pp. 101-108. Context Free Grammars (Sec. 2.1)

- Remember: languages are sets of strings
- Also not all languages are regular: $B = \{0^n 1^n | n \ge 0\}$
- Context Free Languages (CFL): a superset of Regular Languages but still NOT ALL POSSIBLE languages
 - E.g. $B = \{0^n 1^n | n \ge 0\}$ is context free
 - But {aⁿbⁿcⁿdⁿ | n >0} is <u>not</u> context free
- (p. 102) Defined by **Context Free Grammars (CFG)**
 - ∑ as before + set of **substitution rules** + **start variable**
 - Terminals are symbols from alphabet
 - Nonterminals: name of set of strings
 - Sometimes in "<>"
 - **Start variable** = non-terminal for entire language
 - Substitution rules: how to replace a nonterminal with some string
 - Rule format: LHS -> RHS
 - LHS: nonterminal
 - **RHS**: a string or expression over strings:
 - Concatenation of strings
 - Using both nonterminals & terminals
 - "|" = shorthand for "or"

- (p. 102) Example of CFG with ∑ = {0,1}, Start = A
 A -> 0A1 | B
 B -> #
- (p. 103) Parse Tree: Generate a tree of strings
 - starting with root as some variable
 - Successively replace some variable on leaves by RHS of rule with that variable as LHS
 - See p. 103 for parse tree and another grammar
- Formal Definition: G = (V, ∑, R, S)
 - V is set of names for variables (the "non-terminals")
 - ∑ is alphabet (must be disjoint from V)
 - R is a set of rules: <var> -> string
 - S a start variable from V
- **Derivation** of one string v from another:
 - Assume u, v strings from $(\Sigma U V)^*$
 - u **yields** v, written u => v, if
 - either u = v
 - or u = xyz where
 - y is a variable
 - There is a rule of form y -> w (w a string)
 - Where xwz = v
 - Or a series of such substitutions u=>u₁=>u₂=>..u_k=>v

- L(G) = Language of grammar G = $\{w | w \text{ in } \Sigma^*, \& S => w\}$
- (pp. 104-105) have more examples
- (p. 106) Constructing CFG from complex CFLs
 - 1. Many CFLs are unions of simpler ones
 - Construct CFGs for each piece, with start states S_i
 - and then S-> $S_1 \mid ... \mid S_k$ (akin to an ε edge)
 - e.g. p. 106
 - 2. (p. 107) Constructing a CFG for a regular language
 - Start with a DFA accepting the regular language
 - For each state q_i in Q, define a variable R_i
 - If q₀ is start state then make R₀ the start variable
 - If $\delta(q_i, a) = q_j add rule R_i \rightarrow aR_j$
 - For each accept state q_i, add rule R_i -> ε
 - Example: DFA on Fig. 1.44 (p. 58)
 - V = {R₀, R₂, R₃, R₁₃, R₂₃, R₁₂₃}, S = R₁₃
 - Rules: R₁₃ -> aR₁₃; R₁₃ -> bR₂; R₂ -> aR₂₃; R₂ -> bR₃; R₂₃ -> aR₁₂₃;
 - $R_{23} \rightarrow bR_3$; $R_3 \rightarrow aR_{13}$; $R_3 \rightarrow bR_0$; $R_{123} \rightarrow aR_{123}$; $R_{123} \rightarrow bR_{23}$;
 - $R_0 \rightarrow aR_0$; $R_0 \rightarrow bR_0$; $R_{13} \rightarrow \epsilon$
 - E.g. R₁₃ => bR₂ =>bbR₃ => bbaR₁₃ => bba
 - 3. (p. 107) Language has concatenation of 2 or more strings that seem coupled (e.g. {0ⁿ1ⁿ| n≥0})
 - Use rules like R -> uRv to build left & right in sync

- 4. (p. 107) many strings contain (recursive) substrings that are used in other structures (e.g. p.105 arithmetic exprs)
 - Use separate variable for each such structure
- (p. 108) Ambiguity
 - Some grammars can generate same string in >1 parse trees
 - If this is possible, grammar is called ambiguous
 - Some CFLs inherently ambiguous (see Problem 2.29)
 - E.g. (p. 108) 2 different parse trees for a+a*a from:
 <expr> -> <expr>+<expr> | <expr>*<expr> | a
 - <expr> => <expr>*<expr> => <expr>*a =>
 <expr>+<expr>*a => <expr>+a*a => a+a*a
 - <expr> => <expr>+<expr> => a+<expr> =>
 a+<expr>*<expr> => a+a*<expr> = a+a*a
 - Multiple derivations possible from same parse tree
 - eg. <expr> => <expr>+<expr> => a+<expr> => a+<expr>*<expr> => a+<expr>*a = a+a*a
 - Define leftmost derivation if we always replace leftmost nonterminal first at each step
 - String w is derived ambiguously in G if it has ≥2 leftmost derivations