
1

(Sec. 3.3 pp. 182-187, & 7.4 p299). Algorithms, Graphs, SAT

 Key distinction re TMs and languages

 TM T recognizes L if for all w in L T accepts w

 Says nothing about what if w not in L

 TM decides L if

 T recognizes L

 If w not in L, T always halts (in reject state)

 Hilbert’s 10th problem (1900): Can any algorithm tell if

a polynomial equation has any integer roots?

 Sample polynomial equation: 6x3yz2+3xy2-x3-10=0

 Example does at x=5, y=3, z=0

 Critical point: we want yes/no answer for any polynomial

 1970: no such algorithm exists

 Key starting point: what is an “algorithm”?

 Key Definition: 1936 Church-Turing Thesis

 Any function over the natural #s is computable by a

algorithm iff it is computable by a TM

 Each transition of a TM is a “step”

 Step takes finite time

 Finite # of steps to get to accepting state

 “Does algorithm exist” eqvt to “Is there a TM decider”

2

 Back to Hilbert

 Define D = {p|p is a polynomial with an integral root}

 D is recognizable:

 Consider D1={p|p a polynomial over single variable x

with an integral root}

 Recognizing TM M1: Assume input string defines a p

 Start an enumerator to generate 0, 1 -1, 2, -2, …

 For each value compute p at that value

 If a root, halt and accept

 Note: if p has no integral roots, M1 loops

 TM recognizer for general D generates all cases of

integers 1 at a time

 Hilbert’s 10th problem equivalent: does some TM decide D

 I.e. Does some TM always halt for any p

 For D1 (exactly 1 variable) there are bounds that can

constrain solution space (see p. 184 and problem 3.21)

 Thus we can halt M1 as soon as we reach these bounds

 Thus modified M1 is a decider for D1

 Theorem from 1970: no such bounds exist for multi-

variable polynomials

 Cannot construct a decider for D same way as for D1

 When deciders exist: do polynomial time TMs exist?

3

 (p. 184) Terminology for describing TMs

 (p. 185) 3 ways for describing TMs

 Formal Description: 7 tuple and δ

 Implementation Description: use English prose to

describe tape movements and tape writing

 High-level Description: English prose to describe

algorithm, ignoring implementation details

 Often building one TM out of composition of others

 (p.185)Notation for describing TM tapes(esp. initial tapes)

 Tape always contains a string

 Use strings to represent objects (#s,grammars, graphs..)

 TM can be written to “decode” string representations

 Notation for string representation of object O: <O>

 Notation for multiple objects O1,O2,…Ok = <O1,O2,…Ok >

 TM algorithm described as indented lines of text

 Each a stage: multiple TM operations

 Assume initial stage checks format of input tape

4

 (p 186) Graphs

 set of vertices, each encoded as different positive #

 Note: book calls vertices as nodes

 set of edges between vertices, each encoded as tuple of 2

vertices

 edges may be directed (from to) or undirected

 Undirected edge eqvt to pair of directed edges

 Example of undirected graph

 A graph is connected iff every vertex can be reached

from every other vertex by some path of edges

5

 (p. 186) A = {<G>| G is a connected undirected graph}

 <G> = string of symbols representing two lists:

 “(“ list of vertex #s separated by “,” “)”

 “(“ list of edges separated by “,” “)”

 Each edge: “(“ <vertex 1> “,”, <vertex 2> “)”

 A TM decider algorithm for testing connectedness:

M = “On input <G>, the encoding of graph G:

0. Verify <G> is formatted properly & reject if not

1. Select 1st vertex of G and “mark” it

 “Marking” adds a * (“dot”) to leftmost symbol

2. Repeat until no new vertices unmarked: For each vertex in

G, mark it if it is attached by an edge to a vertex that is

already marked

1. Scan vertex list to find an unmarked vertex n1

 Underline 1st symbol

2. Scan vertex again and find 1st dotted vertex n2

 Underline that also

3. For each edge in edge list see if (n1, n2) or (n2, n1): If so

 Dot the undotted vertex; Remove both underlines

 Restart major step 2

3. Scan all vertices of G to determine if all are “marked”

 If yes, accept; if no reject

6

 Clearly this always halts on valid <G>: only finitely many

vertices to scan

 Also clearly polynomial time algorithm

 Equivalent to Breadth First Search Algorithm (BFS)

 Basis for the GRAPH500 benchmark

 www.graph500.org

 Literally thousands of different implementations on

different computers, esp. parallel

 Established by an ND quad-domer

 Many other important Graph Algorithms

 Shortest path between 2 vertices

 BFS with a count of # of edges

 Are some vertices in a “cycle”

 Variation of BFS

 Traveling Salesman problem

 Much, much harder

 See https://en.wikipedia.org/wiki/Category:Graph_algorithms

http://www.graph500.org/
https://en.wikipedia.org/wiki/Category:Graph_algorithms

7

 (p. 299) SAT: Boolean Satisfiability

 SAT ={<wff>|wff a satisfiable Boolean formula}

 wff is well-formed-formula constructed from

 V Boolean variables

 Boolean operations AND, OR, NOT

 Satisfiability: is there a substitution of 0s and 1s to

variables that makes the wff true

 i.e. makes all clauses simultaneously true

 Unsatisfiability if no substitution makes all clauses true at

same time

 See: https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

 Clausal form:

 wff restructured as AND of a set of clauses

 Each clause an OR of a set of literals

 Each literal a variable or its negation

 For a wff in clausal form to be true

 All clauses must be true

 For any clause to be true at least one literal must be true

 Clearly there is a polynomial time verifier

 Given list of variables and their values

 Scan each clause, looking up value for each literal

8

 What is easiest approach to decidability?

 Build truth table with a row for each possible assignment

 But for V variables there are 2V rows, so this is

exponential!

 Can we ever do better?

 1SAT is trivially polynomial (linear)

 Each clause is one literal

 If any 2 clauses are a variable & its complement, then

reject

 What about 2SAT?

 Each clause has exactly 2 literals

 Ci = (Li1 v Li2), Li1, Li2 are literals from different variables

 (x v y) can also be written as ~x => y, or as ~y => x

 If x is false then y must be true

 And if y is false then x must be true

 Create a graph from the wff

 1 vertex for each possible literal

 eqvt to 2 vertices for each variable

 i.e. 1 for a variable, and 1 for its negation

 For each clause, create 2 edges following the implications

9

 Now if some variable has an assignment

 Start with the vertex for the matching literal which is now

false

 Follow all paths from that vertex (the BFS algorithm)

 This is all the literals which now must be true

 If you ever get the negation of the original literal, then a

contradiction, AND NO ASSIGNMENT IS POSSIBLE

 Equivalent to finding a cycle in the graph

 But we know that BFS is polynomial

 And we need only apply the test for each of V variable

 So 2SAT is also polynomial

 Example: (xy)(xy)(xy)(xy)

 4 Clauses, 2 variables, 4 literals

 4 vertices: x, y, x, y

 8 matching edges:

 (x,y), (y, x)

 (x,y), (y,x)

 (x, y) , (y, x)

 (x, y), (y, x)

 Path from x to y to x, so this is unsatisfiable

10

 What about 3SAT and above?

 3SAT: all clauses have 3 literals (L1, L2, L3)

 All bigger SAT problems can be converted into 3SAT

 So decidability of general SAT eqvt. to decidability of 3SAT

 Many real problems have millions of variables

 Truth Table of 2|V| thus monstrous

 Key result: No known polynomial time decider algorithm

 Virtually all include some sort of “guess and backtrack”

 Further: Large class of other problems can be shown eqvt.

to SAT

 Thus there is a large class of real-world problems for which

no polynomial-time TM appears to exist

11

 Bipartite Matching Problem (aka Marriage Problem)

 Given 2 sets A = {a1, …a|A|} & B = {b1, …b|B|} of vertices

 and set E of edges eij between ai to bi

 Is there a subset of edges where every vertex has at most

1 edge?

 Perfect Matching: is there a matching which includes

all vertices

 Known best algorithms O(|V|2.4) or O(|E|10/7)

 Maximal Matching: what matching maximizes the

number of vertices involved (not a decision problem)

12

 E.g. Bipartite Matching converts to a 2SAT problem

 Variables: one xij for each edge eij

 Assigning a 1 says ai and bj are matched by this edge

 Assigning a 0 says they are NOT matched by this edge

 For each vertex ai, generate a set of clauses (~xij, ~xik) for

all j’s and k’s for which edges from vertex ai exist

 This prevents multiple edges from being selected from

ai at same time

 If variables for any 2 edges were true, then some clause is

false.

 Large # of vertices but still polynomial

 What about “Tripartite” and above? – same as 3SAT

 No known polynomial decider algorithms

https://upload.wikimedia.org/wikipedia/commons/thumb/5/50/3-dimensional-

matching.sv g/240px-3-dimensional-matching.svg.png

