable by a TM

 Each transition of a TM is a “step”

 Step takes finite time

 Finite # of steps to get to accepting state

 “Does algorithm exist” eqvt to “Is there a TM decider”

2

 Back to Hilbert

 Define D = {p|p is a polynomial with an integral root}

 D is recognizable:

 Consider D1={p|p a polynomial over single variable x

with an integral root}

 Recognizing TM M1: Assume input string defines a p

 Start an enumerator to generate 0, 1 -1, 2, -2, …

 For each value compute p at that value

 If a root, halt and accept

 Note: if p has no integral roots, M1 loops

 TM recognizer for general D generates all cases of

integers 1 at a time

 Hilbert’s 10th problem equivalent: does some TM decide D

 I.e. Does some TM always halt for any p

 For D1 (exactly 1 variable) there are bounds that can

constrain solution space (see p. 184 and problem 3.21)

 Thus we can halt M1 as soon as we reach these bounds

 Thus modified M1 is a decider for D1

 Theorem from 1970: no such bounds exist for multi-

variable polynomials

 Cannot construct a decider for D same way as for D1

 When deciders exist: do polynomial time TMs exist?

3

 (p. 184) Terminology for describing TMs

 (p. 185) 3 ways for describing TMs

 Formal Description: 7 tuple and δ

 Implementation Description: use English prose to

describe tape movements and tape writing

 High-level Description: English prose to describe

algorithm, ignoring implementation details

 Often building one TM out of composition of others

 (p.185)Notation for describing TM tapes(esp. initial tapes)

 Tape always contains a string

 Use strings to represent objects (#s,grammars, graphs..)

 TM can be written to “decode” string representations

 Notation for string representation of object O: <O>

 Notation for multiple objects O1,O2,…Ok = <O1,O2,…Ok >

 TM algorithm described as indented lines of text

 Each a stage: multiple TM operations

 Assume initial stage checks format of input tape

4

 (p 186) Graphs

 set of vertices, each encoded as different positive #

 Note: book calls vertices as nodes

 set of edges between vertices, each encoded as tuple of 2

vertices

 edges may be directed (from to) or undirected

 Undirected edge eqvt to pair of directed edges

 Example of undirected graph

 A graph is connected iff every vertex can be reached

from every other vertex by some path of edges

5

 (p. 186) A = {<G>| G is a connected undirected graph}

 <G> = string of symbols representing two lists:

 “(“ list of vertex #s separated by “,” “)”

 “(“ list of edges separated by “,” “)”

 Each edge: “(“ <vertex 1> “,”, <vertex 2> “)”

 A TM decider algorithm for testing connectedness:

M = “On input <G>, the encoding of graph G:

0. Verify <G> is formatted properly & reject if not

1. Select 1st vertex of G and “mark” it

 “Marking” adds a * (“dot”) to leftmost symbol

2. Repeat until no new vertices unmarked: For each vertex in

G, mark it if it is attached by an edge to a vertex that is

already marked

1. Scan vertex list to find an unmarked vertex n1

 Underline 1st symbol

2. Scan vertex again and find 1st dotted vertex n2

 Underline that also

3. For each edge in edge list see if (n1, n2) or (n2, n1): If so

 Dot the undotted vertex; Remove both underlines

 Restart major step 2

3. Scan all vertices of G to determine if all are “marked”

 If yes, accept; if no reject

6

 Clearly this always halts on valid <G>: only finitely many

vertices to scan

 Also clearly polynomial time algorithm

 Equivalent to Breadth First Search Algorithm (BFS)

 Basis for the GRAPH500 benchmark

 www.graph500.org

 Literally thousands of different implementations on

different computers, esp. parallel

 Established by an ND quad-domer

 Many other important Graph Algorithms

 Shortest path between 2 vertices

 BFS with a count of # of edges

 Are some vertices in a “cycle”

 Variation of BFS

 Traveling Salesman problem

 Much, much harder

 See https://en.wikipedia.org/wiki/Category:Graph_algorithms

http://www.graph500.org/
https://en.wikipedia.org/wiki/Category:Graph_algorithms

7

 (p. 299) SAT: Boolean Satisfiability

 SAT ={<wff>|wff a satisfiable Boolean formula}

 wff is well-formed-formula constructed from

 V Boolean variables

 Boolean operations AND, OR, NOT

 Satisfiability: is there a substitution of 0s and 1s to

variables that makes the wff true

 i.e. makes all clauses simultaneously true

 Unsatisfiability if no substitution makes all clauses true at

same time

 See: https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

 Clausal form:

 wff restructured as AND of a set of clauses

 Each clause an OR of a set of literals

 Each literal a variable or its negation

 For a wff in clausal form to be true

 All clauses must be true

 For any clause to be true at least one literal must be true

 Clearly there is a polynomial time verifier

 Given list of variables and their values

 Scan each clause, looking up value for each literal

8

 What is easiest approach to decidability?

 Build truth table with a row for each possible assignment

 But for V variables there are 2V rows, so this is

exponential!

 Can we ever do better?

 1SAT is trivially polynomial (linear)

 Each clause is one literal

 If any 2 clauses are a variable & its complement, then

reject

 What about 2SAT?

 Each clause has exactly 2 literals

 Ci = (Li1 v Li2), Li1, Li2 are literals from different variables

 (x v y) can also be written as ~x => y, or as ~y => x

 If x is false then y must be true

 And if y is false then x must be true

 Create a graph from the wff

 1 vertex for each possible literal

 eqvt to 2 vertices for each variable

 i.e. 1 for a variable, and 1 for its negation

 For each clause, create 2 edges following the implications

9

 Now if some variable has an assignment

 Start with the vertex for the matching literal which is now

false

 Follow all paths from that vertex (the BFS algorithm)

 This is all the literals which now must be true

 If you ever get the negation of the original literal, then a

contradiction, AND NO ASSIGNMENT IS POSSIBLE

 Equivalent to finding a cycle in the graph

 But we know that BFS is polynomial

 And we need only apply the test for each of V variable

 So 2SAT is also polynomial

 Example: (xy)(xy)(xy)(xy)

 4 Clauses, 2 variables, 4 literals

 4 vertices: x, y, x, y

 8 matching edges:

 (x,y), (y, x)

 (x,y), (y,x)

 (x, y) , (y, x)

 (x, y), (y, x)

 Path from x to y to x, so this is unsatisfiable

10

 What about 3SAT and above?

 3SAT: all clauses have 3 literals (L1, L2, L3)

 All bigger SAT problems can be converted into 3SAT

 So decidability of general SAT eqvt. to decidability of 3SAT

 Many real problems have millions of variables

 Truth Table of 2|V| thus monstrous

 Key result: No known polynomial time decider algorithm

 Virtually all include some sort of “guess and backtrack”

 Further: Large class of other problems can be shown eqvt.

to SAT

 Thus there is a large class of real-world problems for which

no polynomial-time TM appears to exist

11

 Bipartite Matching Problem (aka Marriage Problem)

 Given 2 sets A = {a1, …a|A|} & B = {b1, …b|B|} of vertices

 and set E of edges eij between ai to bi

 Is there a subset of edges where every vertex has at most

1 edge?

 Perfect Matching: is there a matching which includes

all vertices

 Known best algorithms O(|V|2.4) or O(|E|10/7)

 Maximal Matching: what matching maximizes the

number of vertices involved (not a decision problem)

12

 E.g. Bipartite Matching converts to a 2SAT problem

 Variables: one xij for each edge eij

 Assigning a 1 says ai and bj are matched by this edge

 Assigning a 0 says they are NOT matched by this edge

 For each vertex ai, generate a set of clauses (~xij, ~xik) for

all j’s and k’s for which edges from vertex ai exist

 This prevents multiple edges from being selected from

ai at same time

 If variables for any 2 edges were true, then some clause is

false.

 Large # of vertices but still polynomial

 What about “Tripartite” and above? – same as 3SAT

 No known polynomial decider algorithms

https://upload.wikimedia.org/wikipedia/commons/thumb/5/50/3-dimensional-

matching.sv g/240px-3-dimensional-matching.svg.png

