(pp. 117-124) PDAs and CFGs (Sec. 2.2)

- A language is context free iff all strings in L can be generated by some context free grammar
- Theorem 2.20: L is Context Free iff a PDA accepts it
- I.e. if L is context free than some PDA accepts it
- AND if a PDA accepts L, then it is context free
- Outline of proof: must prove in both directions
- If language A is CF, then we construct a PDA P
- Use stack to keep the right hand of the intermediate string that includes the leftmost variable on top
- Create transition rules from grammar rules
- Use nondeterministic choice of rules to match terminals
- If a PDA P recognizes L, then L is CF
- Proof by constructing a CFG that matches
- (p117) $1^{\text {st }}$ part: if $G=(V, \Sigma, R, S)$ is CFG for L, then some PDA $P=\left(Q, \Sigma, \Gamma, \delta, q_{\text {start }}, F\right)$ accepts it
- Proof: Build the PDA from the Grammar
- Overview of proof by construction
- Assume $\mathrm{G}=(\mathrm{V}, \mathrm{L}, \mathrm{R}, \mathrm{S})$
- $\Gamma_{\varepsilon}=\mathrm{V} \cup \sum \mathrm{U}\{\$, \varepsilon\}$
- Alphabet + non-terminals+special characters $\$, \varepsilon$
- 3 common states: $q_{\text {start }}, q_{\text {loop }}, q_{\text {accept }}$
- $F=\left\{q_{\text {accept }}\right\}$
- Additional states added for each grammar rule
- Extra states for rules like A->xyz
- Self-loop on qloop for rules like A->a

- Overview of PDA P in operation (see Fig. 2.26):
- Start with pushing "S\$" onto stack (with S on top)
- Used \$ to mark bottom of stack
- Repeatedly loop around state $\mathrm{q}_{\text {loop }}$
- If stack top is \$, enter accept state
- If stack top is non-terminal \mathbf{A}, select an edge (nondeterministically) based on a rule for A
- Pop the variable
- Push the RHS (in reverse order)
- If stack top is terminal " a ", next symbol on input must be "a" to be accepted. Pop a.
- Formal Construction of P from Grammar
- Remember PDA transition rule specifies pair (q, x)
- q is next state
- x is character to push on stack
- $Q=\left\{q_{\text {start }}, q_{\text {loop }}, q_{\text {accept }}\right\} \cup E$
- $\mathrm{q}_{\text {loop }}$ is special state where all grammar rules start \& end
- $\mathrm{E}=$ all states generated by grammar rules as discussed below
- $F=\left\{q_{\text {accept }}\right\}$
- Add startup transitions to push $\mathrm{S} \$$ on start
- $\delta\left(\mathrm{q}_{\text {start }}, \varepsilon, \varepsilon\right)=\left\{\left(\mathrm{q}_{1}, \$\right)\right\}, \mathrm{q}_{1}$ a new state in E
- $\delta\left(\mathrm{q}_{1}, \varepsilon, \varepsilon\right)=\left\{\left(\mathrm{q}_{\text {loop }}, \mathrm{S}\right)\right\}$
- Note shorthand "single edge" ε, ε->S\$
- For each terminal a in \sum, add the following self-loop
- $\delta\left(q_{\text {loop }}, a, a\right)=\left\{\left(q_{\text {loop }}, \varepsilon\right)\right\}$ (We match the a and pop from stack)
- To detect acceptance, add rule
- $\delta\left(\mathrm{q}_{\text {loop }}, \varepsilon, \$\right)=\left\{\left(\mathrm{q}_{\text {accept }}, \varepsilon\right)\right\}$

- (p.11(0 For kth rule $S->u_{1} u_{2} \ldots u_{L}, u_{i}$ from $\sum U V$
- $\delta\left(q_{\text {loop }}, \varepsilon, S\right)$ includes $\left(q_{k, 1}, u_{\mathrm{L}}\right), q_{1}$ a new state
- Add L-1 transitions to push $\mathrm{u}_{1} \mathrm{u}_{2} \ldots \mathrm{u}_{\mathrm{L}-1}$ onto stack, with u_{1} on top as follows
- $\delta\left(\mathrm{q}_{\mathrm{k}, 1}, \varepsilon, \varepsilon\right)=\left\{\left(\mathrm{q}_{\mathrm{k}, 2}, \mathrm{u}_{\mathrm{L}-1}\right)\right\}, \mathrm{q}_{\mathrm{k}, 2}$ a new state in E
- $\delta\left(\mathrm{q}_{\mathrm{k}, 2}, \varepsilon, \varepsilon\right)=\left\{\left(\mathrm{q}_{\mathrm{k}, 3}, \mathrm{u}_{\mathrm{L}-2}\right)\right\}, \mathrm{q}_{\mathrm{k}, 3}$ a new state in E
- ...

- $\delta\left(\mathrm{q}_{\mathrm{k}, \mathrm{L}-2}, \varepsilon, \varepsilon\right)=\left\{\left(\mathrm{q}_{\mathrm{k}, \mathrm{L}-1}, \mathrm{u}_{2}\right)\right\}, \mathrm{q}_{\mathrm{l}}$ a new state in E
- $\delta\left(\mathrm{q}_{\mathrm{k}, \mathrm{L}-1}, \varepsilon, \varepsilon\right)=\left\{\left(\mathrm{q}_{\text {loор }}, \mathrm{u}_{1}\right)\right\}$
- (p. 119, Fig. 2.23) Book uses shorthand a,s->w (w a string) on edge for sequence of steps:
- $\mathrm{a}, \mathrm{s}->\mathrm{W}_{\mathrm{n}}$
- $\varepsilon, \varepsilon->W_{n-1}$
- ...
- $\varepsilon, \varepsilon->W_{1}$
- (p.120) Example problem Fig. 2.25

- (p. 155) See also problems 2.5, 2.7, 2.9 esp. 2.11, and create PDAs from CFGs 2.13, 2.14. 2.46
- (p. 121) Now prove if PDA accepts L, L must be CF
- Again by construction of a CFG from PDA
- Modify P slightly
- Ensure a single accept state $\mathrm{q}_{\text {accept }}$
- From any prior accept state, add set of transitions that ensure stack is empty before final accept state
- Ensure each transition either pushes or pops but not both or neither
- If a transition does both ($\left.\delta(q, a, x)->\left\{\left(q^{\prime}, y\right)\right\}\right)$,
- add new intermediate state
- Transition from original state does pop: a,x->ع
- Transition from new state does push: $\varepsilon, \varepsilon->y$
- If a transition does neither $\left(\delta(q, \varepsilon, \varepsilon)->\left\{\left(q^{\prime}, \varepsilon\right)\right\}\right.$,
- add new state and use any terminal x
- Transition from original state pushes $x: a, \varepsilon->x$
- Transition from new state pops that $\mathrm{x}: \varepsilon, \mathrm{x}->\varepsilon$
- Construct $G=(V, \Sigma, R, S)$
- \sum the same
- $V=\left\{A_{p q} \mid p, q\right.$ in $\left.Q\right\}-1$ symbol for each pair of states
- $S=A_{q 0, q a c c e p t}$
- Construct grammar rules R as follows
- For each p, q, r, s in Q, u in Γ, and a, b in \sum
- If $\delta(p, a, \varepsilon)$ contains (r, u) (we are pushing u)
- And $\delta(s, b, u)$ contains (q, ε) (we are popping u)
- Then add grammar rule $A_{p q}->\mathrm{aA}_{\mathrm{rs}} b$
- For each p,q,r in Q
- Then add grammar rule $A_{p q}->A_{p r} A_{r s}$
- For each p in Q
- Then add grammar rule $A_{p p}->\varepsilon$
- See p. 122 Figs. 2.28 for notional pictures of stack height
- (p. 123) Claim 2.30. If variable $A_{p q}$ generates string x, then x can bring P from state p with an empty stack to state q with empty stack
- Proof by induction on \# of steps in derivation of x
- Basis step: it took 1 step
- Only grammar rules with no RHS variables are $A_{p p}->\varepsilon$
- i.e. ε must take P from p to p without pushing anything onto empty stack
- Induction Hypothesis: assume true for derivations of length at most $\mathrm{k}, \mathrm{k} \geq 1$.
- Induction step: prove true for derivations of length $k+1$
- Suppose $A_{p q}=>x$ with $k+1$ steps
- Two possibilities
- First case: $A_{p q}->A_{r s} b$ for some a, b, r, s
- $A_{r s}$ must have generated y where $x=a y b$
- But this must have happened in k steps, so P can go from r to s on empty stack
- Because $A_{p q}->A_{r s} b$ is a rule in G
- $\delta(p, a, \varepsilon)$ contains (r, u) for some u
- i.e. it pushes u
- and $\delta(s, b, u)$ contains (q, ε)
- i.r. it pops u
- Thus if P starts at p with empty stack
- After reading a it goes to state r with u on stack
- Then reading y brings P to s and leaves u on stack
- Second case: $A_{p q}=>A_{p r} A_{r q}$
- Assume $x=y z$ where
- $A_{p r}=>y$ in at most k steps
- $A_{r s}=>z$ in at most k steps
- Then induction hypothesis says y can bring P from p to r, and z can bring P from r to q, with empty stacks on both ends
- (p.123) Claim 2.31: If we can bring P from p to q with empty stacks on both sides then $A_{p q}$ generates x
- (p.124) Corollary 2.32. Every regular language is context free.

