Non Context Free Languages (Sec. 2.3)

• (p. 125) **Pumping Lemma for CFLs**
 • If A is a CFL, then for some $\# p$ **(pumping length)**
 • If s is *any* string in A, $|s| \geq p$
 • Then $s = uvxyz$ (for some 5 substrings u, v, x, y, z) where
 • For all $i \geq 0$, uv^ixy^iz is in A
 • And $|vy| > 0$
 • the length of the 2 pumped parts v and y is not 0
 • but just one of v or y could be ε
 • and $|vxy| \leq p$
 • The middle string x is at most the pumping length
 • Using this lemma: if we can find even one string from L
 where
 • there is no possible partitioning into 5 pieces
 • i.e. we look at all possible partitionings
 • where all conditions hold (esp. the first)
 • then L is not CFL
• (p. 124) Notional proof
 • If L is CFL then we can draw a parse tree like (p. 126) Fig. 2.35 (a) to generate each string in L
 • Pick a string “long enough” that we have to reuse one of the non-terminals, say R
 • The derivation between the 1st point where R is in the tree and its reuse could then be substituted over and over (Fig. 2.35 b) for the second use, or not at all (Fig. 2.35c)
• Example: develop language for, and then draw parse tree for S->aSb S->#
Estimating pumping length p

- Let G be CFG for A
- Let $b = \max \#\text{ of variables on any rule RHS}$
- Thus, in any parse tree, no interior node (variable) can have more than b children.
 - So at most b leaves are one step from start variable
 - At most b^2 children 2 steps from start
 - At most b^3 children 3 steps from start
 -
 - Or, at most b^h leaves from start in tree of h levels

- OR: if height of parse tree $\leq h$ then string length $\leq b^h$
- OR: If $|s| \geq b^h + 1$, then parse tree at least $h+1$ high

- Now assume $p = b^{|V|+1}$
 - If $|s| \geq p$ then parse tree must be at least $|V|+1$ high
 - So some R must have been used more than once
 - For convenience select R as 1^{st} one that repeats among lowest $|V+1|$ variables on longest path
- Upper occurrence of R generates vxy
- Lower occurrence of R generates x
- Replacing the lower by the upper “pumps up”
- Replacing upper by lower “pumps down”
- All must be in A because generated by G
• (p. 128) Example B = \{a^n b^n c^n \mid n \geq 0\} not CFL
 • Assume B CFL so there is some p
 • Select s = a^p b^p c^p (we need only 1 string for contradiction)
 • Clearly in B with length \(> p \)
 • Pumping lemma says no matter how we divide s in \(uv^2xyz \),
 one condition fails
 • Either \(v \) or \(y \) must be non empty
 • Two cases
 • Only one kind of terminal in \(v \) and \(y \)
 • Then \(x \) must be same terminal
 • And then \(vxy \) must be in one of 3 parts \(a^n, b^n, \) or \(c^n \)
 • And thus all characters in \(vxy \) are same
 • And then pumping \(v \) and \(y \) (one is non empty)
 destroys balance
 • When either \(v \) or \(y \) contain more than one type of
 terminal, then \(uv^2xy^2z \) might contain right #s but not all
 grouped together.
• (p. 128) Example C = \{a^ib^jc^k \mid 0 \leq i \leq j \leq k\} not CFL
 • Consider \(s = a^p b^p c^p \)

• (p. 129) Example D = \{ww \mid w \text{ in } \{0,1\}^*\} not CFL
 • Consider \(s = 0^p 1^p 0^p 1^p \)
 • Must straddle midpoint
 • Then it distorts trailing 1s on left from trailing 1s on right

• See also problems 2.30-2.33, 2.45,