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(pp. 117-124) PDAs and CFGs (Sec. 2.2) 

 A language is context free iff all strings in L can be 

generated by some context free grammar 

 Theorem 2.20: L is Context Free iff a PDA accepts it 

 I.e. if L is context free than some PDA accepts it 

 AND if a PDA accepts L, then it is context free 

 Outline of proof: must prove in both directions 

 If language A is CF, then we construct a PDA P  

 Use stack to keep the right hand of the intermediate 

string that includes the leftmost variable on top 

 Create transition rules from grammar rules 

 Use nondeterministic choice of rules to match terminals 

 If a PDA P recognizes L, then L is CF 

 Proof by constructing a CFG that matches 
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 (p117) 1st part: if G=(V,∑,R,S) is CFG for L, then some 

PDA P=(Q,∑,Γ,δ,qstart,F) accepts it 

 Proof: Build the PDA from the Grammar 

 Overview of proof by construction  

 Assume G=(V,∑,R,S) 

 Γε = V U ∑ U {$, ε} 

 Alphabet + non-terminals+special characters $, ε 

 3 common states: qstart, qloop, qaccept 

 F = {qaccept} 

 Additional states added for each grammar rule 

 Extra states for rules like A->xyz 

 Self-loop on qloop for rules like A->a 

  

A->xyz

A->a
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 Overview of PDA P in operation (see Fig. 2.26): 

 Start with pushing “S$” onto stack (with S on top) 

 Used $ to mark bottom of stack 

 Repeatedly loop around state qloop 

 If stack top is $, enter accept state 

 If stack top is non-terminal A, select an edge (non-

deterministically) based on a rule for A  

 Pop the variable  

 Push the RHS (in reverse order) 

 If stack top is terminal “a”, next symbol on input 

must be “a” to be accepted. Pop a.   

A->xyz

A->a



4 
 

A->a

 Formal Construction of P from Grammar 

 Remember PDA transition rule specifies pair (q, x)  

 q is next state 

 x is character to push on stack 

 Q = {qstart, qloop, qaccept} U E 

 qloop is special state where all grammar rules start & 

end 

 E = all states generated by grammar rules as 

discussed below 

 F = { qaccept}  

 Add startup transitions to push S$ on start 

 δ(qstart, ε, ε) ={(q1, $)}, q1 a new state in E 

 δ(q1, ε, ε) ={(qloop, S)} 

 Note shorthand “single edge” ε, ε->S$ 

 For each terminal a in ∑, add the following self-loop 

 δ(qloop, a, a) ={(qloop, ε)} (We 

match the a and pop from 

stack) 

 To detect acceptance, add rule 

 δ(qloop, ε, $) ={(qaccept, ε)} 
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 (p.11(0 For kth rule S->u1u2…uL, ui from ∑ U V  

 δ(qloop, ε, S) includes (qk,1, uL), q1 a new state 

 Add L-1 transitions to push u1u2…uL-1 

onto stack, with u1 on top as follows 

 δ(qk,1, ε, ε) = {(qk,2, uL-1)}, qk,2 a new 

state in E 

 δ(qk,2, ε, ε) = {(qk,3, uL-2)}, qk,3 a new 

state in E 

 … 

 δ(qk,L-2, ε, ε) = {(qk,L-1, u2)}, ql a new 

state in E 

 δ(qk,L-1, ε, ε) = {(qloop, u1)} 

 (p. 119, Fig. 2.23) Book uses shorthand a,s->w 

(w a string) on edge for sequence of steps:  

 a,s->wn 

 ε,ε->wn-1  

 … 

 ε,ε->w1 

 (p. 120) Final machine looks like Fig.2.24 

 (p.120) Example problem Fig.2.25 

 (p. 155) See also problems 2.5, 2.7, 2.9 esp. 2.11, and 

create PDAs from CFGs 2.13, 2.14. 2.46 

Shorthand

A->xyz
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 (p. 121) Now prove if PDA accepts L, L must be CF 

 Again by construction of a CFG from PDA 

 Modify P slightly 

 Ensure a single accept state qaccept  

 From any prior accept state, add set of transitions 

that ensure stack is empty before final accept state 

 Ensure each transition either pushes or pops but not 

both or neither 

 If a transition does both (δ(q,a,x)->{(q’,y)}),  

 add new intermediate state  

 Transition from original state does pop: a,x->ε 

 Transition from new state does push: ε,ε->y 

 If a transition does neither (δ(q,ε,ε)->{(q’,ε)},  

 add new state and use any terminal x 

 Transition from original state pushes x: a,ε->x 

 Transition from new state pops that x: ε,x->ε 
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 Construct G = (V,∑,R,S) 

 ∑ the same 

 V = {Apq | p, q in Q} – 1 symbol for each pair of states 

 S = Aq0,qaccept  

 Construct grammar rules R as follows 

 For each p,q,r,s in Q, u in Γ, and a,b in ∑ 

 If δ(p, a, ε) contains (r,u) (we are pushing u) 

 And δ(s, b, u) contains (q, ε) (we are popping u) 

 Then add grammar rule Apq -> aArsb 

 For each p,q,r in Q 

 Then add grammar rule Apq -> AprArs 

 For each p in Q 

 Then add grammar rule App -> ε 

 See p.122 Figs. 2.28 for notional pictures of stack height 
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 (p. 123) Claim 2.30. If variable Apq generates string x, then 

x can bring P from state p with an empty stack to state q 

with empty stack 

 Proof by induction on # of steps in derivation of x 

 Basis step: it took 1 step 

 Only grammar rules with no RHS variables are App->ε 

 i.e. ε must take P from p to p without pushing 

anything onto empty stack 

 Induction Hypothesis: assume true for derivations of 

length at most k, k≥1. 

 Induction step: prove true for derivations of length k+1 

 Suppose Apq=>x with k+1 steps 

 Two possibilities 

 First case: Apq -> aArsb for some a,b, r,s 

 Ars must have generated y where x = ayb 

 But this must have happened in k steps, so P 

can go from r to s on empty stack 

 Because Apq -> aArsb is a rule in G 

 δ(p, a, ε) contains (r, u) for some u 

 i.e. it pushes u 

 and δ(s, b, u) contains (q, ε) 

 i.r. it pops u 
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 Thus if P starts at p with empty stack 

 After reading a it goes to state r with u on 

stack 

 Then reading y brings P to s and leaves u 

on stack 

 Second case: Apq =>AprArq  

 Assume x=yz where  

 Apr=>y in at most k steps  

 Ars=>z in at most k steps 

 Then induction hypothesis says y can bring P from p 

to r, and z can bring P from r to q, with empty 

stacks on both ends 

 (p.123) Claim 2.31: If we can bring P from p to q with 

empty stacks on both sides then Apq generates x 

 (p. 124) Corollary 2.32. Every regular language is context 

free. 


