(Sec. 3.3 pp. 182-187, & 7.4 p299). Algorithms, Graphs, SAT

- Key distinction re TMs and languages
  - TM T recognizes L if for all w in L T accepts w
    - Says nothing about what if w not in L
  - TM decides L if
    - T recognizes L
    - If w not in L, T always halts (in reject state)
- Hilbert's 10<sup>th</sup> problem (1900): *Can any algorithm tell if a polynomial equation has any <u>integer roots?</u>* 
  - Sample polynomial equation:  $6x^3yz^2+3xy^2-x^3-10=0$
  - Example does at x=5, y=3, z=0
  - Critical point: we want **yes/no** answer for any polynomial
  - 1970: no such algorithm exists
- Key starting point: what is an "algorithm"?
- Key Definition: 1936 **Church-Turing Thesis** 
  - Any function over the natural #s is computable by a algorithm iff it is computable by a TM
  - Each transition of a TM is a "step"
    - Step takes finite time
  - Finite # of steps to get to accepting state
- "Does algorithm exist" eqvt to "Is there a TM decider"

- Back to Hilbert
  - Define D = {p | p is a polynomial with an integral root}
  - D is recognizable:
    - Consider D<sub>1</sub>={p|p a polynomial over single variable x with an integral root}
    - Recognizing TM M<sub>1</sub>: Assume input string defines a p
      - Start an enumerator to generate 0, 1 -1, 2, -2, ...
      - For each value compute p at that value
      - If a root, halt and accept
    - Note: if p has no integral roots, M<sub>1</sub> loops
    - TM recognizer for general D generates all cases of integers 1 at a time
  - Hilbert's 10<sup>th</sup> problem equivalent: does some TM <u>decide</u> D
    - I.e. Does some TM *always halt* for any p
  - For D<sub>1</sub> (exactly 1 variable) there are bounds that can constrain solution space (see p. 184 and problem 3.21)
    - Thus we can halt M<sub>1</sub> as soon as we reach these bounds
    - Thus modified M<sub>1</sub> is a **decider** for D<sub>1</sub>
  - Theorem from 1970: <u>no such bounds exist for multi-</u> <u>variable polynomials</u>
    - Cannot construct a decider for D same way as for D<sub>1</sub>
- When deciders exist: *do polynomial time TMs exist?*

- (p. 184) Terminology for describing TMs
  - (p. 185) 3 ways for describing TMs
    - Formal Description: 7 tuple and  $\delta$
    - Implementation Description: use English prose to describe tape movements and tape writing
    - **High-level Description**: English prose to describe algorithm, ignoring implementation details
      - Often building one TM out of composition of others
  - (p.185)Notation for describing TM tapes(esp. initial tapes)
    - Tape always contains a string
    - Use strings to represent objects (#s,grammars, graphs..)
    - TM can be written to "decode" string representations
    - Notation for string representation of object O: <O>
    - Notation for multiple objects O<sub>1</sub>,O<sub>2</sub>,...O<sub>k</sub> = <O<sub>1</sub>,O<sub>2</sub>,...O<sub>k</sub> >
    - TM algorithm described as indented lines of text
      - Each a **stage**: multiple TM operations
      - Assume initial stage checks format of input tape

- (p 186) **Graphs** 
  - set of vertices, each encoded as different positive #
    - Note: book calls vertices as nodes
  - set of edges between vertices, each encoded as tuple of 2 vertices
    - edges may be **directed** (from to) or **undirected** 
      - Undirected edge eqvt to pair of directed edges

 $\langle G \rangle =$ 

• Example of undirected graph



(1,2,3,4)((1,2),(2,3),(3,1),(1,4))

• A graph is **connected** iff every vertex can be reached from every other vertex by some path of edges

- (p. 186) A = {<G>| G is a connected undirected graph}
  - <G> = string of symbols representing two lists:
    - "(" list of vertex #s separated by "," ")"
    - "(" list of edges separated by "," ")"
      - Each edge: "(" <vertex 1> ",", <vertex 2> ")"
- A TM decider algorithm for testing connectedness:
- M = "On input <G>, the encoding of graph G:
  - 0. Verify <G> is formatted properly & reject if not
  - 1. Select 1<sup>st</sup> vertex of G and "mark" it
    - "Marking" adds a \* ("dot") to leftmost symbol
  - Repeat until no new vertices unmarked: For each vertex in G, mark it if it is attached by an edge to a vertex that is already marked
    - 1. Scan vertex list to find an unmarked vertex n<sub>1</sub>
      - **Underline** 1<sup>st</sup> symbol
    - 2. Scan vertex again and find  $1^{st}$  dotted vertex  $n_2$ 
      - Underline that also
    - 3. For each edge in edge list see if  $(n_1, n_2)$  or  $(n_2, n_1)$ : If so
      - Dot the undotted vertex; Remove both underlines
      - Restart major step 2
  - 3. Scan all vertices of G to determine if all are "marked"
    - If yes, accept; if no reject

- Clearly this always halts on valid <G>: only finitely many vertices to scan
- Also clearly polynomial time algorithm
- Equivalent to Breadth First Search Algorithm (BFS)
  - Basis for the **GRAPH500** benchmark
    - www.graph500.org
    - Literally thousands of different implementations on different computers, esp. parallel
    - Established by an ND quad-domer
- Many other important Graph Algorithms
  - Shortest path between 2 vertices
    - BFS with a count of # of edges
  - Are some vertices in a "cycle"
    - Variation of BFS
  - Traveling Salesman problem
    - Much, much harder
  - See <a href="https://en.wikipedia.org/wiki/Category:Graph\_algorithms">https://en.wikipedia.org/wiki/Category:Graph\_algorithms</a>

- (p. 299) SAT: Boolean Satisfiability
- **SAT** ={<wff>|wff a satisfiable Boolean formula}
  - wff is well-formed-formula constructed from
    - V Boolean variables
    - Boolean operations AND, OR, NOT
  - Satisfiability: is there a substitution of 0s and 1s to variables that makes the wff true
    - i.e. makes all clauses simultaneously true
  - Unsatisfiability if no substitution makes all clauses true at same time
  - See: https://en.wikipedia.org/wiki/Boolean\_satisfiability\_problem
- Clausal form:
  - wff restructured as AND of a set of clauses
  - Each clause an OR of a set of literals
  - Each literal a variable or its negation
- For a wff in clausal form to be true
  - All clauses must be true
  - For any clause to be true at least one literal must be true
- Clearly there is a polynomial time verifier
  - Given list of variables and their values
  - Scan each clause, looking up value for each literal

- What is easiest approach to decidability?
  - Build truth table with a row for each possible assignment
  - But for V variables there are 2<sup>V</sup> rows, so this is exponential!
  - Can we ever do better?
- **1SAT** is trivially polynomial (linear)
  - Each clause is one literal
  - If any 2 clauses are a variable & its complement, then reject
- What about **2SAT**?
  - Each clause has exactly 2 literals
    - $C_i = (L_{i1} v L_{i2}), L_{i1}, L_{i2}$  are literals from different variables
  - (x v y) can also be written as ~x => y, or as ~y => x
    - If x is false then <u>y must be true</u>
    - And if y is false then <u>x must be true</u>
- Create a graph from the wff
  - 1 vertex for each possible literal
    - eqvt to 2 vertices for each variable
      - i.e. 1 for a variable, and 1 for its negation
  - For each clause, create 2 edges following the implications

- Now if some variable has an assignment
  - Start with the vertex for the matching literal which is now false
  - Follow all paths from that vertex (the BFS algorithm)
    - This is all the literals which now must be true
  - If you ever get the negation of the original literal, then a contradiction, AND NO ASSIGNMENT IS POSSIBLE
    - Equivalent to finding a cycle in the graph
- But we know that BFS is polynomial
  - And we need only apply the test for each of V variable
- So 2SAT is also polynomial
- Example:  $(\neg x \lor y) \land (x \lor y) \land (\neg x \lor \neg y)$ 
  - 4 Clauses, 2 variables, 4 literals
  - 4 vertices: x, y, ¬X, ¬Y
  - 8 matching edges:
    - (x,y), ( ¬y, ¬x)
    - (¬x,y), (¬y,x)
    - ( ¬x, ¬y) , (y, x)
    - (x, ¬y), (y, ¬x)
  - Path from  $\neg x$  to y to x, so this is unsatisfiable

- What about **3SAT** and above?
  - 3SAT: all clauses have 3 literals (L<sub>1</sub>, L<sub>2</sub>, L<sub>3</sub>)
  - All bigger SAT problems can be converted into 3SAT
  - So decidability of general SAT eqvt. to decidability of 3SAT
- Many real problems have millions of variables
  - Truth Table of 2<sup>|V|</sup> thus monstrous
- Key result: No known polynomial time decider algorithm
  - Virtually all include some sort of "guess and backtrack"
- Further: Large class of other problems can be shown eqvt. to SAT
- Thus there is a large class of real-world problems for which no polynomial-time TM appears to exist

- Bipartite Matching Problem (aka Marriage Problem)
  - Given 2 sets A =  $\{a_1, ..., a_{|A|}\}$  & B =  $\{b_1, ..., b_{|B|}\}$  of vertices
  - and set E of edges  $e_{ij}$  between  $a_i$  to  $b_i$
  - Is there a subset of edges where every vertex has at most 1 edge?



- Perfect Matching: is there a matching which includes all vertices
  - Known best algorithms  $O(|V|^{2.4})$  or  $O(|E|^{10/7})$
- Maximal Matching: what matching maximizes the number of vertices involved (not a decision problem)

- E.g. Bipartite Matching converts to a 2SAT problem
  - Variables: one x<sub>ij</sub> for each edge e<sub>ij</sub>
    - Assigning a 1 says a<sub>i</sub> and b<sub>j</sub> are matched by this edge
    - Assigning a 0 says they are NOT matched by this edge
  - For each vertex a<sub>i</sub>, generate a set of clauses (~x<sub>ij</sub>, ~x<sub>ik</sub>) for all j's and k's for which edges from vertex a<sub>i</sub> exist
    - This prevents multiple edges from being selected from a<sub>i</sub> at same time
  - If variables for any 2 edges were true, then some clause is false.
    - Large # of vertices but <u>still polynomial</u>
- What about "Tripartite" and above? same as 3SAT
  - No known polynomial decider algorithms



https://upload.wikimedia.org/wikipedia/commons/thumb/5/50/3-dimensionalmatching.svg/240px-3-dimensional-matching.svg.png