
1

(pp. 117-124) PDAs and CFGs (Sec. 2.2)

 A language is context free iff all strings in L can be

generated by some context free grammar

 Theorem 2.20: L is Context Free iff a PDA accepts it

 I.e. if L is context free than some PDA accepts it

 AND if a PDA accepts L, then it is context free

 Outline of proof: must prove in both directions

 If language A is CF, then we construct a PDA P

 Use stack to keep the right hand of the intermediate

string that includes the leftmost variable on top

 Create transition rules from grammar rules

 Use nondeterministic choice of rules to match terminals

 If a PDA P recognizes L, then L is CF

 Proof by constructing a CFG that matches

2

 (p117) 1st part: if G=(V,∑,R,S) is CFG for L, then some

PDA P=(Q,∑,Γ,δ,qstart,F) accepts it

 Proof: Build the PDA from the Grammar

 Overview of proof by construction

 Assume G=(V,∑,R,S)

 Γε = V U ∑ U {$, ε}

 Alphabet + non-terminals+special characters $, ε

 3 common states: qstart, qloop, qaccept

 F = {qaccept}

 Additional states added for each grammar rule

 Extra states for rules like A->xyz

 Self-loop on qloop for rules like A->a

A->xyz

A->a

3

 Overview of PDA P in operation (see Fig. 2.26):

 Start with pushing “S$” onto stack (with S on top)

 Used $ to mark bottom of stack

 Repeatedly loop around state qloop

 If stack top is $, enter accept state

 If stack top is non-terminal A, select an edge (non-

deterministically) based on a rule for A

 Pop the variable

 Push the RHS (in reverse order)

 If stack top is terminal “a”, next symbol on input

must be “a” to be accepted. Pop a.

A->xyz

A->a

4

A->a

 Formal Construction of P from Grammar

 Remember PDA transition rule specifies pair (q, x)

 q is next state

 x is character to push on stack

 Q = {qstart, qloop, qaccept} U E

 qloop is special state where all grammar rules start &

end

 E = all states generated by grammar rules as

discussed below

 F = { qaccept}

 Add startup transitions to push S$ on start

 δ(qstart, ε, ε) ={(q1, $)}, q1 a new state in E

 δ(q1, ε, ε) ={(qloop, S)}

 Note shorthand “single edge” ε, ε->S$

 For each terminal a in ∑, add the following self-loop

 δ(qloop, a, a) ={(qloop, ε)} (We

match the a and pop from

stack)

 To detect acceptance, add rule

 δ(qloop, ε, $) ={(qaccept, ε)}

5

 (p.11(0 For kth rule S->u1u2…uL, ui from ∑ U V

 δ(qloop, ε, S) includes (qk,1, uL), q1 a new state

 Add L-1 transitions to push u1u2…uL-1

onto stack, with u1 on top as follows

 δ(qk,1, ε, ε) = {(qk,2, uL-1)}, qk,2 a new

state in E

 δ(qk,2, ε, ε) = {(qk,3, uL-2)}, qk,3 a new

state in E

 …

 δ(qk,L-2, ε, ε) = {(qk,L-1, u2)}, ql a new

state in E

 δ(qk,L-1, ε, ε) = {(qloop, u1)}

 (p. 119, Fig. 2.23) Book uses shorthand a,s->w

(w a string) on edge for sequence of steps:

 a,s->wn

 ε,ε->wn-1

 …

 ε,ε->w1

 (p. 120) Final machine looks like Fig.2.24

 (p.120) Example problem Fig.2.25

 (p. 155) See also problems 2.5, 2.7, 2.9 esp. 2.11, and

create PDAs from CFGs 2.13, 2.14. 2.46

Shorthand

A->xyz

6

 (p. 121) Now prove if PDA accepts L, L must be CF

 Again by construction of a CFG from PDA

 Modify P slightly

 Ensure a single accept state qaccept

 From any prior accept state, add set of transitions

that ensure stack is empty before final accept state

 Ensure each transition either pushes or pops but not

both or neither

 If a transition does both (δ(q,a,x)->{(q’,y)}),

 add new intermediate state

 Transition from original state does pop: a,x->ε

 Transition from new state does push: ε,ε->y

 If a transition does neither (δ(q,ε,ε)->{(q’,ε)},

 add new state and use any terminal x

 Transition from original state pushes x: a,ε->x

 Transition from new state pops that x: ε,x->ε

7

 Construct G = (V,∑,R,S)

 ∑ the same

 V = {Apq | p, q in Q} – 1 symbol for each pair of states

 S = Aq0,qaccept

 Construct grammar rules R as follows

 For each p,q,r,s in Q, u in Γ, and a,b in ∑

 If δ(p, a, ε) contains (r,u) (we are pushing u)

 And δ(s, b, u) contains (q, ε) (we are popping u)

 Then add grammar rule Apq -> aArsb

 For each p,q,r in Q

 Then add grammar rule Apq -> AprArs

 For each p in Q

 Then add grammar rule App -> ε

 See p.122 Figs. 2.28 for notional pictures of stack height

8

 (p. 123) Claim 2.30. If variable Apq generates string x, then

x can bring P from state p with an empty stack to state q

with empty stack

 Proof by induction on # of steps in derivation of x

 Basis step: it took 1 step

 Only grammar rules with no RHS variables are App->ε

 i.e. ε must take P from p to p without pushing

anything onto empty stack

 Induction Hypothesis: assume true for derivations of

length at most k, k≥1.

 Induction step: prove true for derivations of length k+1

 Suppose Apq=>x with k+1 steps

 Two possibilities

 First case: Apq -> aArsb for some a,b, r,s

 Ars must have generated y where x = ayb

 But this must have happened in k steps, so P

can go from r to s on empty stack

 Because Apq -> aArsb is a rule in G

 δ(p, a, ε) contains (r, u) for some u

 i.e. it pushes u

 and δ(s, b, u) contains (q, ε)

 i.r. it pops u

9

 Thus if P starts at p with empty stack

 After reading a it goes to state r with u on

stack

 Then reading y brings P to s and leaves u

on stack

 Second case: Apq =>AprArq

 Assume x=yz where

 Apr=>y in at most k steps

 Ars=>z in at most k steps

 Then induction hypothesis says y can bring P from p

to r, and z can bring P from r to q, with empty

stacks on both ends

 (p.123) Claim 2.31: If we can bring P from p to q with

empty stacks on both sides then Apq generates x

 (p. 124) Corollary 2.32. Every regular language is context

free.

