(Sec. 3.3 pp. 182-187, \& 7.4 p299). Algorithms, Graphs, SAT

- Key distinction re TMs and languages
- TM T recognizes L if for all win $L T$ accepts w
- Says nothing about what if w not in L
- TM decides L if
- T recognizes L
- If w not in L, T always halts (in reject state)
- Hilbert's $10^{\text {th }}$ problem (1900): Can any algorithm tell if a polynomial equation has any integer roots?
- Sample polynomial equation: $6 x^{3} y z^{2}+3 x y^{2}-x^{3}-10=0$
- Example does at $x=5, y=3, z=0$
- Critical point: we want yes/no answer for any polynomial
- 1970: no such algorithm exists
- Key starting point: what is an "algorithm"?
- Key Definition: 1936 Church-Turing Thesis
- Any function over the natural \#s is computable by a algorithm iff it is computable by a TM
- Each transition of a TM is a "step"
- Step takes finite time
- Finite \# of steps to get to accepting state
- "Does algorithm exist" eqvt to "Is there a TM decider"
- Back to Hilbert
- Define $\mathrm{D}=\{\mathrm{p} \mid \mathrm{p}$ is a polynomial with an integral root $\}$
- D is recognizable:
- Consider $\mathrm{D}_{1}=\{p \mid p$ a polynomial over single variable x with an integral root\}
- Recognizing TM M_{1} : Assume input string defines a p
- Start an enumerator to generate $0,1-1,2,-2, \ldots$
- For each value compute p at that value
- If a root, halt and accept
- Note: if p has no integral roots, M_{1} loops
- TM recognizer for general D generates all cases of integers 1 at a time
- Hilbert's $10^{\text {th }}$ problem equivalent: does some TM decide D
- I.e. Does some TM always halt for any p
- For D_{1} (exactly 1 variable) there are bounds that can constrain solution space (see p. 184 and problem 3.21)
- Thus we can halt M_{1} as soon as we reach these bounds
- Thus modified M_{1} is a decider for D_{1}
- Theorem from 1970: no such bounds exist for multivariable polynomials
- Cannot construct a decider for D same way as for D_{1}
- When deciders exist: do polynomial time TMs exist?
- (p. 184) Terminology for describing TMs
- (p. 185) 3 ways for describing TMs
- Formal Description: 7 tuple and δ
- Implementation Description: use English prose to describe tape movements and tape writing
- High-level Description: English prose to describe algorithm, ignoring implementation details
- Often building one TM out of composition of others
- (p.185)Notation for describing TM tapes(esp. initial tapes)
- Tape always contains a string
- Use strings to represent objects (\#s,grammars, graphs..)
- TM can be written to "decode" string representations
- Notation for string representation of object O : < O >
- Notation for multiple objects $\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots \mathrm{O}_{\mathrm{k}}=\left\langle\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots \mathrm{O}_{\mathrm{k}}\right\rangle$
- TM algorithm described as indented lines of text
- Each a stage: multiple TM operations
- Assume initial stage checks format of input tape
- (p 186) Graphs
- set of vertices, each encoded as different positive \#
- Note: book calls vertices as nodes
- set of edges between vertices, each encoded as tuple of 2 vertices
- edges may be directed (from to) or undirected
- Undirected edge eqvt to pair of directed edges
- Example of undirected graph

$$
\begin{aligned}
& \langle G\rangle= \\
& (1,2,3,4)((1,2),(2,3),(3,1),(1,4))
\end{aligned}
$$

- A graph is connected iff every vertex can be reached from every other vertex by some path of edges
- (p. 186) $A=\{<G>\mid G$ is a connected undirected graph $\}$
- <G> = string of symbols representing two lists:
- "(" list of vertex \#s separated by "," ")"
- "(" list of edges separated by "," ")"
- Each edge: "(" <vertex 1> ",", <vertex 2> ")"
- A TM decider algorithm for testing connectedness:
$\mathrm{M}=$ "On input < G\rangle, the encoding of graph G :
0 . Verify $<G>$ is formatted properly \& reject if not

1. Select $1^{\text {st }}$ vertex of G and "mark" it

- "Marking" adds a * ("dot") to leftmost symbol

2. Repeat until no new vertices unmarked: For each vertex in G, mark it if it is attached by an edge to a vertex that is already marked
3. Scan vertex list to find an unmarked vertex n_{1}

- Underline $1^{\text {st }}$ symbol

2. Scan vertex again and find $1^{\text {st }}$ dotted vertex n_{2}

- Underline that also

3. For each edge in edge list see if $\left(n_{1}, n_{2}\right)$ or $\left(n_{2}, n_{1}\right)$: If so

- Dot the undotted vertex; Remove both underlines
- Restart major step 2

3. Scan all vertices of G to determine if all are "marked"

- If yes, accept; if no reject
- Clearly this always halts on valid <G>: only finitely many vertices to scan
- Also clearly polynomial time algorithm
- Equivalent to Breadth First Search Algorithm (BFS)
- Basis for the GRAPH500 benchmark
- www.graph500.org
- Literally thousands of different implementations on different computers, esp. parallel
- Established by an ND quad-domer
- Many other important Graph Algorithms
- Shortest path between 2 vertices
- BFS with a count of \# of edges
- Are some vertices in a "cycle"
- Variation of BFS
- Traveling Salesman problem
- Much, much harder
- See https://en.wikipedia.org/wiki/Category:Graph algorithms
- (p. 299) SAT: Boolean Satisfiability
- SAT =\{<wff>|wff a satisfiable Boolean formula\}
- wff is well-formed-formula constructed from
- V Boolean variables
- Boolean operations AND, OR, NOT
- Satisfiability: is there a substitution of 0 s and 1 s to variables that makes the wff true
- i.e. makes all clauses simultaneously true
- Unsatisfiability if no substitution makes all clauses true at same time
- See: https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
- Clausal form:
- wff restructured as AND of a set of clauses
- Each clause an OR of a set of literals
- Each literal a variable or its negation
- For a wff in clausal form to be true
- All clauses must be true
- For any clause to be true at least one literal must be true
- Clearly there is a polynomial time verifier
- Given list of variables and their values
- Scan each clause, looking up value for each literal
- What is easiest approach to decidability?
- Build truth table with a row for each possible assignment
- But for V variables there are 2^{\vee} rows, so this is exponential!
- Can we ever do better?
- 1SAT is trivially polynomial (linear)
- Each clause is one literal
- If any 2 clauses are a variable \& its complement, then reject
- What about 2SAT?
- Each clause has exactly 2 literals
- $C_{i}=\left(L_{i 1} \vee L_{i 2}\right), L_{i 1}, L_{i 2}$ are literals from different variables
- ($x \vee y$) can also be written as $\sim^{\sim} x=>y$, or as $\sim y=>x$
- If x is false then y must be true
- And if y is false then x must be true
- Create a graph from the wff
- 1 vertex for each possible literal
- eqvt to 2 vertices for each variable
- i.e. 1 for a variable, and 1 for its negation
- For each clause, create 2 edges following the implications
- Now if some variable has an assignment
- Start with the vertex for the matching literal which is now false
- Follow all paths from that vertex (the BFS algorithm)
- This is all the literals which now must be true
- If you ever get the negation of the original literal, then a contradiction, AND NO ASSIGNMENT IS POSSIBLE
- Equivalent to finding a cycle in the graph
- But we know that BFS is polynomial
- And we need only apply the test for each of V variable
- So 2SAT is also polynomial
- Example: $(\neg x \vee y) \wedge(x \vee y) \wedge(x \vee \neg y) \wedge(\neg x \vee \neg y)$
- 4 Clauses, 2 variables, 4 literals
- 4 vertices: $x, y, \neg x, \neg y$
- 8 matching edges:
- (x, y), ($\neg y, \neg x)$
- ($\neg \mathrm{x}, \mathrm{y}),(\neg \mathrm{y}, \mathrm{x})$
- $(\neg x, \neg y),(y, x)$
- ($x, \neg y$), $(y, \neg x)$
- Path from $\neg x$ to y to x, so this is unsatisfiable
- What about 3SAT and above?
- 3SAT: all clauses have 3 literals $\left(L_{1}, L_{2}, L_{3}\right)$
- All bigger SAT problems can be converted into 3SAT
- So decidability of general SAT eqvt. to decidability of 3SAT
- Many real problems have millions of variables
- Truth Table of $2^{|V|}$ thus monstrous
- Key result: No known polynomial time decider algorithm
- Virtually all include some sort of "guess and backtrack"
- Further: Large class of other problems can be shown eqvt. to SAT
- Thus there is a large class of real-world problems for which no polynomial-time TM appears to exist
- Bipartite Matching Problem (aka Marriage Problem)
- Given 2 sets $A=\left\{a_{1}, \ldots a_{|A|}\right\} \& B=\left\{b_{1}, \ldots b_{|B|}\right\}$ of vertices
- and set E of edges $e_{i j}$ between a_{i} to b_{i}
- Is there a subset of edges where every vertex has at most 1 edge?

- Perfect Matching: is there a matching which includes all vertices
- Known best algorithms $\mathrm{O}\left(|\mathrm{V}|^{2.4}\right)$ or $\mathrm{O}\left(|\mathrm{E}|^{10 / 7}\right)$
- Maximal Matching: what matching maximizes the number of vertices involved (not a decision problem)
- E.g. Bipartite Matching converts to a 2SAT problem
- Variables: one x_{ij} for each edge e_{ij}
- Assigning a 1 says a_{i} and b_{j} are matched by this edge
- Assigning a 0 says they are NOT matched by this edge
- For each vertex a_{i}, generate a set of clauses ($\sim_{\mathrm{x}_{\mathrm{i}}}, \sim_{\mathrm{x}_{\mathrm{i}}}$) for all j 's and k 's for which edges from vertex a_{i} exist
- This prevents multiple edges from being selected from a_{i} at same time
- If variables for any 2 edges were true, then some clause is false.
- Large \# of vertices but still polynomial
- What about "Tripartite" and above? - same as 3SAT - No known polynomial decider algorithms

