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(Sec. 3.3 pp. 182-187, & 7.4 p299). Algorithms, Graphs, SAT  

 Key distinction re TMs and languages 

 TM T recognizes L if for all w in L T accepts w 

 Says nothing about what if w not in L 

 TM decides L if 

 T recognizes L 

 If w not in L, T always halts (in reject state) 

 Hilbert’s 10th problem (1900): Can any algorithm tell if 

a polynomial equation has any integer roots? 

 Sample polynomial equation: 6x3yz2+3xy2-x3-10=0 

 Example does at x=5, y=3, z=0 

 Critical point: we want yes/no answer for any polynomial 

 1970: no such algorithm exists 

 Key starting point: what is an “algorithm”? 

 Key Definition: 1936 Church-Turing Thesis 

 Any function over the natural #s is computable by a 

algorithm iff it is computable by a TM 

 Each transition of a TM is a “step” 

 Step takes finite time 

 Finite # of steps to get to accepting state 

 “Does algorithm exist” eqvt to “Is there a TM decider” 
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 Back to Hilbert 

 Define D = {p|p is a polynomial with an integral root} 

 D is recognizable:  

 Consider D1={p|p a polynomial over single variable x 

with an integral root} 

 Recognizing TM M1: Assume input string defines a p 

 Start an enumerator to generate 0, 1 -1, 2, -2, … 

 For each value compute p at that value 

 If a root, halt and accept 

 Note: if p has no integral roots, M1 loops 

 TM recognizer for general D generates all cases of 

integers 1 at a time 

 Hilbert’s 10th problem equivalent: does some TM decide D 

 I.e. Does some TM always halt for any p 

 For D1 (exactly 1 variable) there are bounds that can 

constrain solution space (see p. 184 and problem 3.21) 

 Thus we can halt M1 as soon as we reach these bounds 

 Thus modified M1 is a decider for D1 

 Theorem from 1970: no such bounds exist for multi-

variable polynomials 

 Cannot construct a decider for D same way as for D1 

 When deciders exist: do polynomial time TMs exist? 
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  (p. 184) Terminology for describing TMs 

 (p. 185) 3 ways for describing TMs 

 Formal Description: 7 tuple and δ  

 Implementation Description: use English prose to 

describe tape movements and tape writing 

 High-level Description:  English prose to describe 

algorithm, ignoring implementation details 

 Often building one TM out of composition of others 

 (p.185)Notation for describing TM tapes(esp. initial tapes) 

 Tape always contains a string 

 Use strings to represent objects (#s,grammars, graphs..) 

 TM can be written to “decode” string representations 

 Notation for string representation of object O: <O> 

 Notation for multiple objects O1,O2,…Ok = <O1,O2,…Ok > 

 TM algorithm described as indented lines of text 

 Each a stage: multiple TM operations 

 Assume initial stage checks format of input tape 
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 (p 186) Graphs 

  set of vertices, each encoded as different positive # 

 Note: book calls vertices as nodes 

 set of edges between vertices, each encoded as tuple of 2 

vertices 

 edges may be directed (from to) or undirected 

 Undirected edge eqvt to pair of directed edges 

 Example of undirected graph 

 

 A graph is connected iff every vertex can be reached 

from every other vertex by some path of edges 
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 (p. 186) A = {<G>| G is a connected undirected graph} 

 <G> = string of symbols representing two lists: 

 “(“ list of vertex #s separated by “,” “)” 

 “(“ list of edges separated by “,” “)” 

 Each edge: “(“ <vertex 1> “,”, <vertex 2> “)” 

 A TM decider algorithm for testing connectedness: 

M = “On input <G>, the encoding of graph G: 

0. Verify <G> is formatted properly & reject if not 

1. Select 1st vertex of G and “mark” it 

 “Marking” adds a * (“dot”) to leftmost symbol 

2. Repeat until no new vertices unmarked: For each vertex in 

G, mark it if it is attached by an edge to a vertex that is 

already marked 

1. Scan vertex list to find an unmarked vertex n1 

 Underline 1st symbol 

2. Scan vertex again and find 1st dotted vertex n2  

 Underline that also 

3. For each edge in edge list see if (n1, n2) or (n2, n1): If so 

 Dot the undotted vertex; Remove both underlines 

 Restart major step 2 

3. Scan all vertices of G to determine if all are “marked” 

 If yes, accept; if no reject 
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 Clearly this always halts on valid <G>: only finitely many 

vertices to scan 

 Also clearly polynomial time algorithm 

 Equivalent to Breadth First Search Algorithm (BFS) 

 Basis for the GRAPH500 benchmark 

 www.graph500.org 

 Literally thousands of different implementations on 

different computers, esp. parallel 

 Established by an ND quad-domer 

 Many other important Graph Algorithms 

 Shortest path between 2 vertices 

 BFS with a count of # of edges 

 Are some vertices in a “cycle” 

 Variation of BFS 

 Traveling Salesman problem 

 Much, much harder 

 See https://en.wikipedia.org/wiki/Category:Graph_algorithms  

  

http://www.graph500.org/
https://en.wikipedia.org/wiki/Category:Graph_algorithms
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 (p. 299) SAT: Boolean Satisfiability  

 SAT ={<wff>|wff a satisfiable Boolean formula} 

 wff is well-formed-formula constructed from 

 V Boolean variables 

 Boolean operations AND, OR, NOT 

 Satisfiability: is there a substitution of 0s and 1s to 

variables that makes the wff true 

 i.e. makes all clauses simultaneously true 

 Unsatisfiability if no substitution makes all clauses true at 

same time 

 See: https://en.wikipedia.org/wiki/Boolean_satisfiability_problem 

 Clausal form: 

 wff restructured as AND of a set of clauses 

 Each clause an OR of a set of literals 

 Each literal a variable or its negation 

 For a wff in clausal form to be true 

 All clauses must be true 

 For any clause to be true at least one literal must be true 

 Clearly there is a polynomial time verifier 

 Given list of variables and their values 

 Scan each clause, looking up value for each literal 
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 What is easiest approach to decidability? 

 Build truth table with a row for each possible assignment 

 But for V variables there are 2V rows, so this is 

exponential! 

 Can we ever do better? 

 1SAT is trivially polynomial (linear) 

 Each clause is one literal 

 If any 2 clauses are a variable & its complement, then 

reject 

 What about 2SAT? 

 Each clause has exactly 2 literals  

 Ci = (Li1 v Li2), Li1, Li2 are literals from different variables 

 (x v y) can also be written as ~x => y, or as ~y => x 

 If x is false then y must be true 

 And if y is false then x must be true 

 Create a graph from the wff 

 1 vertex for each possible literal 

 eqvt to 2 vertices for each variable 

 i.e. 1 for a variable, and 1 for its negation 

 For each clause, create 2 edges following the implications 
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 Now if some variable has an assignment 

 Start with the vertex for the matching literal which is now 

false 

 Follow all paths from that vertex (the BFS algorithm) 

 This is all the literals which now must be true 

 If you ever get the negation of the original literal, then a 

contradiction, AND NO ASSIGNMENT IS POSSIBLE 

 Equivalent to finding a cycle in the graph 

 But we know that BFS is polynomial 

 And we need only apply the test for each of V variable 

 So 2SAT is also polynomial 

 Example: (xy)(xy)(xy)( xy) 

 4 Clauses, 2 variables, 4 literals 

 4 vertices: x, y, x, y 

 8 matching edges: 

 (x,y), ( y, x)  

 (x,y), (y,x) 

 ( x, y) , (y, x) 

 (x, y), (y, x) 

 Path from x to y to x, so this is unsatisfiable 
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 What about 3SAT and above? 

 3SAT: all clauses have 3 literals (L1, L2, L3) 

 All bigger SAT problems can be converted into 3SAT 

 So decidability of general SAT eqvt. to decidability of 3SAT 

 Many real problems have millions of variables 

 Truth Table of 2|V| thus monstrous 

 Key result: No known polynomial time decider algorithm  

 Virtually all include some sort of “guess and backtrack” 

 Further: Large class of other problems can be shown eqvt. 

to SAT 

 Thus there is a large class of real-world problems for which 

no polynomial-time TM appears to exist 
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 Bipartite Matching Problem (aka Marriage Problem) 

 Given 2 sets A = {a1, …a|A|}  & B = {b1, …b|B|}  of vertices 

 and set E of edges eij between ai to bi 

 Is there a subset of edges where every vertex has at most 

1 edge? 

 

 Perfect Matching: is there a matching which includes 

all vertices 

 Known best algorithms O(|V|2.4) or O(|E|10/7) 

 Maximal Matching: what matching maximizes the 

number of vertices involved (not a decision problem) 
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 E.g. Bipartite Matching converts to a 2SAT problem 

 Variables: one xij for each edge eij 

 Assigning a 1 says ai and bj are matched by this edge 

 Assigning a 0 says they are NOT matched by this edge 

 For each vertex ai, generate a set of clauses (~xij, ~xik) for 

all j’s and k’s for which edges from vertex ai  exist 

 This prevents multiple edges from being selected from 

ai at same time 

 If variables for any 2 edges were true, then some clause is 

false. 

 Large # of vertices but still polynomial 

 What about “Tripartite” and above? – same as 3SAT 

 No known polynomial decider algorithms 

  
https://upload.wikimedia.org/wikipedia/commons/thumb/5/50/3-dimensional-

matching.sv g/240px-3-dimensional-matching.svg.png


