(pp. 117-124) PDAs and CFGs (Sec. 2.2)

- A language is context free iff all strings in L can be generated by some context free grammar
- Theorem 2.20: L is Context Free iff a PDA accepts it
 - I.e. if L is context free than some PDA accepts it
 - AND if a PDA accepts L, then it is context free
- Outline of proof: must prove in both directions
 - If language A is CF, then we construct a PDA P
 - Use stack to keep the right hand of the intermediate string that includes the leftmost variable on top
 - Create transition rules from grammar rules
 - Use nondeterministic choice of rules to match terminals
 - If a PDA P recognizes L, then L is CF
 - Proof by constructing a CFG that matches

- (p117) 1st part: if G=(V,Σ,R,S) is CFG for L, then some PDA P=(Q,Σ,Γ,δ,q_{start},F) accepts it
 - Proof: Build the PDA from the Grammar
 - Overview of proof by construction
 - Assume G=(V,∑,R,<mark>S</mark>)
 - $\Gamma_{\epsilon} = V \cup \sum U \{\$, \epsilon\}$
 - Alphabet + non-terminals+special characters \$, ε
 - 3 common states: q_{start}, q_{loop}, q_{accept}
 - $F = \{q_{accept}\}$
 - Additional states added for each grammar rule
 - Extra states for rules like A->xyz
 - Self-loop on q_{loop} for rules like A->a

• Overview of PDA P in operation (see Fig. 2.26):

- Start with pushing "S\$" onto stack (with S on top)
 - Used \$ to mark bottom of stack
- Repeatedly loop around state q_{loop}
 - If stack top is \$, enter accept state
 - If stack top is non-terminal A, select an edge (nondeterministically) based on a rule for A
 - Pop the variable
 - Push the RHS (in reverse order)
 - If stack top is terminal "a", next symbol on input must be "a" to be accepted. Pop a.

- Formal Construction of P from Grammar
 - Remember PDA transition rule specifies pair (q, x)
 - q is next state
 - x is character to push on stack
 - $Q = \{q_{start}, q_{loop}, q_{accept}\} U E$
 - q_{loop} is special state where all grammar rules start & end
 - E = all states generated by grammar rules as discussed below
 - $F = \{ q_{accept} \}$
 - Add startup transitions to push S\$ on start
 - $\delta(q_{start}, \epsilon, \epsilon) = \{(q_1, \$)\}, q_1 a new state in E$
 - δ(q₁, ε, ε) ={(q_{loop}, S)}
 - Note shorthand "single edge" ε, ε->S\$
 - For each terminal a in Σ , add the following self-loop
 - δ(q_{loop}, a, a) ={(q_{loop}, ε)} (We match the a and pop from stack)
 - To detect acceptance, add rule
 - δ(q_{loop}, ε, \$) ={(q_{accept}, ε)}

- (p.11(0 For kth rule S-> $u_1u_2...u_L$, u_i from $\sum U V$
 - $\delta(q_{loop}, \epsilon, S)$ includes $(q_{k,1}, u_L)$, q_1 a new state
 - Add L-1 transitions to push u₁u₂...u_{L-1} onto stack, with u₁ on top as follows
 - δ(q_{k,1}, ε, ε) = {(q_{k,2}, u_{L-1})}, q_{k,2} a new state in E
 - δ(q_{k,2}, ε, ε) = {(q_{k,3}, u_{L-2})}, q_{k,3} a new state in E

- ...
- δ(q_{k,L-2}, ε, ε) = {(q_{k,L-1}, u₂)}, q_l a new state in E
- $\delta(q_{k,L-1}, \epsilon, \epsilon) = \{(q_{loop}, u_1)\}$
- (p. 119, Fig. 2.23) Book uses shorthand a,s->w
 (w a string) on edge for sequence of steps:

- ε,ε->W_{n-1}
- ...
- ε,ε->w₁
- (p. 120) Final machine looks like Fig.2.24
- (p.120) Example problem Fig.2.25
- (p. 155) See also problems 2.5, 2.7, 2.9 esp. 2.11, and create PDAs from CFGs 2.13, 2.14. 2.46

- (p. 121) Now prove if PDA accepts L, L must be CF
- Again by construction of a CFG from PDA
 - Modify P slightly
 - Ensure a single accept state q_{accept}
 - From any prior accept state, add set of transitions that ensure stack is empty before final accept state
 - Ensure each transition *either* pushes or pops *but not both or neither*
 - If a transition does <u>both</u> (δ(q,a,x)->{(q',y)}),
 - add new intermediate state
 - Transition from original state does pop: a,x->ε
 - Transition from new state does push: ε,ε->y
 - If a transition does <u>neither</u> $(\delta(q,\epsilon,\epsilon) \rightarrow \{(q',\epsilon)\},$
 - add new state and use any terminal x
 - Transition from original state pushes x: a,ε->x
 - Transition from new state pops that x: $\varepsilon,x->\varepsilon$

- Construct G = (V,∑,R,S)
 - ∑ the same
 - $V = {A_{pq} | p, q in Q} 1$ symbol for each pair of states
 - $S = A_{q0,qaccept}$
 - Construct grammar rules R as follows
 - For each p,q,r,s in Q, u in Γ , and a,b in Σ
 - If $\delta(p, a, \varepsilon)$ contains (r,u) (we are pushing u)
 - And $\delta(s, b, u)$ contains (q, ϵ) (we are popping u)
 - Then add grammar rule A_{pq} -> aA_{rs}b
 - For each p,q,r in Q
 - Then add grammar rule A_{pq} -> A_{pr}A_{rs}
 - For each p in Q
 - Then add grammar rule $A_{pp} \rightarrow \epsilon$
- See p.122 Figs. 2.28 for notional pictures of stack height

- (p. 123) Claim 2.30. If variable A_{pq} generates string x, then x can bring P from state p with an empty stack to state q with empty stack
 - Proof by induction on # of steps in derivation of x
 - Basis step: it took 1 step
 - Only grammar rules with no RHS variables are A_{pp} -> ϵ
 - i.e. ε must take P from p to p without pushing anything onto empty stack
 - Induction Hypothesis: assume true for derivations of length at most k, k≥1.
 - Induction step: prove true for derivations of length k+1
 - Suppose A_{pq}=>x with k+1 steps
 - Two possibilities
 - First case: A_{pq} -> aA_{rs}b for some a,b, r,s
 - A_{rs} must have generated y where x = ayb
 - But this must have happened in k steps, so P can go from r to s on empty stack
 - Because $A_{pq} \rightarrow aA_{rs}b$ is a rule in G
 - $\delta(p, a, \epsilon)$ contains (r, u) for some u
 - i.e. it pushes u
 - and $\delta(s, b, u)$ contains (q, ϵ)
 - i.r. it pops u

- Thus if P starts at p with empty stack
 - After reading a it goes to state r with u on stack
 - Then reading y brings P to s and leaves u on stack
- Second case: A_{pq} =>A_{pr}A_{rq}
 - Assume x=yz where
 - A_{pr}=>y in at most k steps
 - A_{rs}=>z in at most k steps
- Then induction hypothesis says y can bring P from p to r, and z can bring P from r to q, with empty stacks on both ends
- (p.123) Claim 2.31: If we can bring P from p to q with empty stacks on both sides then A_{pq} generates x
- (p. 124) Corollary 2.32. Every regular language is context free.