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(Sec. 3.3 pp. 182-187, & 7.4 p299). Algorithms, Graphs, SAT  

 Key distinction re TMs and languages 

 TM T recognizes L if for all w in L T accepts w 

 Says nothing about what if w not in L 

 TM decides L if 

 T recognizes L 

 If w not in L, T always halts (in reject state) 

 Hilbert’s 10th problem (1900): Can any algorithm tell if 

a polynomial equation has any integer roots? 

 Sample polynomial equation: 6x3yz2+3xy2-x3-10=0 

 Example does at x=5, y=3, z=0 

 Critical point: we want yes/no answer for any polynomial 

 1970: no such algorithm exists 

 Key starting point: what is an “algorithm”? 

 Key Definition: 1936 Church-Turing Thesis 

 Any function over the natural #s is computable by a 

algorithm iff it is computable by a TM 

 Each transition of a TM is a “step” 

 Step takes finite time 

 Finite # of steps to get to accepting state 

 “Does algorithm exist” eqvt to “Is there a TM decider” 
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 Back to Hilbert 

 Define D = {p|p is a polynomial with an integral root} 

 D is recognizable:  

 Consider D1={p|p a polynomial over single variable x 

with an integral root} 

 Recognizing TM M1: Assume input string defines a p 

 Start an enumerator to generate 0, 1 -1, 2, -2, … 

 For each value compute p at that value 

 If a root, halt and accept 

 Note: if p has no integral roots, M1 loops 

 TM recognizer for general D generates all cases of 

integers 1 at a time 

 Hilbert’s 10th problem equivalent: does some TM decide D 

 I.e. Does some TM always halt for any p 

 For D1 (exactly 1 variable) there are bounds that can 

constrain solution space (see p. 184 and problem 3.21) 

 Thus we can halt M1 as soon as we reach these bounds 

 Thus modified M1 is a decider for D1 

 Theorem from 1970: no such bounds exist for multi-

variable polynomials 

 Cannot construct a decider for D same way as for D1 

 When deciders exist: do polynomial time TMs exist? 
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  (p. 184) Terminology for describing TMs 

 (p. 185) 3 ways for describing TMs 

 Formal Description: 7 tuple and δ  

 Implementation Description: use English prose to 

describe tape movements and tape writing 

 High-level Description:  English prose to describe 

algorithm, ignoring implementation details 

 Often building one TM out of composition of others 

 (p.185)Notation for describing TM tapes(esp. initial tapes) 

 Tape always contains a string 

 Use strings to represent objects (#s,grammars, graphs..) 

 TM can be written to “decode” string representations 

 Notation for string representation of object O: <O> 

 Notation for multiple objects O1,O2,…Ok = <O1,O2,…Ok > 

 TM algorithm described as indented lines of text 

 Each a stage: multiple TM operations 

 Assume initial stage checks format of input tape 
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 (p 186) Graphs 

  set of vertices, each encoded as different positive # 

 Note: book calls vertices as nodes 

 set of edges between vertices, each encoded as tuple of 2 

vertices 

 edges may be directed (from to) or undirected 

 Undirected edge eqvt to pair of directed edges 

 Example of undirected graph 

 

 A graph is connected iff every vertex can be reached 

from every other vertex by some path of edges 
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 (p. 186) A = {<G>| G is a connected undirected graph} 

 <G> = string of symbols representing two lists: 

 “(“ list of vertex #s separated by “,” “)” 

 “(“ list of edges separated by “,” “)” 

 Each edge: “(“ <vertex 1> “,”, <vertex 2> “)” 

 A TM decider algorithm for testing connectedness: 

M = “On input <G>, the encoding of graph G: 

0. Verify <G> is formatted properly & reject if not 

1. Select 1st vertex of G and “mark” it 

 “Marking” adds a * (“dot”) to leftmost symbol 

2. Repeat until no new vertices unmarked: For each vertex in 

G, mark it if it is attached by an edge to a vertex that is 

already marked 

1. Scan vertex list to find an unmarked vertex n1 

 Underline 1st symbol 

2. Scan vertex again and find 1st dotted vertex n2  

 Underline that also 

3. For each edge in edge list see if (n1, n2) or (n2, n1): If so 

 Dot the undotted vertex; Remove both underlines 

 Restart major step 2 

3. Scan all vertices of G to determine if all are “marked” 

 If yes, accept; if no reject 
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 Clearly this always halts on valid <G>: only finitely many 

vertices to scan 

 Also clearly polynomial time algorithm 

 Equivalent to Breadth First Search Algorithm (BFS) 

 Basis for the GRAPH500 benchmark 

 www.graph500.org 

 Literally thousands of different implementations on 

different computers, esp. parallel 

 Established by an ND quad-domer 

 Many other important Graph Algorithms 

 Shortest path between 2 vertices 

 BFS with a count of # of edges 

 Are some vertices in a “cycle” 

 Variation of BFS 

 Traveling Salesman problem 

 Much, much harder 

 See https://en.wikipedia.org/wiki/Category:Graph_algorithms  

  

http://www.graph500.org/
https://en.wikipedia.org/wiki/Category:Graph_algorithms
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 (p. 299) SAT: Boolean Satisfiability  

 SAT ={<wff>|wff a satisfiable Boolean formula} 

 wff is well-formed-formula constructed from 

 V Boolean variables 

 Boolean operations AND, OR, NOT 

 Satisfiability: is there a substitution of 0s and 1s to 

variables that makes the wff true 

 i.e. makes all clauses simultaneously true 

 Unsatisfiability if no substitution makes all clauses true at 

same time 

 See: https://en.wikipedia.org/wiki/Boolean_satisfiability_problem 

 Clausal form: 

 wff restructured as AND of a set of clauses 

 Each clause an OR of a set of literals 

 Each literal a variable or its negation 

 For a wff in clausal form to be true 

 All clauses must be true 

 For any clause to be true at least one literal must be true 

 Clearly there is a polynomial time verifier 

 Given list of variables and their values 

 Scan each clause, looking up value for each literal 
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 What is easiest approach to decidability? 

 Build truth table with a row for each possible assignment 

 But for V variables there are 2V rows, so this is 

exponential! 

 Can we ever do better? 

 1SAT is trivially polynomial (linear) 

 Each clause is one literal 

 If any 2 clauses are a variable & its complement, then 

reject 

 What about 2SAT? 

 Each clause has exactly 2 literals  

 Ci = (Li1 v Li2), Li1, Li2 are literals from different variables 

 (x v y) can also be written as ~x => y, or as ~y => x 

 If x is false then y must be true 

 And if y is false then x must be true 

 Create a graph from the wff 

 1 vertex for each possible literal 

 eqvt to 2 vertices for each variable 

 i.e. 1 for a variable, and 1 for its negation 

 For each clause, create 2 edges following the implications 
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 Now if some variable has an assignment 

 Start with the vertex for the matching literal which is now 

false 

 Follow all paths from that vertex (the BFS algorithm) 

 This is all the literals which now must be true 

 If you ever get the negation of the original literal, then a 

contradiction, AND NO ASSIGNMENT IS POSSIBLE 

 Equivalent to finding a cycle in the graph 

 But we know that BFS is polynomial 

 And we need only apply the test for each of V variable 

 So 2SAT is also polynomial 

 Example: (xy)(xy)(xy)( xy) 

 4 Clauses, 2 variables, 4 literals 

 4 vertices: x, y, x, y 

 8 matching edges: 

 (x,y), ( y, x)  

 (x,y), (y,x) 

 ( x, y) , (y, x) 

 (x, y), (y, x) 

 Path from x to y to x, so this is unsatisfiable 
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 What about 3SAT and above? 

 3SAT: all clauses have 3 literals (L1, L2, L3) 

 All bigger SAT problems can be converted into 3SAT 

 So decidability of general SAT eqvt. to decidability of 3SAT 

 Many real problems have millions of variables 

 Truth Table of 2|V| thus monstrous 

 Key result: No known polynomial time decider algorithm  

 Virtually all include some sort of “guess and backtrack” 

 Further: Large class of other problems can be shown eqvt. 

to SAT 

 Thus there is a large class of real-world problems for which 

no polynomial-time TM appears to exist 
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 Bipartite Matching Problem (aka Marriage Problem) 

 Given 2 sets A = {a1, …a|A|}  & B = {b1, …b|B|}  of vertices 

 and set E of edges eij between ai to bi 

 Is there a subset of edges where every vertex has at most 

1 edge? 

 

 Perfect Matching: is there a matching which includes 

all vertices 

 Known best algorithms O(|V|2.4) or O(|E|10/7) 

 Maximal Matching: what matching maximizes the 

number of vertices involved (not a decision problem) 
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 E.g. Bipartite Matching converts to a 2SAT problem 

 Variables: one xij for each edge eij 

 Assigning a 1 says ai and bj are matched by this edge 

 Assigning a 0 says they are NOT matched by this edge 

 For each vertex ai, generate a set of clauses (~xij, ~xik) for 

all j’s and k’s for which edges from vertex ai  exist 

 This prevents multiple edges from being selected from 

ai at same time 

 If variables for any 2 edges were true, then some clause is 

false. 

 Large # of vertices but still polynomial 

 What about “Tripartite” and above? – same as 3SAT 

 No known polynomial decider algorithms 

  
https://upload.wikimedia.org/wikipedia/commons/thumb/5/50/3-dimensional-

matching.sv g/240px-3-dimensional-matching.svg.png


