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pp. 101-108. Context Free Grammars (Sec. 2.1) 

 Remember: languages are sets of strings 

 Also not all languages are regular: B = {0n1n|n≥0} 

 Context Free Languages (CFL): a superset of Regular 

Languages – but still NOT ALL POSSIBLE languages 

 E.g. B = {0n1n|n≥0} is context free 

 But {anbncndn| n >0} is not context free 

 (p. 102) Defined by Context Free Grammars (CFG)  

 ∑ as before + set of substitution rules + start variable 

 Terminals are symbols from alphabet 

 Nonterminals: name of set of strings 

 Sometimes in “<>” 

 Start variable =  non-terminal for entire language 

 Substitution rules: how to replace a nonterminal with 

some string 

 Rule format: LHS -> RHS 

 LHS:  nonterminal  

 RHS: a string or expression over strings: 

 Concatenation of  strings 

 Using both nonterminals & terminals 

  “|” = shorthand for “or”  
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 (p. 102) Example of CFG with ∑ = {0,1}, Start = A 

A -> 0A1 | B 
B -> # 

 (p. 103) Parse Tree: Generate a tree of strings 

 starting with root as some variable 

 Successively replace some variable on leaves by RHS of 

rule with that variable as LHS 

 See p. 103 for parse tree and another grammar 

 Formal Definition: G = (V, ∑, R, S) 

 V is set of names for variables (the “non-terminals”) 

 ∑ is alphabet (must be disjoint from V) 

 R is a set of rules: <var> -> string 

 S a start variable from V 

 Derivation of one string v from another: 

 Assume u, v strings from (∑ U V)* 

 u yields v, written u => v,  if  

 either u = v 

 or u = xyz where  

 y is a variable  

 There is a rule of form y -> w (w a string) 

 Where xwz = v 

 Or a series of such substitutions u=>u1=>u2=>..uk=>v 
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 L(G) = Language of grammar G = {w|w in ∑*, & S => w} 

 (pp. 104-105) have more examples 

 (p. 106) Constructing CFG from complex CFLs 

 1. Many CFLs are unions of simpler ones 

 Construct CFGs for each piece, with start states Si  

 and then S-> S1 |… Sk (akin to an ε edge) 

 e.g. p. 106 

 2. (p. 107) Constructing a CFG for a regular language 

 Start with a DFA accepting the regular language 

 For each state qi in Q, define a variable Ri  

 If q0 is start state then make R0 the start variable 

 If δ(qi, a) = qj add rule Ri -> aRj  

 For each accept state qi, add rule Ri -> ε 

 Example: DFA on Fig. 1.44 (p. 58) 

 V = {R0, R2, R3, R13, R23, R123}, S = R13 

 Rules: R13 -> aR13; R13 -> bR2; R2 -> aR23; R2 -> bR3; R23 -> aR123;  

 R23 -> bR3; R3 -> aR13; R3 -> bR0; R123 -> aR123; R123 -> bR23;  

 R0 -> aR0; R0 -> bR0; R13 -> ε 

 E.g. R13 => bR2 =>bbR3 => bbaR13 => bba 

 3. (p. 107) Language has concatenation of 2 or more 

strings that seem coupled (e.g. {0n1n| n≥0}) 

 Use rules like R -> uRv to build left & right in sync 
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 4. (p. 107) many strings contain (recursive) substrings that 

are used in other structures (e.g. p.105 – arithmetic exprs) 

 Use separate variable for each such structure 

 (p. 108) Ambiguity 

 Some grammars can generate same string in >1 parse 

trees 

 If this is possible, grammar is called ambiguous  

 Some CFLs inherently ambiguous (see Problem 2.29) 

 E.g. (p. 108) 2 different parse trees for a+a*a from: 

<expr> -> <expr>+<expr> | <expr>*<expr> | a  

 <expr> => <expr>*<expr> => <expr>*a => 

<expr>+<expr>*a => <expr>+a*a => a+a*a 

 <expr> => <expr>+<expr> => a+<expr> => 

a+<expr>*<expr> => a+a*<expr> = a+a*a 

 Multiple derivations possible from same parse tree 

 eg. <expr> => <expr>+<expr> => a+<expr> => 

a+<expr>*<expr> => a+<expr>*a = a+a*a 

 Define leftmost derivation if we always replace leftmost 

nonterminal first at each step 

 String w is derived ambiguously in G if it has ≥2 leftmost 

derivations 

 


