
1

pp. 101-108. Context Free Grammars (Sec. 2.1)

 Remember: languages are sets of strings

 Also not all languages are regular: B = {0n1n|n≥0}

 Context Free Languages (CFL): a superset of Regular

Languages – but still NOT ALL POSSIBLE languages

 E.g. B = {0n1n|n≥0} is context free

 But {anbncndn| n >0} is not context free

 (p. 102) Defined by Context Free Grammars (CFG)

 ∑ as before + set of substitution rules + start variable

 Terminals are symbols from alphabet

 Nonterminals: name of set of strings

 Sometimes in “<>”

 Start variable = non-terminal for entire language

 Substitution rules: how to replace a nonterminal with

some string

 Rule format: LHS -> RHS

 LHS: nonterminal

 RHS: a string or expression over strings:

 Concatenation of strings

 Using both nonterminals & terminals

 “|” = shorthand for “or”

2

 (p. 102) Example of CFG with ∑ = {0,1}, Start = A

A -> 0A1 | B
B -> #

 (p. 103) Parse Tree: Generate a tree of strings

 starting with root as some variable

 Successively replace some variable on leaves by RHS of

rule with that variable as LHS

 See p. 103 for parse tree and another grammar

 Formal Definition: G = (V, ∑, R, S)

 V is set of names for variables (the “non-terminals”)

 ∑ is alphabet (must be disjoint from V)

 R is a set of rules: <var> -> string

 S a start variable from V

 Derivation of one string v from another:

 Assume u, v strings from (∑ U V)*

 u yields v, written u => v, if

 either u = v

 or u = xyz where

 y is a variable

 There is a rule of form y -> w (w a string)

 Where xwz = v

 Or a series of such substitutions u=>u1=>u2=>..uk=>v

3

 L(G) = Language of grammar G = {w|w in ∑*, & S => w}

 (pp. 104-105) have more examples

 (p. 106) Constructing CFG from complex CFLs

 1. Many CFLs are unions of simpler ones

 Construct CFGs for each piece, with start states Si

 and then S-> S1 |… Sk (akin to an ε edge)

 e.g. p. 106

 2. (p. 107) Constructing a CFG for a regular language

 Start with a DFA accepting the regular language

 For each state qi in Q, define a variable Ri

 If q0 is start state then make R0 the start variable

 If δ(qi, a) = qj add rule Ri -> aRj

 For each accept state qi, add rule Ri -> ε

 Example: DFA on Fig. 1.44 (p. 58)

 V = {R0, R2, R3, R13, R23, R123}, S = R13

 Rules: R13 -> aR13; R13 -> bR2; R2 -> aR23; R2 -> bR3; R23 -> aR123;

 R23 -> bR3; R3 -> aR13; R3 -> bR0; R123 -> aR123; R123 -> bR23;

 R0 -> aR0; R0 -> bR0; R13 -> ε

 E.g. R13 => bR2 =>bbR3 => bbaR13 => bba

 3. (p. 107) Language has concatenation of 2 or more

strings that seem coupled (e.g. {0n1n| n≥0})

 Use rules like R -> uRv to build left & right in sync

4

 4. (p. 107) many strings contain (recursive) substrings that

are used in other structures (e.g. p.105 – arithmetic exprs)

 Use separate variable for each such structure

 (p. 108) Ambiguity

 Some grammars can generate same string in >1 parse

trees

 If this is possible, grammar is called ambiguous

 Some CFLs inherently ambiguous (see Problem 2.29)

 E.g. (p. 108) 2 different parse trees for a+a*a from:

<expr> -> <expr>+<expr> | <expr>*<expr> | a

 <expr> => <expr>*<expr> => <expr>*a =>

<expr>+<expr>*a => <expr>+a*a => a+a*a

 <expr> => <expr>+<expr> => a+<expr> =>

a+<expr>*<expr> => a+a*<expr> = a+a*a

 Multiple derivations possible from same parse tree

 eg. <expr> => <expr>+<expr> => a+<expr> =>

a+<expr>*<expr> => a+<expr>*a = a+a*a

 Define leftmost derivation if we always replace leftmost

nonterminal first at each step

 String w is derived ambiguously in G if it has ≥2 leftmost

derivations

