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(pp. 117-124) PDAs and CFGs (Sec. 2.2) 

 A language is context free iff all strings in L can be 

generated by some context free grammar 

 Theorem 2.20: L is Context Free iff a PDA accepts it 

 I.e. if L is context free than some PDA accepts it 

 AND if a PDA accepts L, then it is context free 

 Outline of proof: must prove in both directions 

 If language A is CF, then we construct a PDA P  

 Use stack to keep the right hand of the intermediate 

string that includes the leftmost variable on top 

 Create transition rules from grammar rules 

 Use nondeterministic choice of rules to match terminals 

 If a PDA P recognizes L, then L is CF 

 Proof by constructing a CFG that matches 
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 (p117) 1st part: if G=(V,∑,R,S) is CFG for L, then some 

PDA P=(Q,∑,Γ,δ,qstart,F) accepts it 

 Proof: Build the PDA from the Grammar 

 Overview of proof by construction  

 Assume G=(V,∑,R,S) 

 Γε = V U ∑ U {$, ε} 

 Alphabet + non-terminals+special characters $, ε 

 3 common states: qstart, qloop, qaccept 

 F = {qaccept} 

 Additional states added for each grammar rule 

 Extra states for rules like A->xyz 

 Self-loop on qloop for rules like A->a 

  

A->xyz

A->a
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 Overview of PDA P in operation (see Fig. 2.26): 

 Start with pushing “S$” onto stack (with S on top) 

 Used $ to mark bottom of stack 

 Repeatedly loop around state qloop 

 If stack top is $, enter accept state 

 If stack top is non-terminal A, select an edge (non-

deterministically) based on a rule for A  

 Pop the variable  

 Push the RHS (in reverse order) 

 If stack top is terminal “a”, next symbol on input 

must be “a” to be accepted. Pop a.   

A->xyz

A->a
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A->a

 Formal Construction of P from Grammar 

 Remember PDA transition rule specifies pair (q, x)  

 q is next state 

 x is character to push on stack 

 Q = {qstart, qloop, qaccept} U E 

 qloop is special state where all grammar rules start & 

end 

 E = all states generated by grammar rules as 

discussed below 

 F = { qaccept}  

 Add startup transitions to push S$ on start 

 δ(qstart, ε, ε) ={(q1, $)}, q1 a new state in E 

 δ(q1, ε, ε) ={(qloop, S)} 

 Note shorthand “single edge” ε, ε->S$ 

 For each terminal a in ∑, add the following self-loop 

 δ(qloop, a, a) ={(qloop, ε)} (We 

match the a and pop from 

stack) 

 To detect acceptance, add rule 

 δ(qloop, ε, $) ={(qaccept, ε)} 
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 (p.11(0 For kth rule S->u1u2…uL, ui from ∑ U V  

 δ(qloop, ε, S) includes (qk,1, uL), q1 a new state 

 Add L-1 transitions to push u1u2…uL-1 

onto stack, with u1 on top as follows 

 δ(qk,1, ε, ε) = {(qk,2, uL-1)}, qk,2 a new 

state in E 

 δ(qk,2, ε, ε) = {(qk,3, uL-2)}, qk,3 a new 

state in E 

 … 

 δ(qk,L-2, ε, ε) = {(qk,L-1, u2)}, ql a new 

state in E 

 δ(qk,L-1, ε, ε) = {(qloop, u1)} 

 (p. 119, Fig. 2.23) Book uses shorthand a,s->w 

(w a string) on edge for sequence of steps:  

 a,s->wn 

 ε,ε->wn-1  

 … 

 ε,ε->w1 

 (p. 120) Final machine looks like Fig.2.24 

 (p.120) Example problem Fig.2.25 

 (p. 155) See also problems 2.5, 2.7, 2.9 esp. 2.11, and 

create PDAs from CFGs 2.13, 2.14. 2.46 

Shorthand

A->xyz
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 (p. 121) Now prove if PDA accepts L, L must be CF 

 Again by construction of a CFG from PDA 

 Modify P slightly 

 Ensure a single accept state qaccept  

 From any prior accept state, add set of transitions 

that ensure stack is empty before final accept state 

 Ensure each transition either pushes or pops but not 

both or neither 

 If a transition does both (δ(q,a,x)->{(q’,y)}),  

 add new intermediate state  

 Transition from original state does pop: a,x->ε 

 Transition from new state does push: ε,ε->y 

 If a transition does neither (δ(q,ε,ε)->{(q’,ε)},  

 add new state and use any terminal x 

 Transition from original state pushes x: a,ε->x 

 Transition from new state pops that x: ε,x->ε 
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 Construct G = (V,∑,R,S) 

 ∑ the same 

 V = {Apq | p, q in Q} – 1 symbol for each pair of states 

 S = Aq0,qaccept  

 Construct grammar rules R as follows 

 For each p,q,r,s in Q, u in Γ, and a,b in ∑ 

 If δ(p, a, ε) contains (r,u) (we are pushing u) 

 And δ(s, b, u) contains (q, ε) (we are popping u) 

 Then add grammar rule Apq -> aArsb 

 For each p,q,r in Q 

 Then add grammar rule Apq -> AprArs 

 For each p in Q 

 Then add grammar rule App -> ε 

 See p.122 Figs. 2.28 for notional pictures of stack height 
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 (p. 123) Claim 2.30. If variable Apq generates string x, then 

x can bring P from state p with an empty stack to state q 

with empty stack 

 Proof by induction on # of steps in derivation of x 

 Basis step: it took 1 step 

 Only grammar rules with no RHS variables are App->ε 

 i.e. ε must take P from p to p without pushing 

anything onto empty stack 

 Induction Hypothesis: assume true for derivations of 

length at most k, k≥1. 

 Induction step: prove true for derivations of length k+1 

 Suppose Apq=>x with k+1 steps 

 Two possibilities 

 First case: Apq -> aArsb for some a,b, r,s 

 Ars must have generated y where x = ayb 

 But this must have happened in k steps, so P 

can go from r to s on empty stack 

 Because Apq -> aArsb is a rule in G 

 δ(p, a, ε) contains (r, u) for some u 

 i.e. it pushes u 

 and δ(s, b, u) contains (q, ε) 

 i.r. it pops u 
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 Thus if P starts at p with empty stack 

 After reading a it goes to state r with u on 

stack 

 Then reading y brings P to s and leaves u 

on stack 

 Second case: Apq =>AprArq  

 Assume x=yz where  

 Apr=>y in at most k steps  

 Ars=>z in at most k steps 

 Then induction hypothesis says y can bring P from p 

to r, and z can bring P from r to q, with empty 

stacks on both ends 

 (p.123) Claim 2.31: If we can bring P from p to q with 

empty stacks on both sides then Apq generates x 

 (p. 124) Corollary 2.32. Every regular language is context 

free. 


