
1

(pp. 117-124) PDAs and CFGs (Sec. 2.2)

 A language is context free iff all strings in L can be

generated by some context free grammar

 Theorem 2.20: L is Context Free iff a PDA accepts it

 I.e. if L is context free than some PDA accepts it

 AND if a PDA accepts L, then it is context free

 Outline of proof: must prove in both directions

 If language A is CF, then we construct a PDA P

 Use stack to keep the right hand of the intermediate

string that includes the leftmost variable on top

 Create transition rules from grammar rules

 Use nondeterministic choice of rules to match terminals

 If a PDA P recognizes L, then L is CF

 Proof by constructing a CFG that matches

2

 (p117) 1st part: if G=(V,∑,R,S) is CFG for L, then some

PDA P=(Q,∑,Γ,δ,qstart,F) accepts it

 Proof: Build the PDA from the Grammar

 Overview of proof by construction

 Assume G=(V,∑,R,S)

 Γε = V U ∑ U {$, ε}

 Alphabet + non-terminals+special characters $, ε

 3 common states: qstart, qloop, qaccept

 F = {qaccept}

 Additional states added for each grammar rule

 Extra states for rules like A->xyz

 Self-loop on qloop for rules like A->a

A->xyz

A->a

3

 Overview of PDA P in operation (see Fig. 2.26):

 Start with pushing “S$” onto stack (with S on top)

 Used $ to mark bottom of stack

 Repeatedly loop around state qloop

 If stack top is $, enter accept state

 If stack top is non-terminal A, select an edge (non-

deterministically) based on a rule for A

 Pop the variable

 Push the RHS (in reverse order)

 If stack top is terminal “a”, next symbol on input

must be “a” to be accepted. Pop a.

A->xyz

A->a

4

A->a

 Formal Construction of P from Grammar

 Remember PDA transition rule specifies pair (q, x)

 q is next state

 x is character to push on stack

 Q = {qstart, qloop, qaccept} U E

 qloop is special state where all grammar rules start &

end

 E = all states generated by grammar rules as

discussed below

 F = { qaccept}

 Add startup transitions to push S$ on start

 δ(qstart, ε, ε) ={(q1, $)}, q1 a new state in E

 δ(q1, ε, ε) ={(qloop, S)}

 Note shorthand “single edge” ε, ε->S$

 For each terminal a in ∑, add the following self-loop

 δ(qloop, a, a) ={(qloop, ε)} (We

match the a and pop from

stack)

 To detect acceptance, add rule

 δ(qloop, ε, $) ={(qaccept, ε)}

5

 (p.11(0 For kth rule S->u1u2…uL, ui from ∑ U V

 δ(qloop, ε, S) includes (qk,1, uL), q1 a new state

 Add L-1 transitions to push u1u2…uL-1

onto stack, with u1 on top as follows

 δ(qk,1, ε, ε) = {(qk,2, uL-1)}, qk,2 a new

state in E

 δ(qk,2, ε, ε) = {(qk,3, uL-2)}, qk,3 a new

state in E

 …

 δ(qk,L-2, ε, ε) = {(qk,L-1, u2)}, ql a new

state in E

 δ(qk,L-1, ε, ε) = {(qloop, u1)}

 (p. 119, Fig. 2.23) Book uses shorthand a,s->w

(w a string) on edge for sequence of steps:

 a,s->wn

 ε,ε->wn-1

 …

 ε,ε->w1

 (p. 120) Final machine looks like Fig.2.24

 (p.120) Example problem Fig.2.25

 (p. 155) See also problems 2.5, 2.7, 2.9 esp. 2.11, and

create PDAs from CFGs 2.13, 2.14. 2.46

Shorthand

A->xyz

6

 (p. 121) Now prove if PDA accepts L, L must be CF

 Again by construction of a CFG from PDA

 Modify P slightly

 Ensure a single accept state qaccept

 From any prior accept state, add set of transitions

that ensure stack is empty before final accept state

 Ensure each transition either pushes or pops but not

both or neither

 If a transition does both (δ(q,a,x)->{(q’,y)}),

 add new intermediate state

 Transition from original state does pop: a,x->ε

 Transition from new state does push: ε,ε->y

 If a transition does neither (δ(q,ε,ε)->{(q’,ε)},

 add new state and use any terminal x

 Transition from original state pushes x: a,ε->x

 Transition from new state pops that x: ε,x->ε

7

 Construct G = (V,∑,R,S)

 ∑ the same

 V = {Apq | p, q in Q} – 1 symbol for each pair of states

 S = Aq0,qaccept

 Construct grammar rules R as follows

 For each p,q,r,s in Q, u in Γ, and a,b in ∑

 If δ(p, a, ε) contains (r,u) (we are pushing u)

 And δ(s, b, u) contains (q, ε) (we are popping u)

 Then add grammar rule Apq -> aArsb

 For each p,q,r in Q

 Then add grammar rule Apq -> AprArs

 For each p in Q

 Then add grammar rule App -> ε

 See p.122 Figs. 2.28 for notional pictures of stack height

8

 (p. 123) Claim 2.30. If variable Apq generates string x, then

x can bring P from state p with an empty stack to state q

with empty stack

 Proof by induction on # of steps in derivation of x

 Basis step: it took 1 step

 Only grammar rules with no RHS variables are App->ε

 i.e. ε must take P from p to p without pushing

anything onto empty stack

 Induction Hypothesis: assume true for derivations of

length at most k, k≥1.

 Induction step: prove true for derivations of length k+1

 Suppose Apq=>x with k+1 steps

 Two possibilities

 First case: Apq -> aArsb for some a,b, r,s

 Ars must have generated y where x = ayb

 But this must have happened in k steps, so P

can go from r to s on empty stack

 Because Apq -> aArsb is a rule in G

 δ(p, a, ε) contains (r, u) for some u

 i.e. it pushes u

 and δ(s, b, u) contains (q, ε)

 i.r. it pops u

9

 Thus if P starts at p with empty stack

 After reading a it goes to state r with u on

stack

 Then reading y brings P to s and leaves u

on stack

 Second case: Apq =>AprArq

 Assume x=yz where

 Apr=>y in at most k steps

 Ars=>z in at most k steps

 Then induction hypothesis says y can bring P from p

to r, and z can bring P from r to q, with empty

stacks on both ends

 (p.123) Claim 2.31: If we can bring P from p to q with

empty stacks on both sides then Apq generates x

 (p. 124) Corollary 2.32. Every regular language is context

free.

